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 Service providers can adjust the entrance price to the state of the demand in real 

life service systems where the customers' decision to receive the service, is based 

on this price, state of demand and other system parameters. We analyzed service 

provider's short and long term pricing problems in unobservable M/M/1 queues 

having the rational customers, where, for customers, the unit cost of waiting in the 

queue is higher than unit cost of waiting in the service. We showed that waiting in 

the queue has a clear negative effect on customers’ utilities, hence the service 

provider's price values. We also showed that, in the short term, monopolistic 

pricing is optimal for congested systems with high server utilization levels, 

whereas in the long term, market capturing pricing is more profitable. 
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1. Introduction 

In real life, most service systems include customer 

queues. Thus, the potential customers of these systems 

will inevitably face waiting time before being served. 

Since time is a very scarce resource in the current 

environment [1], customers decide rationally upon 

receiving a service. Based on comparing the value of 

the received service with the total cost of receiving this 

service, a decision is made whether or not to join the 

queue; this decision generates the real state of the 

demand.  

In order to maximize profits, the service provider takes 

into account the rational decision of the customers 

while setting the optimal system parameters, such as 

price or service rate. Until recently, however, pricing 

studies in the literature assumed that the firm was not 

able to adjust the price based on the state of the demand. 

The first model allowing the firm adjust the price to the 

state of the demand was analyzed by Naor [2]. In this 

benchmark paper, Naor, analyzed the effect of 

imposing an entrance fee on socially optimum, when 

customers will not join the system until after observing 

the length of the queue. A similar study by Edelson and 

Hildebrand, had an important difference in   that 

customers were not able to observe the queue length 

before taking their decision [3]. In very similar settings, 

Chen and Frank analyzed the pricing problem of the 

monopoly, or the service provider, when the queue 

length is observable by customers [4], and when 

unobservable [5]. In the literature, other studies analyze 

the pricing problem of the service provider in queueing 

models. Knudsen allowed more than a single queue in 

any one firm [6]. Sariyer compared pricing strategies of 

the service provider in the cases of a single server, and 

two servers [7]. Some other studies represented socially 

optimal pricing schemes for different classes of 

customers [8, 9, 10].  

All these cited studies assumed that a queue decreases 

the utility of the customer from the received service. A 

more recent view in queueing literature suggest that 

customer utility will not necessarily decrease due to 

wait time. Debo et al. showed that expected service 

time, which, in the literature, was included in total 

waiting time, is positively correlated with the value of 

the received service [11]. Anand at al., Alizamir et al., 

and Wang et al. also considered that service value is 

correlated with waiting time [12, 13, 14]. Oliveras et al. 

proposed that customer purchase decisions are not 

monotonic to queue length [15]. Giebelhausen et al. 

concluded that longer wait time can signal greater 

service quality, which positively affects customer 

decisions [16]. Sariyer combined these two views in the 

literature and represented the utility function of 

customers with a different structure, which allowed 

discrimination between the effect of waiting in the 

queue and waiting in the service on customer’s decision 
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[17].  

In this paper, we will analyze the pricing problem of the 

service provider in which the customer utility function 

is a modified version of the one represented in [17]. The 

model assumptions, notations, and utility function of 

the customer will be presented in Section 2. The pricing 

problem will be analyzed in both of the market capture 

and monopolist pricing settings, details of which will 

be given in Section 3. In the long term, the service 

provider is capable of adjusting not only the price but 

also the service rate. The long term analyses will be 

covered in Section 4. In Section 5 and 6 we respectively 

present the Numerical Analysis and Conclusions part. 

2. Model assumptions 

We analyze basic M/M/1 queues having Poisson 

arrivals with rate λ, and a unique server having an 

exponentially distributed service rate of µ. We use 

monetary values to represent the system parameters, 

such as value of the service and cost of waiting. The 

value of the service is denoted by a service reward, R, 

and a customer who receives this service incurs a linear 

waiting cost with C units.  

In real life, service systems having queues of customers 

can be differantiated as observable or unobservable 

based on the visibility of length of the queue. Cashomat 

or Automatic Teller Machine (ATM), fast-food or self-

service restaurants, banks are examples of service 

systems including observable queues, since a new 

arriving customer can observe the number of customers 

in front of him. On the other hand, some call centers, 

service systems taking the orders online which share 

the information of the expected waiting time to be 

served or receive the order, are examples of systems 

including unobservable queues, since the customers 

cannot observe the length of the queue.  In this paper, 

we assume the length of the queue is not observable 

upon arrival, but, based on the shared information by 

the service provider or the past experiences of the 

arriving customers, customers know the expected 

waiting time in the system. We also assume that the 

systems are in steady state. The expected waiting time 

combines two elements: the expected waiting time in 

the queue, and the expected waiting time during the 

service. Based on our assumption, the first element has 

a greater negative effect on customer utility, thus we 

multiply the unit cost of waiting in the queue with k, 

where k>1. A service provider sets a price, p, for 

customers receiving the service. This price clearly 

decreases the utility of the customer. The customer 

decides whether or not to join the queue and receive the 

service. Thus, the customer decision parameter is the 

probability of joining, denoted by α.  All of these are 

combined to derive utility function of the customer, 

which is denoted by U(α) as: 

𝑈(𝛼) = 𝑅 − 𝑘𝐶𝐸[𝑊1] − 𝐶𝐸[𝑊2] − 𝑝 

                        = 𝑅 − 𝑘𝐶
𝜆𝛼

µ(µ−𝜆𝛼)
−

𝐶

µ
− 𝑝                    (1) 

In equation (1), 𝐸[𝑊1] and 𝐸[𝑊2] represent expected 

waiting time in the queue and the expected waiting time 

during the service respectively. The values of 𝐸[𝑊1] 
and 𝐸[𝑊2] are found based on the properties of M/M/1 

queues.  

While making their decision, customers consider this 

utility function. If R-p is smaller than only the service 

cost of a unique customer, then joining the system is 

not optimal, since the customer has negative utility, 

thus α=0. If R-p is greater than total cost of waiting in 

the system, even if all customers join, then it remains 

optimal for all potential customers, since they receive 

positive utility, hence α=1. In between, the customers 

join with an equilibrium probability, 𝛼𝑒𝑞 , where 0 <
𝛼𝑒𝑞 < 1. This equilibrium probability is found by 

setting equation (1) to 0, and solving it for α. Hassin 

and Haviv provides a detailed review of these 

equilibrium analyses of rational customers [18]. 

3. Pricing decisions in short term 

In the short term, the service provider sets the optimal 

entrance price to the system for the given model 

parameters λ and µ. Assuming µ > 𝜆,  the service rate 

is sufficiently high  to serve all potential customers. The 

service provider therefore sets either the minimum 

price, referred to in the literature as market capturing 

price, in order to allow all customers to enter the 

system, or a higher price, denoted as monopolistic 

price, to push customers to join at an equilibrium rate.  

3.1. Market capture pricing 

The minimum price which allows all customers to join 

is found by giving α to 1 in equation (1), setting this 

utility function to 0, and solving it for p. Denoting this 

market capturing price with symbol 𝑝𝑙 , it is derived as: 

𝑝𝑙 = 𝑅 − 𝑘𝐶
𝜆

µ(µ−𝜆)
−

𝐶

µ
                                      (2) 

Lemma 1.  𝑝𝑙  is increasing in R and µ, decreasing in λ, 

k and C. 

Proof.  

𝑑𝑝𝑙

𝑑𝑅
= 1 > 0,

𝑑𝑝𝑙

𝑑µ
=

𝑘𝐶𝜆(2µ − 𝜆)

[µ(µ − 𝜆)]2
+

𝐶

µ2
> 0 

𝑑𝑝𝑙

𝑑𝐶
= −

𝑘𝜆

µ(µ − 𝜆)
−

1

µ
< 0,

𝑑𝑝𝑙

𝑑𝑘
= −𝐶

𝜆

µ(µ − 𝜆)
< 0,

𝑑𝑝𝑙

𝑑𝜆
= −

𝑘𝐶µ2

[µ(µ − 𝜆)]2
< 0 

 

Lemma 1 can be clearly interpreted. Since the utility 

function of the customer increases when R increases, 

the service provider is able to set a higher price. On the 

other hand, when k and C increase, the expected cost of 

waiting increases, thus utility of the customer 

decreases, which forces the service provider to lower 

the price. When µ increases, the expected waiting time 

in the system decreases, which generates an increase in 

utility function, and pushes the service provider to set a 

higher price; on the other hand, when λ increases, 

expected waiting time increases, causing a decrease in 

the entrance price.  
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The profit function of the service provider under this 

market capturing price, 𝛱𝑙𝑝(𝑝𝑙), is derived as: 

𝛱𝑙𝑝(𝑝𝑙) = 𝜆𝑝𝑙 = 𝜆 (𝑅 − 𝑘𝐶
𝜆

µ(µ−𝜆)
−

𝐶

µ
)              (3) 

Lemma 2. 𝛱𝑙𝑝(𝑝𝑙) is increasing in R and µ, decreasing 

in k and C, and concave in λ. 

Proof.  

𝑑𝛱𝑙𝑝(𝑝𝑙)

𝑑𝑅
= 𝜆 > 0,

𝑑𝛱𝑙𝑝(𝑝𝑙)

𝑑µ
=

𝑘𝐶𝜆2(2µ−𝜆)

[µ(µ−𝜆)]2 +
𝐶𝜆

µ2 > 0 

𝑑𝛱𝑙𝑝(𝑝𝑙)

𝑑𝐶
= −

𝑘𝜆2

µ(µ−𝜆)
−

1

µ
< 0, 

𝑑𝛱𝑙𝑝(𝑝𝑙)

𝑑𝑘
= −𝐶

𝜆2

µ(µ−𝜆)
< 0,                            

𝑑𝛱𝑙𝑝(𝑝𝑙)

𝑑𝜆
= 𝑅 −

𝑘𝐶𝜆µ(2µ − 𝜆)

[µ(µ − 𝜆)]2
−

𝐶

µ
, 

𝑑2𝛱𝑙𝑝(𝑝𝑙)

𝑑𝜆2
= −

2𝑘𝐶µ4

[µ(µ − 𝜆)]3
< 0 

In Lemma 2, we showed that profit value is concave in 

λ. Thus, when the arrival rate increases, the profit value 

increases up to a certain level, after which value profit 

decreases, due to congestion in the system. For the 

other model parameters, R, µ, k and C, the profit 

function behaves simialrly to price function, 𝒑𝒍, as 

expected. 

3.2. Monopolistic pricing 

Service provider sets a higher price thus customers join 

with an equilibrium joining probability which is 

derived from equation (1) as: 

𝑈(𝛼) = 0 → 𝑅 − 𝑝 =
𝐶

𝜇
(

𝑘𝜆𝛼

µ − 𝜆𝛼
+ 1) 

                           → 𝛼𝑒𝑞 =
𝜇(

(𝑅−𝑝)𝜇

𝐶
−1)

𝜆(𝑘+
(𝑅−𝑝)𝜇

𝐶
−1)

                 (4) 

Lemma 3. 𝛼𝑒𝑞 is increasing in R and µ, and decreasing 

in λ, p, k and C. 

Proof.  

𝑑𝛼𝑒𝑞

𝑑𝑅
=

𝑘µ
𝐶

𝜆 (𝑘 +
(𝑅 − 𝑝)𝜇

𝐶
− 1)

2 > 0, 

𝑑𝛼𝑒𝑞

𝑑µ
=

(
(𝑅 − 𝑝)𝜇

𝐶
− 1) (𝑘 +

(𝑅 − 𝑝)𝜇
𝐶

− 1) + µ𝑘
(𝑅 − 𝑝)

𝐶

𝜆 (𝑘 +
(𝑅 − 𝑝)𝜇

𝐶
− 1)

2 > 0, 

𝑑𝛼𝑒𝑞

𝑑𝜆
= −

µ (
(𝑅 − 𝑝)𝜇

𝐶
− 1)

𝜆2 (𝑘 +
(𝑅 − 𝑝)𝜇

𝐶
− 1)

< 0 

𝑑𝛼𝑒𝑞

𝑑𝑝
= −

𝑘
µ2

𝐶

𝜆 (𝑘 +
(𝑅 − 𝑝)𝜇

𝐶
− 1)

2 < 0, 

𝑑𝛼𝑒𝑞

𝑑𝑘
= −

µ (
(𝑅 − 𝑝)𝜇

𝐶
− 1)

𝜆 (
(𝑅 − 𝑝)𝜇

𝐶
− 1)

2 < 0, 

𝑑𝛼𝑒𝑞

𝑑𝐶
= −

𝑘
(𝑅 − 𝑝)µ2

𝐶2

𝜆 (𝑘 +
(𝑅 − 𝑝)𝜇

𝐶
− 1)

2 < 0 

The interpretation of this result is very similar to 

Lemma 1. 

We will find the expression of the monopolistic price, 

𝑝ℎ , by analyzing the profit function of the service 

provider in this setting. Denoting the profit function 

with 𝜋ℎ𝑝(𝑝), we derive it as: 

𝜋ℎ𝑝(𝑝) = 𝜆𝛼𝑒𝑞𝑝 =
µ(

(𝑅−𝑝)µ

𝐶
−1)

𝑘+
(𝑅−𝑝)µ

𝐶
−1

𝑝                        (5) 

Since the derivation of 𝑝ℎ  is messy, we will give the 

analysis numerically in Section 5. 

4. Service rate and pricing decisions in long term 

In this section, we assume that service provider can 

adjust both the price and service rate. Thus, the profit 

functions have two parameters, µ and p. As given in 

Chen and Frank [5], we assume a constant marginal 

cost of speeding up the service rate, F>0.  

For the market capturing price setting, the profit 

function given in equation (3) is rewritten as: 

𝜋𝑙𝑝(𝜇) = 𝜆𝑝𝑙 − 𝐹𝜇 = 𝜆 (𝑅 − 𝑘𝐶
𝜆

µ(µ−𝜆)
−

𝐶

µ
) − 𝐹𝜇 (6) 

 

Lemma 5. 𝜋𝑙𝑝(𝜇) is concave in µ. 

 

Proof. 

𝑑𝜋𝑙𝑝(𝜇)

𝑑µ
= 𝜆 (

𝑘𝐶𝜆(2µ−𝜆)

[µ(µ−𝜆)]2 +
𝐶

𝜇2) − 𝐹, 

 

𝑑2𝜋𝑙𝑝(𝜇)

𝑑𝜇2
= −𝐶𝜆 (2𝑘𝜆

3µ2 − 3𝜇𝜆 + 𝜆2

[𝜇(𝜇 − 𝜆)]3
+

2

𝜇3
) 

 

Since 𝜇 > 𝜆, 3µ2 − 3𝜇𝜆 + 𝜆2 > 0 for all real λ and µ 

then the second derivative of the profit function is 

always negative, which shows that the profit function 

is concave with respect to µ. 

Thus, there is a unique optimal value for the service rate 

which equates the first derivative function to 0, and 

maximizes the profit function given in equation (6).  

For the monopolistic pricing, the profit function is 

rewritten as: 
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Table 1: Price and profit values – short term 

R/C k λ/µ (ρ) pl Πlp(pl) 𝛼𝑒𝑞 ph Πhp(ph) 

4 1.25 0.95 7.62 76.20 0.87 16.70 144.82 

4 1.25 0.67 18.83 188.33 0.97 18.90 183.68 

4 2.00 0.95 0.48 4.76 0.82 16.05 132.26 

4 2.00 0.67 18.33 183.33 0.98 18.40 180.83 

6 1.25 0.95 17.62 176.19 0.91 25.90 233.58 

6 1.25 0.67 28.83 288.33 0.97 28.90 280.86 

6 2.00 0.95 10.48 104.76 0.87 25.00 216.85 

6 2.00 0.67 28.33 283.33 0.98 28.40 279.10 

 

𝜋ℎ𝑝(µ, 𝑝) = 𝜆𝛼𝑒𝑞𝑝 − 𝐹µ =
µ(

(𝑅−𝑝)µ

𝐶
−1)

𝑘+
(𝑅−𝑝)µ

𝐶
−1

𝑝 − 𝐹µ        (7) 

In equation (7), 𝜋ℎ𝑝(µ, 𝑝) represents the profit function, 

under monopolistic pricing, as a function of µ and p. In 

the next section, different numerical experiments are 

given in order to analyze the optimal model parameters 

and profit values under different pricing schemes. 

5. Numerical results and discussion 

Numerical results are first given for the short term. For 

given levels of R, C, k, λ, and µ, we find the values of 

the minimum price, pl, and the profit, Πlp(𝒑𝒍), under this 

price for the market capture pricing setting. Then, for 

the monopolistic pricing, we will find the equilibrium 

joining probability, 𝜶𝒆𝒒, value of the monopolistic 

price, ph, and the profit under this price Πhp(ph). Table 1 

presents the results.  

In our observations presented in Table 1, we fix λ=10, 

and C=5. We take R as 20 and 30 to represent low and 

high values, and take µ as 10.5 and 15 to represent low 

and high congestion in the system. We observe that 

there is a clear difference in the profit values for the 

high utilization levels, i.e. when the service rate is very 

close to the arrival rate, in which profit under 

monopolistic pricing is much higher than under market 

capture pricing. On the other hand, for low utilization 

levels, the market capture pricing becomes increasingly 

more profitable compared to monopolistic pricing, 

since the rate of the server is sufficiently high to serve 

all potential arrivals within a limited wait time. As 

expected from the definition, the price values are 

always higher under monopolistic pricing setting, i.e. 

ph > pl. Since the expected waiting cost in the system 

increases in k, we see that the price and profit values 

decrease in both of the market capture and monopolistic 

pricing. On the other hand, in both price settings, the 

price and profit values increase with increases in the 

ratio between the reward and unit waiting cost, namely, 

R/C.  

In Figure 1, we show how the percentage change in 

profit value, under market capture and monopolistic 

pricing settings, is affected by the increase in server 

utilization, ρ. In this experiment, we fixed R=30, C=5, 

λ=10 and increase µ from 10.5 to 20, where ρ changes 

between [0.5-0.95]. We repeat the analysis for different 

k values, where k takes the values of 1, 1.25, 1.5, and 2 

respectively for different experiments. In these 

experiments k=1 is taken in order to represent the 

situation given in literature, where unit cost of waiting 

in the queue is exactly equal to the unit cost of waiting 

in service. Then the values of k are increased 

consequetively in order to show how the percentage 

difference in profit values under market capture and 

monopolistic pricing, is affected with the increased 

difference between unit cost of waiting in the queue and 

in service. Finally, as the highest value of k, we take it 

as 2, and repeat the experiment in order not to 

differentiate the unit cost of witing in the queue and in 

service much more (to keep close to literature results). 

Besides, when k=2, as will be seen in Figure1, the sharp 

difference is obtained to show the related effect. In the 

vertical column of the figure, we represent 

(𝛱ℎ𝑝(𝑝ℎ) − 𝛱𝑙𝑝(𝑝𝑙)) 𝛱𝑙𝑝(𝑝𝑙)⁄ .    

In Figure 1, we observe that, for low levels of ρ, i.e 

higher levels of µ, the market capturing pricing is more 

profitable, since the percentage difference is negative. 

This means, for low congested systems, the service 

provider obtains a higher profit under market capture 

pricing compared to monopolistic pricing. However, 

when the system is congested, i.e. λ is very close to µ, 

the service provider should set a monopolistic price to 

maximize profits. As seen in this Figure, congested 

systems are characterized by a sharp difference in profit 

values. When we analyze the Figure for different k 

values, for low levels of ρ, we cannot observe a clear 

effect of k values in the percentage difference of profit 

(i.e. the percentage differences are almost equal for 

k=1, k=1.25, k=1.5, and k=2 when 𝜌 ≤ 0.85). The 

reason behind this observation is, the service provider 

sets such a monopolistic price that pushes almost all of 

the customers to join the queue and receive the service 

when system is not congested, or for high levels of µ. 
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Figure 1. Short term difference % in profit- market capture versus monopolistic pricing 

 

Thus, the profit under monopolistic pricing gets very 

close to the profit under market capture pricing. 

However, for congested systems, since the effect of 

waiting time is sharply increased, under market 

capturing pricing (i.e. all customers join), the sharp 

percentage difference in profit values can be observed 

for different k values. In this case, or for lower levels 

of µ, the percentage difference in profit values under 

market capture and monopolistic pricing settings, 

increases for increasing k values. Thus, especially for 

congested systems, which is generally the case of real 

life situation, it can be understood that unit cost of 

waiting in the queue has a direct effect on a service 

provider’s pricing decision, and hence on profit. 

We now turn our attention to long term decisions. For 

this, marginal cost of increasing the service rate was 

added to the calculations. We give optimal service rate, 

µ∗, market capturing price given this service rate, 𝑝𝑙
∗, 

and profit given these parameters, 𝜋𝑙𝑝
∗ (µ∗, 𝑝𝑙

∗)in Table 

2. The values of R, C, and λ are taken as given in the 

previous numerical experiments. 

Table 2: Service rate, price and profit values of market capture pricing – long term 

R/C k F µ∗ 𝑝𝑙
∗ 𝜋𝑙𝑝

∗ (µ∗, 𝑝𝑙
∗) 

4 1.25 5 13.60 18.36 115.56 

4 1.25 10 12.40 17.50 50.97 

4 2.00 5 14.40 18.07 108.75 

4 2.00 10 13.20 17.25 40.54 

6 1.25 5 13.60 28.36 215.56 

6 1.25 10 12.40 27.50 150.97 

6 2.00 5 14.40 28.07 208.75 

6 2.00 10 13.20 27.25 140.54 

Table 3: Service rate, price and profit values of monopolistic pricing – long term 

R/C K F 𝛼𝑒𝑞 µ∗ 𝑝ℎ
∗ 𝛱ℎ𝑝

∗(µ∗, 𝑝ℎ
∗) 

4 1.25 5.00 0.99 13.25 18.20 114.85 

4 1.25 10.00 0.99 12.25 17.35 50.63 

4 2.00 5.00 0.99 14.25 18.00 108.68 

4 2.00 10.00 0.99 13.00 17.10 40.24 

6 1.25 5.00 0.99 13.25 28.20 214.36 

6 1.25 10.00 0.99 12.25 27.35 150.42 

6 2.00 5.00 0.99 14.25 28.00 208.65 

6 2.00 10.00 0.99 13.00 27.10 139.79 



40                                               G. Sariyer / Vol.7, No.1, pp.35-41 (2017) © IJOCTA 

Similarly, in Table 3, we give the equilibrium joining 

probability, 𝛼𝑒𝑞, optimal service rate, µ∗, monopolistic 

price given this service rate, 𝑝ℎ
∗, and profit given these 

parameters, 𝛱ℎ𝑝
∗(µ∗, 𝑝ℎ

∗).  

We observe that the optimal strategy for the service 

provider in the long term, when there is the option to 

set the service rate, is to set the market capturing price, 

which has higher profit values compared to 

monopolistic pricing. So in the long term, the service 

provider's optimal decision is to set a service rate that 

can serve all potential customers (until it is profitable, 

i.e. when Fµ does not exceed the revenue received from 

the customer). This result is very similar to the findings 

of Chen and Frank [5]. We also observe that in 

monopolistic pricing, the optimal action pushes the 

service provider to set price and service rate values 

which allow almost all to join the system, i.e. 𝜶𝒆𝒒 

values are almost 1. In both settings, the optimal price 

and service rate values increase in R/C, and decrease in 

k and F values. 

6. Conclusion 

In this paper, we analyzed the pricing decision of the 

service provider. The system is designed as M/M/1 

queues with rational customers who are unable to 

observe the length of the queue prior to making 

decisions. These customers wait in the queue to be 

served. In contrast to previous studies, we assume that 

waiting in the queue has a greater negative effect on the 

utility of the customers, compared to waiting during the 

service. We have shown an increase in the unit cost of 

waiting in the queue has a negative effect on the utility 

of the customer. Since customers are rational, the profit 

maximizer should be decided by considering customer 

utility. Thus, service provider's pricing decisions are 

similarly negatively affected by the customers’ unit 

cost of waiting in the queue.  

We have anaylzed the service provider's pricing 

problem in both the short and long terms. In the short 

term, when the service provider optimally sets the 

entrance price for the given service rate, monopolistic 

pricing was observed as the most efficient setting for 

high server utilization periods, i.e. when the system is 

congested.   In the long term, however, when the service 

provider optimally sets the service rate and entrance 

price, market capture pricing is found to be the most 

profitable setting. Hence, in the long term, the service 

provider's optimal action is to set a service rate that 

allows all customers to join the queue and receive the 

service at the minimum price.  
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