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1. Introduction

Nonlinear differential equations are extensive in
science and technology. However, finding analyt-
ical solutions for this class of equations has al-
ways been a challenging work [3]. Many approx-
imate methods were introduced for the analyti-
cal solution of nonlinear differential equations in
the recent years. Among these, Homotopy Analy-
sis Method (HAM) [49], Adomian Decomposition
Method (ADM) [2], Variational Iteration Method
(VIM) [21], Differential Transformation Method
(DTM) [31], and Homotopy Perturbation Method
(HPM) [41] can be referred. Some new techniques
for approximate solution of nonlinear differential
equations are shown up recently, such as Op-
timal Homotopy Asymptotic Method (OHAM)
[45], Generalized Homotopy Method (GHM) [46],
and reproducing kernel method (RKM) [13].

In the present paper, the RKM has been applied
for the solution of two different forms of nonlinear
Blasius equation in a semi-infinite domain. Much
notice has been given to the work of the RKM
to solve many works. The work [13] presents

great applications of the RKM. For more details
see [1,4–7,10–12,17,22,23,26,27,32,42,44,48,51].

We present two forms of the Blasius equation aris-
ing in fluid flow inside the velocity boundary layer
as follows.

The first form of the Blasius equation is given as:





u(3)(x) + u(x)u′′(x)
2 = 0, 0 ≤ x ≤ ∞,

u(0) = u′(0) = 0, u′(x) = 1 as x→ ∞.

(1)

The second form is given as:





u(3)(x) + u(x)u′′(x)
2 = 0, 0 ≤ x ≤ ∞,

u(0) = 0, u′(0) = 1, u′(x) = 0 as x→ ∞.

(2)

These equations are the same except for bound-
ary conditions. The first form of the equation is
the well-known classical Blasius first derived by
Blasius and dates back about a century, which
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defines the velocity profile of two-dimensional vis-
cous laminar flow over a finite flat plate. This
form of the Blasius equation is the simplest form
and the origin of all boundary layer equations in
fluid mechanics. The second form of the equation,
presented more recently, arises in the steady free
convection about a vertical flat plate embedded
in a saturated porous medium, Laminar bound-
ary layers at the interface of cocurrent parallel
streams, or the flow near the leading edge of a
very long, steadily operating conveyor belt [3].

Many analytical techniques were introduced to
investigate Blasius equation. He [24] pre-
sented a perturbation method. Comparison with
Howarth’s numerical solution finds out that this
technique gives the approximate value σ = 0.3296
with 0.73 accuracy. Asaithambi [9] obtained
this number correct to nine decimal positions
as σ = 0.332057336. The variational iteration
method (VIM) is implemented for a reliable treat-
ment of two forms of Blasius equation [47]. Fazio
[18] searched the Blasius problem numerically.
Sinc-collocation technique is implemented in [36]
and the HAM is employed by Yao and Chen
in [49] and Liao in [29]. For more details see
[8, 14–16,19, 28, 30, 33–35,37–40,43, 49, 50].

We organize the paper as follows. We give some
new reproducing kernel functions in Section 2. We
present the linear operator in Section 3. We show
the main results in Section 4. We give the ap-
proximate solutions of (1)–(2) in this section. We
illustrate examples in Section 5. We give the con-
clusion in Section 6.

2. Preliminaries

Definition 1. We describe the space W 4
2 [0,∞)

by

W 4
2 [0,∞) = {v ∈ AC[0, 1] : v′, v′′, v(3) ∈ AC[0,∞),

v(4) ∈ L2[0,∞), v(0) = v′(0) = v′(∞) = 0}.

The inner product and the norm in W 4
2 [0,∞) are

given by

〈v, h〉W 4
2

= v(0)h(0) + v′(0)h′(0) + v′′(0)h′′(0)

+ v(3)(0)h(3)(0) +

∫
∞

0
u(4)(t)h(4)(t)dt,

v, h ∈W 4
2 [0,∞)

and

‖v‖W 4
2
=

√
〈v, v〉W 4

2
, v ∈W 4

2 [0,∞).

The space W 4
2 [0,∞) is called a reproducing kernel

space. A function Ry is obtained as:

v(y) = 〈v,Ry〉W 4
2

.

Definition 2. We describe the space W 1
2 [0, 1] by

W 1
2 [0, 1] = {v ∈ AC[0, 1] : v′ ∈ L2[0, 1]}.

The inner product and the norm in W 1
2 [0, 1] are

defined by

〈v, h〉W 1
2
=

∫ 1

0
v(t)h(t) + v′(t)h′(t)dt, (3)

v, h ∈ G1
2[0, 1]

and

‖v‖W 1
2
=

√
〈v, v〉W 1

2
, v ∈W 1

2 [0, 1]. (4)

W 1
2 [0, 1] is a reproducing kernel space. Kernel

function Tt(y) is obtained as [13]

Tt(y)=
1

2 sinh(1)
[cosh(t+ y − 1) + cosh(|t− y| − 1)]

(5)

Theorem 1. W 4
2 [0,∞) is a reproducing kernel

space. Kernel function Ry is obtained as:

Ry(t) =





∑8
i=1 ci(y)t

i−1, t ≤ y,

∑8
i=1 di(y)t

i−1, t > y,

(6)

where

c1(y) = 0, c2(y) = 0, c3(y) =
1

4
y2,

c4(y) =
1

36
y3, c5(y) =

1

144
y3,

c6(y) = −
1

240
y2, c7(y) =

1

720
y,

c8(y) = −
1

5040
, d1(y) = −

1

5040
y7

d2(y) =
1

720
y6, d3(y) = −

1

240
y2(y3 − 60),

d4(y) =
1

144
y3(y + 4), d5(y) = 0, d6(y) = 0,

d7(y) = 0, d8(y) = 0.

Proof.

〈v(t), Ry(t)〉W 4
2

= v(0)Ry(0) + v′(0)R′

y(0)

+ v′′(0)R′′

y(0) + v(3)(0)R(3)
y (0)

+

∫
∞

0
v(4)(t)R(4)

y (t)dt,

We obtain
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〈v,Ry〉W 4
2

= v(0)Ry(0) + v′(0)R′

y(0)

+ v′′(0)R′′

y(0) + v(3)(0)R(3)
y (0)

+ v(3)(1)R(4)
y (1)− v(3)(0)R(4)

y (0)

− v′′(1)R(5)
y (1) + v′′(0)R(5)

y (1)

+ v′(1)R(6)
y (1)− v′(0)R(6)

y (0)

− v(1)R(7)
y (1) + v(0)R(7)

y (0)

+

∫
∞

0
v(t)R(8)

y (t)dt,

(7)

with integrations by parts. We obtain

〈v(t), Ry(t)〉W 4
2
= v(y), (8)

by reproducing property. If





Ry(0) = 0,

R′

y(0) = 0,

R′

y(∞) = 0,

R′′

y(0) +R
(5)
y (0) = 0,

R
(3)
y (0)−R

(4)
y (0) = 0,

R
(4)
y (∞) = 0,

R
(5)
y (∞) = 0,

R
(7)
y (∞) = 0,

(9)

then (7) implies that

R(8)
y (t) = δ(t− y).

When t 6= y,

R(8)
y (t) = 0,

therefore

Ry(t) =





∑8
i=1 ci(y)t

i−1, t ≤ y,

∑8
i=1 di(y)t

i−1, t > y,

(10)

Since

R(8)
y (t) = δ(t− y),

we have

∂kRy+(y) = ∂kRy−(y), k = 0, 1, 2, 3, 4, 5, 6
(11)

and

∂7Ry+(y)− ∂7Ry−(y) = 1. (12)

Due to Ry(t) ∈W 4
2 [0,∞), it follows that

Ry(0) = R′

y(0) = R′

y(∞) = 0, (13)

from (9)–(13), the unknown coefficients ci(y) and
di(y) (i = 1, 2, . . . , 8) can be acquired. Therefore,
Ry(t) is obtained as:

Ry(x) =





− 1
5040 t

2(21y2t3 + t5 − 1260y2 − 7yt4)

− 1
5040 t

2(−140y3t− 35y3t2), t ≤ y

− 1
5040y

2(21t2y3 + y5 − 1260t2 − 7ty4)

− 1
5040y

2(−140t3y − 35t3y2), t > y

�

3. Solution representation in W 4
2 [0,∞)

In this section, the solutions of (1)–(2) are pre-
sented in the W 4

2 [0,∞). On defining the linear
operator L :W 4

2 [0,∞) →W 1
2 [0, 1] as

Lv(t) = v(3)(t) +
exp(−t) + t− 1

2
v′′(t)(14)

+
exp(−t)

2
v(t)

the problem (1) gets the form:

{
Lv = f(t, u), t ∈ [0,∞),

v(0) = v′(0) = v′(∞) = 0
(15)

where f(t, v) = exp(−t) − 1
2v(t)v

′′(t) −
1
2 exp(−t)(exp(−t) + t− 1).

Theorem 2. The L given by (14) is a bounded
linear operator.

Proof. We need to show ‖Lv‖2W 1
2

≤ M ‖v‖2W 4
2
,

where M > 0 is a positive constant. By (3) and
(4), we have

‖Lv‖2W 1
2
= 〈Lv, Lv〉W 1

2
=

∫ 1

0
[Lv(t)]2+

[
Lv′(t)

]2
dt.

By (8), we have

v(t) = 〈v(·), Rt(·)〉W 4
2
,

and

Lv(t) = 〈v(·), LRt(·)〉W 4
2
,

so

|Lv(t)| ≤ ‖v‖W 4
2
‖LRt‖W 4

2
=M1 ‖u‖W 4

2
,

where M1 > 0 is positive. Therefore,
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∫ 1

0
[(Lv) (t)]2 dt ≤M2

1 ‖v‖
2
W 4

2
.

We have

(Lv)′(t) =
〈
v(·), (LRt)

′(·)
〉
W 4

2

,

by reproducing property. Thus, we get

∣∣(Lv)′(t)
∣∣ ≤ ‖v‖W 4

2

∥∥(LRt)
′
∥∥
W 4

2

=M2 ‖u‖W 4
2
,

where M2 > 0 is positive. Therefore, we obtain

[
(Lv)′(t)

]2
≤M2

2 ‖u‖
2
W 4

2
,

and

∫ 1

0

[
(Lv)′(t)

]2
dt ≤M2

2 ‖v‖
2
W 4

2
,

that is

‖Lv‖2W 1
2
≤

∫ 1

0

(
[(Lv) (t)]2 +

[
(Lv)′(t)

]2)
dt

≤
(
M2

1 +M2
2

)
‖v‖2W 4

2
=M ‖v‖2W 4

2
,

where M =M2
1 +M2

2 > 0 is a positive constant.

�

4. The main results

Let ϕi(t) = Tti(t) and ψi(t) = L∗ϕi(t), where
L∗ is conjugate operator of L. The orthonormal

system
{
Ψ̂i(t)

}
∞

i=1
of W 4

2 [0,∞) can be obtained

from Gram-Schmidt orthogonalization process of
{ψi(t)}

∞

i=1,

ψ̂i(t) =
i∑

k=1

βikψk(t), (βii > 0, i = 1, 2, . . .)

(16)

Theorem 3. Let {ti}
∞

i=1 be dense in [0,∞) and
ψi(t) = LyRt(y)|y=ti

. The sequence {ψi(t)}
∞

i=1 is

a complete system in W 4
2 [0,∞).

Proof. We obtain

ψi(t) = (L∗ϕi)(t) = 〈(L∗ϕi)(y), Rt(y)〉

= 〈(ϕi)(y), LyRt(y)〉 = LyRt(y)|y=ti
.

The subscript y by the operator L indicates that
the operator L applies to the function of y.
Clearly, ψi(t) ∈ W 4

2 [0,∞). For each fixed v(t) ∈
W 4

2 [0,∞), let 〈v(t), ψi(t)〉 = 0, (i = 1, 2, . . .),
which means that,

〈v(t), (L∗ϕi)(t)〉 = 〈Lv(·), ϕi(·)〉 = (Lv)(ti) = 0.

{ti}
∞

i=1 is dense in [0,∞). Therefore, (Lv)(t) = 0.
u ≡ 0 by L−1. �

Theorem 4. If v(t) is the exact solution of (15),
then

v(t) =

∞∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(t). (17)

where {(ti)}
∞

i=1 is dense in [0,∞).

Proof. We get

v(t) =

∞∑

i=1

〈
v(t), Ψ̂i(t)

〉
W 4

2

Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈v(t),Ψk(t)〉W 4
2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈v(t), L
∗ϕk(t)〉W 4

2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈Lv(t), ϕk(t)〉W 1
2
Ψ̂i(t)

=

∞∑

i=1

i∑

k=1

βik 〈f(t, v), Ttk〉W 1
2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(x),

by (16) and uniqueness of solution of (15). This
completes the proof. �

The approximate solution un(x) can be acquired
as:

vn(t) =
n∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(t). (18)

Lemma 1. If ‖vn − v‖W 4
2
→ 0, tn → t, (n→ ∞)

and f(t, v) is continuous for x ∈ [0,∞), then [20]

f(tn, vn−1(tn)) → f(t, v(t)) as n→ ∞.

Theorem 5. For any fixed v0(t) ∈ W 4
2 [0,∞) as-

sume that the following conditions are hold:

(i)

vn(t) =

n∑

i=1

Aiψ̂i(t), (19)

Ai =
i∑

k=1

βikf(tk, uk−1(tk)), (20)
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(ii) ‖vn‖W 4
2
is bounded;

(iii) {ti}
∞

i=1 is dense in [0,∞);
(iv) f(t, u) ∈ W 1

2 [0, 1] for any v(t) ∈
W 4

2 [0,∞).

Then vn(t) in iterative formula (19) converges to
the exact solution of (17) in W 4

2 [0,∞) and

v(t) =
∞∑

i=1

Aiψ̂i(t).

Proof. By (19), we obtain

vn+1(t) = un(t) +An+1Ψ̂n+1(t), (21)

from the orthonormality of {Ψ̂i}
∞

i=1, we get

‖vn+1‖
2 = ‖vn‖

2 +A2
n+1 = ‖vn−1‖

2 +A2
n +A2

n+1

= . . . =

n+1∑

i=1

A2
i ,

from boundedness of ‖un‖W 4
2
, we obtain

∞∑

i=1

A2
i <∞,

i.e.,

{Ai} ∈ l2 (i = 1, 2, . . .).

Let m > n, in view of (vm − vm−1) ⊥
(vm−1 − vm−2) ⊥ . . . ⊥ (vn+1 − vn), we get

‖vm − vn‖
2
W 4

2
= ‖vm − vm−1 + . . .+ un+1 − vn‖

2
W 4

2

≤ ‖vm − vm−1‖
2
W 3

2
+ . . .+ ‖vn+1 − vn‖

2
W 4

2

=
m∑

i=n+1

A2
i → 0, m, n→ ∞.

By the completeness of W 4
2 [0,∞), there exists

v(t) ∈W 4
2 [0,∞), such that

vn(t)→v(t) as n→ ∞.

(ii) Taking limits in (19),

v(t) =
∞∑

i=1

Aiψ̂i(t).

We have

(Lv) (tj) =
∞∑

i=1

Ai

〈
Lψ̂i(t), ϕj(t)

〉
W 1

2

=

∞∑

i=1

Ai

〈
ψ̂i(t), L

∗ϕj(t)
〉
W 4

2

=
∞∑

i=1

Ai

〈
ψ̂i(t), ψj(t)

〉
W 4

2

.

Therefore, we get

n∑

j=1

βnj(Lv)(tj) =
∞∑

i=1

Ai

〈
ψ̂i(t),

n∑

j=1

βnjψj(t)

〉

W 4
2

=

∞∑

i=1

Ai

〈
ψ̂i(t), ψ̂n(t)

〉
W 4

2

= An.

If n = 1, then

Lv(t1) = f(t1, v0(t1)). (22)

If n = 2, then

β21(Lv)(t1) + β22(Lv)(t2)

= β21f(t1, v0(t1)) + β22f(t2, v1(t2)).

We have

(Lv(t2) = f(t2, u1(t2)).

Then, we get

(Lv)(tj) = f(tj , uj−1(tj)), (23)

by induction. We have,

(Lv)(y) = f(y, v(y)).

Therefore, v (t) is the solution of (15) and

v(t) =
∞∑

i=1

Aiψ̂i,

where Ai are given by (20).

�

5. Numerical results

In this section, two examples are given to demon-
strate the efficiency of the RKM. We have shown
comparison tables to prove the power of the RKM.
All computations are applied by Maple software
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program. The accuracy of the RKM for the Bla-
sius equations are controllable. The numerical
results we obtained justify the advantage of this
technique. We consider first and second forms of
the Blasius equation by RKM. In Tables 1–3, v,
v′, and v′′ obtained from the RKM are compared
with Howarth’s numerical solution [25]. Further-
more, as it can be seen from Tables 1–3, the RKM
is more accurate than the variational iteration
method [24]. In Tables 4–6, the result of the RKM
is given against that of exact (numerical) method.
There is a good agreement between the results of
the RKM and numerical solution. The results are
in very good agreement with numerical and pre-
vious data available in the literature.

Table 1. Comparison between v(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.00000 0.00000 0.00000

1 0.16577 0.19319 0.16557

2 0.65003 0.67940 0.65001

3 1.39682 1.39106 1.39679

4 2.30576 2.24573 2.30572

5 3.28329 3.17748 3.28309

6 4.27964 4.14688 4.27767

7 5.27926 5.13359 5.26736

RKM

0.00000

0.16570

0.65310

1.39782

2.33481

3.29502

4.28542

5.26896

Table 2. Comparison between v′(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.00000 0.00000 0.00000

1 0.32979 0.35064 0.32977

2 0.62977 0.61218 0.62976

3 0.84605 0.79640 0.84603

4 0.95552 0.90185 0.95551

5 0.99150 0.95523 0.99152

6 0.99868 0.98032 0.99883

7 0.99992 0.99158 0.99943

RKM

0.00000

0.33005

0.63039

0.84469

0.95294

0.98514

0.99131

0.99378

Table 3. Comparison between v′′(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.33206 0.54360 0.33205

1 0.32301 0.27141 0.32300

2 0.26675 0.22748 0.26675

3 0.16136 0.14117 0.16135

4 0.06424 0.07469 0.06422

5 0.01591 0.03600 0.01586

6 0.00240 0.01645 0.00110

7 0.00022 0.00723 0.00060

RKM

0.33236

0.32336

0.26631

0.16127

0.06522

0.01918

0.00313

0.00029

Table 4. Comparison between v(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 0.000000 0.00000 0.00000

1 0.786198 0.78620 0.78657

2 1.218546 1.21855 1.21310

3 1.432728 1.43273 1.43823

4 1.533086 1.53308 1.53938

5 1.578851 1.57884 1.57502

6 1.599437 1.59945 1.59266

7 1.612470 1.61280 1.61966
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Table 5. Comparison between v′(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 1.000000 1.000000 1.000000

1 0.587153 0.587153 0.589473

2 0.301784 0.301783 0.308234

3 0.144016 0.144016 0.141545

4 0.066244 0.066243 0.066661

5 0.029956 0.029949 0.026618

6 0.013469 0.013434 0.011824

7 0.006119 0.006005 0.006437

Table 6. Comparison between v′′(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 −0.443749 −0.443748 −0.442162

1 −0.358313 −0.358312 −0.359575

2 −0.214505 −0.214505 −0.213139

3 −0.109834 −0.109834 −0.109184

4 −0.052157 −0.052159 −0.052283

5 −0.023906 −0.023922 −0.023166

6 −0.010736 −0.010800 −0.010687

7 −0.046658 −0.048415 −0.044522

6. Conclusion

In this work, we introduced an algorithm for solv-
ing the Blasius equation with two different bound-
ary conditions in semi-infinite domains. For illus-
tration purposes, examples were chosen to show
the computational accuracy. This work has con-
firmed that the RKM offers important benefits in

terms its computational effectiveness to solve the
strongly nonlinear equations.
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