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 This paper proposes a Response Surface Methodology (RSM) based Genetic 

Algorithm (GA) using MATLAB® to assess and optimize the thermal and 

fluidity of high strength concrete (HSC). The overall heat transfer coefficient, 

slump-spread flow and T50 time was defined as thermal and fluidity properties of 

high strength concrete. In addition to above mentioned properties, a 28-day 

compressive strength of HSC was also determined. Water to binder ratio, fine 

aggregate to total aggregate ratio and the percentage of super-plasticizer content 

was determined as effective factors on thermal and fluidity properties of HSC. 

GA based multi-objective optimization method was carried out by obtaining 

quadratic models using RSM. Having excessive or low ratio of water to binder 

provides lower overall heat transfer coefficient. Moreover, T50 time of high 

strength concrete decreased with the increasing of water to binder ratio and the 

percentage of superplasticizer content. Results show that RSM based GA is 

effective in determining optimal mixture ratios of HSC. 
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1. Introduction 

Optimizing the mixture parameters of high 

performance concrete is important to save raw 

materials used [1-3]. Although many studies on 

finding the optimal mixture proportions for various 

concrete types [3] such as steel fiber reinforced 

concrete composition [4], recycled aggregate 

concretes [5], paper mill residuals mixed concrete [6], 

geopolymer concrete [7], and high strength self-

compacting concrete [8], there is still a need for 

hybrid optimization techniques. In optimization phase; 

experimental design such as response surface 

methodology (RSM) is not widely practiced with 

Genetic algorithm (GA). However, there are some 

studies to optimize wire electric discharge machining 

process [9], cutting parameters [10], biodiesel 

production process [11], and optimal cultivation [12]. 

In recent years, genetic algorithm was generally 

preferred to optimize parameters due to the success in 

solving complex optimization problems. 

RSM comprise of a group of mathematical and 

statistical techniques that can be used to identify the 

relationships between the response and the factors[13], 

[14]. RSM describes the effect of the factors, alone or 

in combination, in the processes [15]. Moreover in 

analyzing the effects of the factors, this experimental 

method also creates a mathematical model [16-18]. 

GAs show a classic strong optimization method in 

solving involution optimal problems that could be 

nonlinear or linear [15, 19]. GA consults the 

information from the achieved probable solution in the 

former stages to form the new set of points where 

improved results are anticipated [15, 20]. In the initial 

generation, GA is an evolutionary algorithm which 

can be used for the solution of more complicated 

optimization problems [15, 20]. GA can be described 

through three stages briefly: initial generation; 

operations such as reproduction, mutation, crossover 

etc.; determination of fitness value [15, 20]. 

This paper proposes a systematic methodology 

including experimental design based GA to assess and 

optimize thermal and fluidity properties of high 

strength concrete (HSC). Certainly, the overall heat 

transfer coefficient should be evaluated with the other 

essential properties such as T50 time, slump-flow 

spread and comprehensive strength for the HSC. For 

this purpose, the RSM must be applied with multi-

objective optimization methods such as genetic 
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algorithm. The main contribution of this article, the 

overall heat transfer coefficient of HSC was modeled 

empirically as a function of mixture parameters. The 

overall heat transfer coefficient was also optimized 

with other parameters using RSM-based GA. 

Furthermore, the overall heat transfer coefficient and 

T50 time were also analyzed in accordance with the 

mixed ingredients. 

2. Materials and method 

2.1. Materials 

CEM I 42.5R type cement with 425 kg/m3 dosage was 

used in this study. The cement has a specific gravity 

of 3.11 and Blaine fineness of 3696 cm2/g.120 kg/m3 

of fly ash with a specific gravity of 2.38 is used. A 

polycarboxylic ether based superplasticizer was used 

in all concrete mixtures. Super-plasticizer content is 

identified as the ratio of SP amount of 100 kg cement. 

Crushed sands (with a size of smaller than 4 mm as 

fine aggregate and with a size between 4 mm to 11mm 

as the coarse aggregate are used in concrete mixtures. 

The fine and coarse aggregates has specific gravities 

of 2.61 and 2.72 and mean water absorptions of 1.4% 

and 1.1 %, respectively. 

2.2. Proposed methodology 

Low heat loss provides benefits in energy savings. 

The overall heat transfer coefficient was evaluated 

with other important criteria for HSC such as slump-

spread diameter, T50 time and 28th day compressive 

strength to meet HSC qualifications. The flow chart 

which consists of 10 steps and which is aimed at 

optimizing the HSC performance was given in Figure 

1.In this research, GA was used for the optimization 

of useful models obtained with RSM for the overall 

heat transfer coefficient, slump-spread diameter, T50 

time and 28th day compressive strength.  

 
Figure 1. Proposed performance optimization and modeling 

framework 

2.3. Thermal and fluidity properties of high 

strength concrete 

In Turkey, 80% of the energy consumption in 

households is used for heating aims [21]. New 

methods have to be designed in order to contribute 

building professionals in their effort to optimize 

designs and to improve energy performance [22]. In 

our study, radiation heat-transfer coefficient was 

calculated to predict and model the overall heat 

transfer coefficient taking into account relationship 

radiation heat-transfer coefficient between convective 

heat transfer coefficients. Lakatos and Kalmar 

examines the change of the overall heat transfer 

coefficient of building structures in function of water 

content [23]. The first criterion is identified as the 

overall heat transfer coefficient that should be low. 

Quality characteristics for modeling phase are 

presented in Table 1.  

Table 1. Quality criteria and their target values for 

optimization phase 

Quality 

feature 
Sign Definition 

Kind of 

concrete 

test 

Objective 

1 U 

The overall heat 

transfer 
coefficient 

(W/m2K) 

Freshly 

mixed 

concrete  

Minimize 

2 S 
Slump-spread 

diameter (mm) 

Freshly 
mixed 

concrete 

Maximize 

3 T50 T50  time (s) 
Freshly 
mixed 

concrete 

Minimize 

4 fcs28 

Compressive 

strength 
(N/mm2) 28 

days 

Hardened 

concrete 

test 

Maximize 

2.4. Determination of factors and their levels 

The ranges of factors and their levels were determined 

taking into account the findings obtained by TOPSIS-

based Taguchi Optimization [8]. Three factors 

(variables) are characterized as A, B, C and their five 

levels are given in Table 2. The factors in our 

experiment are percentage of water to binder materials 

(A), fine aggregate (I) amount to total aggregate 

amount ratio (B) and the percentage of PCE (C). 

Table 2. Factor levels for response surface methodology 

Factors  Description 

Levels 

-2 -1 0 1 2 

First 

level 

Second 

level 

Third 

level 

Fourth 

level 

Fifth 

level 

A 

Water to 

binder 

materials ratio  

0.36 0.365 0.37 0.375 0.38 

B 

Fine aggregate 
(I) amount to 

total aggregate 

amount ratio  

0.58 0.59 0.60 0.61 0.62 

C 

The 

percentage of 

PCE (%) 

1.15 1.20 1.25 1.30 1.35 

 

3. The calculation of heat transfer coefficients 

Δx is the specimen length (150 mm), λc is thermal 

conductivity of concrete, hc is convective heat transfer 

coefficient [8, 24] and hf is radiation heat transfer 

coefficient; The heat transfer process may be 

represented by the resistance network and the overall 

heat transfer can be calculated as the ratio of the 
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overall temperature difference to the sum of the 

thermal resistance (U) [25]: 

𝑈 =
1

(
1

ℎ𝑐
+

∆𝑥

𝜆𝑐
+

1

ℎ𝑓
)

                                                        (1) 

 

The thermal conductivity of concrete λc (in W/m*K), 

200C < Tw< 12000C, can be calculated between the 

lower(LL) and upper limit (UL)values as follows [25]: 

 

𝜆𝑐 =  {
2 − 0.245(𝑇𝑤/100) + 0.011(𝑇𝑤/100)2, UL 

1.36 − 0.136(𝑇𝑤/100) + 0.006(𝑇𝑤/100)2, LL
 

(2) 

In this study, the average thermal conductivity (𝜆̅
𝑐), 

which is the average of the lower thermal conductivity 

and upper thermal conductivity of the concrete, was 

calculated by using Eq. (2) for all experiments given 

in Table 3. 

The details of calculation of the convective heat 

transfer coefficient can be found in [8]. Tw, T∞ and Tf 

are the temperature of the concrete surface, the 

temperature of the air and film temperature, 

respectively.  

The coefficient of the average convection heat transfer 

(hc) which is the average of the coefficients of the 

convection heat transfer of three 150 mm cubes given 

in Table 3 [8].  

The radiation heat transfer coefficient (ℎ̅𝑓) which is 

the average of the coefficients of the radiation heat 

transfer of three 150 mm cubes given in Table 3, are 

calculated by using Eq. (3) for all experiments[8]. 

ℎ𝑓 =
𝜎∗𝜀∗𝐹1,2

𝑇𝑤 − 𝑇∞

[𝑇𝑤
4 − 𝑇∞

4 ]                                           (3) 

ε is emissivity 0.63 for concrete; σ is Stephan-

Boltzmann constant 5,67*10-8 W/m2K4 and F1,2 = 1 

radiation shape factor [8, 26]. 

4. Modeling and optimization 

4.1. Modeling 

Experimental matrix of RSM based Central 

Composite Design (CCD) were given in third, fourth 

and fifth columns of Table 4. In our study, rotatable 

experimental design is carried out as central composite 

design (CCD) which consists of 20 experiments. As 

shown in Table 4, three independent variables was 

symbolized as A (water to binder materials ratio), B 

(fine aggregate (II) amount to total aggregate amount 

ratio) and C (super plasticizer amount ratio to one 

hundred kilogram binder materials) [16]. 

The regression equations given in Table 5 were 

achieved from the analysis of variances (ANOVA). 

From the “p” values (p < 0.05) presented in also Table 

5, regression equations were found significant for all 

thermal and fluidity properties [16]. The results 

demonstrate that the experimental results approximate 

to the estimated results (see R2 values in Table 5). The 

estimated and theoretical values for the all thermal and 

fluidity properties were given in Table 5. 

 

 

 

Table 3. The overall heat transfer coefficient 

Exp.No. Tc, 
0C T∞ , 0C Tf , K Re Nu λc(W/mK)* hc(W/ m2K)‡ hf(W/ m2K)# U(W/ m2K) 

1 21.8 14.2 291.15 20169.02 84.11580 1.639177 14.40864 3.527020 2.250035 

2 21.4 14.2 290.95 20191.28 84.16466 1.639919 14.40781 3.519696 2.247241 

3 20.8 14.2 290.65 20224.76 84.23810 1.641032 14.40657 3.508735 2.243049 

4 20.6 14.2 290.55 20235.95 84.26262 1.641404 14.40616 3.505088 2.241652 

5 20.9 14.2 290.70 20219.18 84.22585 1.640847 14.40678 3.510560 2.243748 

6 21.0 14.2 290.75 20213.59 84.21360 1.640661 14.40698 3.512385 2.244446 

7 21.4 13.8 290.75 20213.59 84.21360 1.639919 14.40698 3.512505 2.244287 

8 21.3 13.8 290.70 20219.18 84.22585 1.640104 14.40678 3.510678 2.243588 

9 20.7 13.8 290.40 20252.75 84.29944 1.641218 14.40554 3.499732 2.239393 

10 20.1 13.8 290.10 20286.44 84.37321 1.642332 14.40431 3.488815 2.235199 

11 20.6 13.8 290.35 20258.36 84.31172 1.641404 14.40533 3.497910 2.238694 

12 20.5 13.8 290.30 20263.97 84.32401 1.641589 14.40513 3.496089 2.237995 

13 20.8 13.8 290.45 20247.15 84.28716 1.641032 14.40574 3.501554 2.240093 

14 21.0 13.8 290.55 20235.95 84.26262 1.640661 14.40616 3.505201 2.241491 

15 21.1 14.3 290.85 20202.43 84.18912 1.640476 14.40740 3.516010 2.245884 

16 20.8 14.3 290.70 20219.18 84.22585 1.641032 14.40678 3.510532 2.243789 

17 21.9 14.3 291.25 20157.90 84.09140 1.638991 14.40906 3.530655 2.251471 

18 20.2 14.3 290.40 20252.75 84.29944 1.642146 14.40554 3.499599 2.239598 

19 20.6 14.3 290.60 20230.36 84.25036 1.641404 14.40636 3.506884 2.242392 

20 20.7 14.3 290.65 20224.76 84.23810 1.641218 14.40657 3.508708 2.243090 

* The average of the lower thermal conductivity and upper thermal conductivity of the concrete 
 ‡ The average of the coefficients of the convection heat transfer of three 150 mm specimens [8] 

# The average of the coefficients of the radiation heat transfer of three 150 mm specimens 
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4.2. Optimization 

The regression meta-models obtained from RSM 

experiments were determined as the objective 

functions for genetic algorithm were given in Table 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bounds were defined as 0.36 ≤ A ≤ 0.38, 0.58≤ B ≤  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Experimental results 

Exp. 

No. 

   CCD Responses 

Factors have been fixed,  

1 m3 

Factors used in experimental 

design, 1 m3 (%) 
U (W/m2K) 

S 

mm 

T50 

s 

fcs28 

N/m3 

Cement, 

kg 

Fly 

ash, kg 

Total 

aggregate, 

kg 
A B C     

MD1 425 120 1668 36.5 59 1.15 2.250035 680 5.1 71.0 
MD2 425 120 1668 37.5 61 1.15 2.247241 710 4.7 68.1 

MD 3 425 120 1668 37.5 59 1.30 2.243049 780 3.8 68.6 

MD 4 425 120 1668 36.5 61 1.30 2.241652 750 4.1 69.0 
MD 5 425 120 1668 37.0 60 1.25 2.243748 750 4.5 68.7 

MD 6 425 120 1668 37.0 60 1.25 2.244446 750 4.6 68.1 

MD 7 425 120 1668 37.5 59 1.20 2.244287 760 4.2 67.3 
MD 8 425 120 1668 36.5 61 1.20 2.243588 720 5.0 68.4 

MD 9 425 120 1668 36.5 59 1.30 2.239393 750 4.8 71.3 

MD 10 425 120 1668 37.5 61 1.30 2.235199 790 4.2 66.9 

MD 11 425 120 1668 37.0 60 1.25 2.238694 740 4.4 68.3 

MD 12 425 120 1668 37.0 60 1.25 2.237995 750 4.5 67.8 

MD 13 425 120 1668 36.0 60 1.25 2.240093 670 5.2 71.5 
MD 14 425 120 1668 38.0 60 1.25 2.241491 750 4.3 67.3 

MD 15 425 120 1668 37.0 58 1.25 2.245884 740 4.4 68.5 

MD 16 425 120 1668 37.0 62 1.25 2.243789 740 4.5 68.2 
MD 17 425 120 1668 37.0 60 1.15 2.251471 700 5.1 69.9 

MD 18 425 120 1668 37.0 60 1.35 2.239598 770 3.8 70.4 

   MD 19   425 120 1668 37.0 60 1.25 2.242392 750 4.5 68.7 
MD 20   425 120 1668 37.0 60 1.25 2.243090 750 4.5 69.0 

 

 

Table 5. Regression equations and analysis of variances of all responses 

Regression equations  (obtained by uncoded variables) R2, % P value 

U = -2.36 + 23.91X1+1.98X2-0.74X3-13.30X12+5.88 X22+0.30 X32-23.94X1X2+0.21X1X3-0.208X2X3 77.29‡ 0.024* 

S = -65018 + 296687X1+33056X2+45X3-327126X12-6782X22-720X32-81954X1X2-

1316X1X3+4342X2X3 
91.75‡ 0.000* 

T50 = 971.54 – 3970.44X1-873.44X2+66.41X3+1929.89X12-267.53X22-

21.56X32+3743.68X1X2+197.37X1X3-151.32X2X3 
93.88‡ 0.000* 

fcs28 = 2271.0 – 9524.57X1-991.79X2-148.74X3+7661.11X12-

709.72X22+139.11X32+6011.11X1X2+23.68X1X3-338.16X2X3 
87.03‡ 0.002* 

*significant at 5% (p-value) 
‡regression coefficient values plotted predicted values against observed values for validation meta-models 

 

Table 6. The results of genetic algorithm 

No. 
Variables 

Responses 

U, W/m2K S,  mm T50,  sec fcs28,  N/mm2 

GA* PV‡ GA PV GA PV GA PV 

A B C 

1 0.3800 0.5800 1.1500 2.2537 2.2537 734.9912 734.9912 3.1423 3.1423 66.5157 66.5157 

2 0.3800 0.5800 1.2038 2.2492 2.2492 754.8319 754.8189 3.2983 3.2982 66.0818 66.0618 

3 0.3800 0.6130 1.3139 2.2334 2.2334 766.9671 766.8106 4.2555 4.2569 67.6885 67.6903 

4 0.3600 0.5805 1.3327 2.2362 2.2362 680.0251 679.5703 5.2985 5.3040 74.9295 74.9462 

5 0.3607 0.5825 1.3210 2.2365 2.2365 688.6627 688.2686 5.2184 5.2226 74.0219 74.0352 

6 0.3601 0.5809 1.1512 2.2449 2.2449 625.4983 625.9799 6.0024 5.9954 73.2638 73.2440 

7 0.3672 0.5815 1.2033 2.2445 2.2445 714.7011 714.9063 4.8445 4.8408 69.7007 69.6999 

8 0.3648 0.5960 1.2466 2.2396 2.2396 718.0428 718.3367 4.9185 4.9155 70.0038 69.9997 

9 0.3616 0.5836 1.1845 2.2426 2.2427 658.3094 658.6406 5.6925 5.6874 72.0325 72.0178 

10 0.3617 0.5820 1.2611 2.2383 2.2383 683.9930 684.3451 5.4638 5.4590 72.3077 72.2926 

R2, % 100.0 100.0 100.0 100.0 

         *Predicted results for response using GA; ‡Predicted values for response using meta-models obtained RSM 
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The regression meta-models obtained from RSM 

experiments were determined as the objective 

functions for genetic algorithm were given in Table 5. 

Bounds were defined as 0.36 ≤ A ≤ 0.38, 0.58≤ B ≤ 

0.62 ve 1.15 ≤ C ≤ 1.35 used in RSM. The trial and 

error method was used to determine the parameters in 

GAs using MATLAB® optimization toolbox [15]. In 

all combinations of parameters used the trial and error 

method was achieved over 99% fitness value. Genetic 

algorithm parameters which have the highest fitness 

value and selected by trial and error method; the 

number of initial population, crossover rate, and 

number of generations are 40, 0.8 and 150 

respectively. Ten runs have been executed with these 

parameters to determine genetic algorithm method 

efficiency (Table 6). 

In order to confirm the optimum mix-design 

proportion achieved using genetic algorithm, one 

empirical study was implemented to check whether 

the genetic algorithm could really predict of quality 

criteria by the proposed optimum mixture proportions. 

Optimal mixture parameters were determined as A = 

0.38, B = 0.58 and C = 1.15 for genetic algorithm. The 

results prove that the experimental results are very 

close to the estimated results (Table 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion 

Having excessive or low ratio of water to cement 

materials provides less heat transfer due to low overall 

heat transfer coefficient as shown in contour plot 

(Figure 2 and 3) [17]. Fine aggregate to total 

aggregate ratio should be fixed at 0.60-0.61 also 

decreases heat transfer. The percentage of super 

plasticizer content, factor C, causing the highest 

variation in the overall heat transfer coefficient is the 

most important factor. The relationship between the 

overall heat transfer coefficient (U) and factors (A, B, 

C) can be analyzed using this contour plots. As shown 

in Figure 2, the stationary point of the response 

surface shows the saddle point for that property (the 

third factor was kept constant at 1.25). Moreover, T50 

time of high strength concrete decreased with the 

increasing of water to binder ratio and the percentage 

of super plasticizer content. Also, T50 time did not 

change the fluctuation of fine aggregate ratio (Figure 

3). T50 time of fresh concrete has been negatively 

affected by the interaction between water to binder 

materials and fine aggregate ratio (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. The results of genetic algorithm 

Number Responses 
Estimated 

values 

Confirmation 

experiment 

Difference 

(d) Mean, 

d  

Standard 

deviation 

Test 

Statistics‡ 

t3;0.025 

(t n-1,/2) 

1 U 2.1537 2.1539 -0.0002 1.26 2.49 *1.012 3.18 

2 S 734.9912 730 4.9912     

3 T50 3.1423 3.1 0.0423     

4 fcs28 66.5157 66.5 0.0157     

Total n=4        

*Null hypothesis H0= The Xi’s are interdependent and identically distributed random variables with distribution function F. Since 

1.012<3.18, null hypothesis would not reject. ‡𝑡 = �̅�√𝑛 𝑠𝑑⁄ [17] 

 

 
Figure 2. Contour plots of the overall heat transfer coefficient in uncoded values 
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6. Conclusion 

In this study, the modeling of mixture proportions 

including overall heat transfer coefficient of high 

strength concrete was performed by using a RSM. The 

quadratic models based on RSM were useful and 

significant at % 5 statistically for prediction of overall 

heat transfer coefficient (with a p-value of 0.024), 

slump-spread diameter (with a p-value of 0.000), T50 

time (with a p-value of 0.000) and 28th day 

compressive strength (with a p-value of 0.002). 

Response surface methodology is such a design of 

experiment technique; it can be used to optimize only 

one response. If there is more than one response, 

response surface methodology should be used with 

other optimization techniques such as the desirability 

function approach, the nonlinear programming 

methodologies, and the metaheuristic algorithms. 

Non-linear programming or desirability function 

approach contains complex mathematical operations 

and requires algorithm knowledge. However, genetic 

algorithm application is easy to perform compared to 

non-linear programming or desirability function 

approach. Moreover, genetic algorithm has been 

preferred to solve the multi-response optimization 

more quickly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to these findings; RSM can be used the 

modeling of the thermal and fluidity properties of high 

strength concrete. Following the RSM stage; genetic 

algorithm using MATLAB® optimization toolbox 

based experiments was applied to determine optimal 

mixture parameters of HSC. The results show that 

response surface methodology based on genetic 

algorithm is quite an effective tool in solving the 

mixture proportions optimization problem.  

The RSM-based GA can be used effectively in the 

other possible application areas such as product design 

and improvement in material engineering, parameter 

design in control engineering, mix design in chemical 

engineering. 
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