
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.7, No.2, pp.177-185 (2017)

http://doi.org/10.11121/ijocta.01.2017.00339

RESEARCH ARTICLE

A modified quadratic hybridization of Polak-Ribière-Polyak and

Fletcher-Reeves conjugate gradient method for unconstrained

optimization problems

Sindhu Narayanan, P. Kaelo* and M.V. Thuto

Department of Mathematics, University of Botswana, Private Bag UB00704, Gaborone, Botswana
sindhu.op@gmail.com, kaelop@mopipi.ub.bw, thutomv@mopipi.ub.bw

ARTICLE INFO ABSTRACT

Article History:
Received 15 December 2016

Accepted 23 February 2017

Available 15 July 2017

This article presents a modified quadratic hybridization of the Polak–Ribière–
Polyak and Fletcher–Reeves conjugate gradient method for solving uncon-
strained optimization problems. Global convergence, with the strong Wolfe
line search conditions, of the proposed quadratic hybrid conjugate gradient
method is established. The new method is tested on a number of benchmark
problems that have been extensively used in the literature and numerical re-
sults show the competitiveness of the new hybrid method.

Keywords:
Hybridization

Conjugate gradient

Wolfe line search conditions

Global convergence

AMS Classification 2010:
90C06, 90C30, 65K05

1. Introduction

Nonlinear conjugate gradient method is a very
powerful technique for solving large scale uncon-
strained optimization problems

min{f(x) : x ∈ R
n}, (1)

where f : R
n → R is a continuously differen-

tiable function. It has advantages over Newton
and quasi-Newton methods in that it only needs
the first order derivative and hence less storage
capacity is needed. It is also relatively simple to
program.

Given an initial guess x0 ∈ R
n, the nonlinear con-

jugate gradient method generates a sequence {xk}
for problem (1) as

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2)

where αk is a step length which is determined by
a line search and dk is a descent direction of f at
xk generated as

dk =

{

−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where gk = ∇f(xk) is the gradient of f at xk and
βk is a parameter.

Conjugate gradient methods differ in their way of
defining the parameter βk. Over the years, several
choices of βk, which give rise to different conju-
gate gradient methods, have been proposed. The
most famous formulas for βk are Fletcher-Reeves
(FR) method [20]

βFR
k =

||gk||
2

||gk−1||2
,

Polak-Ribiére-Polyak (PRP) method [32,33]

βPRP
k =

gTk yk−1

||gk−1||2
,

Dai-Yuan (DY) method [12]

βDY
k =

||gk||
2

dTk−1yk−1
,

and the Hestenes-Stiefel (HS) method [18,23]
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βHS
k =

gTk yk−1

dTk−1yk−1
,

where yk−1 = gk − gk−1 and || · || denotes the
Euclidean norm of vectors. These were the first
scalars βk for nonlinear conjugate gradient meth-
ods to be proposed. Since then, other parameters
βk have been proposed in the literature (see for
example [1,2,4–6,14,15,17,19,22,28,35,39,40] and
references therein).

From the literature, it is well known that FR
and DY methods have strong convergence prop-
erties. However, they may not perform well in
practice. On the other side, PRP and HS methods
are known to perform better numerically but may
not converge in general. Given this, researchers
try to devise some new methods, which have the
advantages of these two kinds of methods. This
has been done mostly by combining two or more
βk parameters in the same conjugate gradient
method to come up with hybrid methods. Thus,
hybrids try to combine attractive features of dif-
ferent algorithms. For example, Touati-Ahmed
and Storey [36] proposed this hybrid method

βTS
k = max

{

0,min(βFR
k , βPRP

k )
}

to take advantage of the attractive convergence
properties of βFR

k and numerical performance of

βPRP
k .

Many other hybrids have been proposed by para-
metrically combining different parameters βk. In
Dai and Yuan [11], for instance, a one-parameter
family of conjugate gradient methods is proposed
as

βk =
||gk||

2

λk||gk−1||2 + (1− λk)d
T
k−1yk−1

,

where the parameter λk is such that λk ∈ [0, 1].
Liu and Li [28] proposes a convex combination of
βLS
k and βDY

k to get

βk = (1− γk)β
LS
k + γkβ

DY
k ,

where βLS
k = −

gT
k
yk−1

dT
k−1gk−1

is the Liu-Storey (LS)

[26] parameter and γk ∈ [0, 1]. Other hy-
brid conjugate gradient methods can be found
in [2, 4–8,13, 21, 22, 24, 25, 27, 29, 35, 38, 41].

The step length αk is often chosen to satisfy cer-
tain line search conditions. It is very important
in the convergence analysis and implementation
of conjugate gradient methods. The line search

in the conjugate gradient methods is often based
on the weak Wolfe conditions

f(xk + αkdk) ≤ f(xk) + µαkg
T
k dk (4)

and

g(xk + αkdk)
Tdk ≥ σgTk dk, (5)

or the stronger version of the Wolfe line search
conditions

f(xk + αkdk) ≤ f(xk) + µαkg
T
k dk (6)

and

|g(xk + αkdk)
Tdk| ≤ −σgTk dk, (7)

where 0 < µ < σ < 1. More information on these
line search methods and other line search meth-
ods can be found in the literature [9, 14, 25, 31,
34, 37, 39, 41]. In this paper, we suggest another
approach to get a new hybrid nonlinear conjugate
gradient method.

The rest of the paper is organised as follows. In
section 2, we present the proposed method. In
Section 3 we prove that the proposed algorithm
(method) globally converges. Section 4 presents
some numerical experiments and conclusion is
given in Section 5.

2. A new hybrid conjugate gradient

method

We now present our proposed hybrid conjugate
gradient method. The hybrid method we propose
is motivated by the work of Babaie-Kafaki [4, 5]
and Mo, Gu and Wei [29]. Babaie-Kafaki [4, 5]
suggested a quadratic hybridization of βFR

k and

βPRP
k method of the form

β
HQ±
k =







































β+
k (θ

±
k ), θ±k ∈ [−1, 1],

βPRP+
k , θ±k ∈ C,

−βFR
k , θ±k < −1,

βFR
k , θ±k > 1,

(8)

where

β+
k (θk) = (1−θ2k)β

PRP
k +θkβ

FR
k , θk ∈ [−1, 1],
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and

θ±k =
βFR
k ±

√

(βFR
k )2 − 4βPRP

k (βHS
k − βPRP

k )

2βPRP
k

is the solution of the quadratic equation

θ2kβ
PRP
k − θkβ

FR
k + βHS

k − βPRP
k = 0.

Thus, the author suggested two methods β
HQ+
k

and β
HQ−
k . The parameter

βPRP+
k = max{0, βPRP

k }

is a hybrid parameter that was suggested by
Gilbert and Nocedal [21] to improve on the con-
vergence properties of βPRP

k .

In Mo, Gu and Wei [29], the authors suggest a β∗
k

defined by

β∗
k = βPRP

k +
2gTk gk−1

‖gk−1‖2
, (9)

which then modifies the Touati-Ahmed and
Storey method [36] to give

βk = max
{

0,min(βFR
k , βPRP

k , β∗
k)
}

.

This method by Mo et al. [29] was shown to be
very competitive with the other hybrids in the lit-
erature and it was shown to perform much better
than the original βPRP

k .

Now, motivated by this suggestion (9) from [29]
and the work of Babaie-Kafaki [4,5], in this work
we modify Babaie-Kafaki’s method by introduc-
ing βS

k as

βS
k =







































β+
k (θk), θk ∈ [−1, 1],

max{0, β∗
k}, θk ∈ C,

−βFR
k , θk < −1,

βFR
k , θk > 1,

(10)

where

θk =
βFR
k −

√

(βFR
k )2 − 4β∗

k(β
HS
k − β∗

k)

2β∗
k

and

β+

k
(θk) = (1−θ2k)(max{0, β∗

k})+θkβ
FR

k , θk ∈ [−1, 1],
(11)

where β∗
k is as defined in (9), and then define

dk =







−gk, k = 0,

−gk + βS
k−1dk−1, k ≥ 1.

(12)

This leads to our hybrid conjugate gradient
method presented below.

Algorithm 1. New Hybrid βS
k Conjugate Gradi-

ent Method

Step 1 Give initial guess x0 ∈ R
n, and the pa-

rameters 0 < µ < σ < 1 and ǫ > 0.
Step 2 Set d0 = −g0 and k = 0. If ||g0|| < ǫ,

stop.
Step 3 Compute αk using the strong Wolfe con-

ditions (6) and (7).
Step 4 Set xk+1 = xk + αkdk, k = k + 1.
Step 5 If ||gk|| < ǫ, stop.
Step 6 Compute βk using (10–11).
Step 7 Compute dk = −gk + βS

k dk−1, go to Step
3.

3. Global convergence of the proposed

method

The global convergence analysis in this section
follows that of Babaie-Kafaki [4, 5]. To analyze
the global convergence property of our hybrid
method, the following assumptions are required.
These assumptions have been used extensively in
the literature for the global convergence analysis
of conjugate gradient methods.

Assumption 1. Let the level set

Ω = {x ∈ R
n : f(x) ≤ f(x0)},

where x0 is the initial guess, be bounded. That is,
there exists a positive constant B such that

‖x‖ ≤ B, ∀x ∈ Ω. (13)

Assumption 2. In some neighbourhood N of Ω,
the function f is continuously differentiable and
its gradient, g(x) = ∇f(x), is Lipschitz continu-
ous, that is, there exists a constant L > 0 such
that

‖g(x)− g(y)‖ ≤ L‖x− y‖

for all x, y ∈ N.

These assumptions imply that there exists a pos-
itive constant γ̂ such that

‖g(x)‖ ≤ γ̂. (14)
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Also, under Assumptions 1 and 2, the following
lemma can be established.

Lemma 1 (Zoutendijk lemma). Consider any it-
eration of the form xk+1 = xk + αkdk, where dk
is a descent direction and αk satisfies the weak
Wolfe conditions (4) and (5). Suppose Assump-

tions 1 and 2 hold, then
∞
∑

k=0

cos2 θk‖gk‖
2 < ∞.

It follows from Lemma 1 and the sufficient de-
scent condition with the Wolfe line search that

∞
∑

k=0

‖gk‖
4

‖dk‖2
< ∞. (15)

Lemma 2. Suppose that Assumptions 1 and 2
hold. Consider any conjugate gradient method in
the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12) in which, for all k ≥ 0, the search direc-
tion dk is a descent direction and the step length
αk is determined to satisfy the Wolfe conditions.
If

∞
∑

k=0

1

‖dk‖2
= ∞, (16)

then the method converges in the sense that

lim inf
k−→∞

‖gk‖ = 0. (17)

Lemma 3. Suppose that Assumptions 1 and 2
hold. Consider any conjugate gradient method in
the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12), with the conjugate gradient parameter
β+
k (θk) defined by (11), in which the step length

αk is determined to satisfy the strong Wolfe con-
ditions (6) and (7).

Also assume that the descent condition

dTk gk < 0, ∀k ≥ 0 (18)

holds and there exists a positive constant ξ such
that

|θk| ≤ ξαk, ∀k ≥ 0. (19)

If, for a positive constant γ, we have

‖gk‖ ≥ γ, ∀k ≥ 0, (20)

then dk 6= 0 and

∞
∑

k=0

‖uk+1 − uk‖
2 < ∞, (21)

where uk = dk
‖dk‖

.

Proof. Firstly, note that the descent condition
(18) guarantees that dk 6= 0. So, uk is well-
defined. Moreover, from (20) and Lemma 2, we
have

∞
∑

k=0

1

‖dk‖2
< ∞, (22)

since otherwise (17) holds contradicting (20).
Now, we divide β+

k (θk) into two parts as

β
(1)
k = (1− θ2k)max(0, β∗

k), β
(2)
k = θkβ

FR
k ,

and, for all k ≥ 0, we define

rk+1 =
vk+1

‖dk+1‖
, δk+1 = β

(1)
k

‖dk‖

‖dk+1‖
,

where
vk+1 = −gk+1 + β

(2)
k dk.

Therefore, from (12) we obtain that

uk+1 = rk+1 + δk+1uk. (23)

Since ‖uk‖ = ‖uk+1‖ = 1, from (23) we can write

‖rk+1‖ = ‖uk+1 − δk+1uk‖ = ‖δk+1uk+1 − uk‖. (24)

Because θk ∈ [−1, 1], we have δk+1 ≥ 0. Using
the condition δk+1 ≥ 0, the triangle inequality
and (24), we get

‖uk+1 − uk‖ ≤ ‖(1 + δk+1)uk+1 − (1 + δk+1)uk‖

≤ ‖uk+1 − δk+1uk‖+ ‖δk+1uk+1 − uk‖

= 2‖rk+1‖.
(25)

Also, from (13), (14), (19) and (20) we have
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‖vk+1‖ = ‖ − gk+1 + β
(2)
k dk‖

= ‖ − gk+1 + θk
‖gk+1‖

2

‖gk‖2
dk‖

≤ ‖gk+1‖+ |θk|
‖gk+1‖

2

‖gk‖2
‖dk‖

≤ γ̂ + ξαkγ̂
2

γ2 ‖dk‖

= γ̂ +
ξγ̂2‖xk+1−xk‖

γ2

≤ γ̂ +
ξγ̂2(‖xk+1‖+‖xk‖)

γ2

≤ γ̂ + 2Bξγ̂2

γ2 .

(26)

Now, from (22), (25), and (26) we have

∞
∑

k=0

‖uk+1 − uk‖
2 ≤ 4

∞
∑

k=0

‖rk+1‖
2

= 4

∞
∑

k=0

‖vk+1‖
2

‖dk+1‖2

≤ 4
(

γ̂ + 2Bγ̂2ξ

γ2

)2
∞
∑

k=0

1

‖dk+1‖2

≤ 4
(

γ̂ + 2Bγ̂2ξ

γ2

)2
1
γ4

∞
∑

k=0

‖gk‖
4

‖dk+1‖2

< ∞
(27)

�

We now define the following property, called prop-
erty (*).

Definition 1. [10] Consider any conjugate gra-
dient method in the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12). Suppose that for a positive constant γ
the inequality (20) holds. Under this assumption,
we say that the method has property (*) if and
only if there exist constants b > 1 and λ > 0 such
that for all k ≥ 0,

|βk| ≤ b, (28)

and

‖αkdk‖ ≤ λ ⇒ |βk| ≤
1

b
. (29)

Theorem 1. Suppose that Assumptions 1 and
2 hold. Consider any conjugate gradient method
in the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12), with the conjugate gradient parameter
β+
k (θk) defined by (11), in which the step length

αk is determined to satisfy the strong Wolfe con-
ditions (6) and (7). If the search directions satisfy
the descent condition (18) and there exists a pos-
itive constant η such that

|θk| ≤ η‖αkdk‖, ∀k ≥ 0, (30)

then the method converges in the sense that

lim inf
k→∞

‖gk‖ = 0.

Proof. Because of the descent condition and
strong Wolfe conditions, we have proven that the
sequence {xk}k≥0 is a subset of the level set Ω.
Also, since all the assumptions of Lemma 2 hold,
the inequality (21) holds. Now, to prove the con-
vergence, it is enough to show that the method
has property (*).

Since θk ∈ [−1, 1], from (11), (14), and (20) we
have

|β+
k (θk)| = |(1− θk)

2(max{0, β∗
k}) + θkβ

FR
k |

≤ |(1− θk)
2|

∣

∣

∣

∣

βPRP
k +

2gT
k+1

gk

‖gk‖
2

∣

∣

∣

∣

+ |θk||β
FR
k |

≤ |βPRP
k |+

|2gT
k+1

gk|

‖gk‖
2 + βFR

k

≤
‖gk+1‖(‖gk+1‖+‖gk‖)

‖gk‖
2 +

2‖gk+1‖‖gk‖

‖gk‖
2 +

‖gk+1‖
2

‖gk‖
2

≤ 2γ̂2

γ2 + 2γ̂2

γ2 + γ̂2

γ2

= 5γ̂2

γ2 .

(31)

Moreover, from Assumption 2 and equations
(11), (14), (20), and (30) we get

|β+
k (θk)| = |(1− θk)

2(max{0, β∗
k}) + θkβ

FR
k |

≤ |(1− θk)
2|

∣

∣

∣

∣

βPRP
k +

2gT
k+1

gk

‖gk‖
2

∣

∣

∣

∣

+ |θk||β
FR
k |

≤ |βPRP
k |+

|2gT
k+1

gk|

‖gk‖
2 + |θk|β

FR
k

≤
‖gk+1‖‖gk+1−gk‖

‖gk‖
2 +

2‖gk+1‖‖gk‖

‖gk‖
2 + |θk|

‖gk+1‖
2

‖gk‖
2
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≤
Lγ̂‖xk+1−xk‖

γ2 + 2γ̂2

γ2 + ηγ̂2

γ2 ‖αkdk‖

≤ Lγ̂

γ2 ‖αkdk‖+
2ηγ̂2

γ2 ‖αkdk‖+
ηγ̂2

γ2 ‖αkdk‖

= Lγ̂+3ηγ̂2

γ2 ‖αkdk‖.

(32)

So, from (31) and (32), if we let

b =
5γ̂2

γ2
and λ =

γ2

b(Lγ̂ + 3ηγ̂2)
,

then (28) and (29) hold and consequently, the
method has property (*). �

4. Numerical Experiments

We now present numerical experiments obtained
by our method on some test problems chosen from
Morè, et al. [30] and Andrei [3] to analyse its
efficiency and effectiveness. A number of these
test problems are widely used in the literature for
testing unconstrained optimization methods. We
present these test problems in Table 1, where the
columns ‘Prob’ and ‘Dim’, respectively, represent
the name and dimension of the test problem, and
the dimensions of the problems range from 2 to
20000.

We compare our proposed new hybrid conjugate
gradient method (βS

k ) with the quadratic hy-

bridization β
HQ−
k of Babaie-Kafaki [4, 5] and the

method β∗
k by Mo, Gu and Wei [29]. In [4], βHQ−

k

was shown to be the better hybridization as com-

pared to βHQ+
k , hence our comparison will only fo-

cus on β
HQ−
k . For all the methods, we considered

the stopping condition to be ǫ = 10−5, that is,
the algorithms (methods) were stopped once the
condition ||gk|| < 10−5 was satisfied, or the max-
imum number of iterations of 5000 was reached.
For the line search, the strong Wolfe conditions
(6) and (7) were used to find the step length αk,
with µ = 0.0001 and σ = 0.16. All the methods
were coded in MATLAB R2015b and numerical
results are compared based on number of gradient
evaluations, function evaluations and CPU time.

In Table 1, we present the number of func-
tions evaluations (NFE) and gradient evaluations

(NGE) obtained for the methods βHQ−
k , βS

k and
β∗
k, where the best results for each problem are in-

dicated in bold. We observe from the table that,

overall, the incorporation of β∗
k in the quadratic

hybridization has a positive effect on β
HQ−
k , even

though for some problems it is worse off.

We also compare the methods using the perfor-
mance profiles tool suggested by Dolan and Moré
[16] which, over the years, has been used exten-
sively to judge the performance of different meth-
ods on a given set of test problems. The tool
evaluates and then compares the performance of
the set of methods S on a set P of test problems.
That is, using the ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s is (function, gradient, CPU time) evalu-
ations required to solve p by method s, the overall
performance profile function is

ρs(τ) =
1

np
size{p : 1 ≤ p ≤ np, log(rp,s) ≤ τ},

where np is the total number of problems in P

and τ ≥ 0.

In case the method s fails to solve problem p, the
ratio rp,s is set to some sufficiently large num-
ber. The function ρs(τ) is then plotted against τ
to give the performance profile. Notice that the
function ρs(τ) takes the values ρs(τ) ∈ [0, 1] and
so the inequality ρs(τ1) < ρt(τ1) shows that the
method t outperforms the method s at τ1.

We now present the plots of these performance
profiles on function evaluations, gradient evalua-
tions and CPU time as figures. The function eval-
uations performance profile is presented in Fig-
ure 1, gradient evaluations in Figure 2 and CPU
time in Figure 3. It is clear from the figures that
replacing βPRP

k by β∗
k in the quadratic hybridiza-

tion β
HQ−
k has a positive effect. From the figures,

we observe that β∗
k is the best method overall. As

for βS
k and β

HQ−
k , we see that in Figures 1 and

2, for τ ≤ 0.5, βHQ−
k is slightly better than βS

k .
However, in Figure 3, the plot shows that in terms
of CPU time, there is not much difference between

βS
k and β

HQ−
k with the methods being much com-

petitive. Overall the figures show the influence of
β∗
k on the quadratic hybridization over the use of

βPRP
k .
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Table 1. Results of test problems.

Prob Dim
β
HQ−
k βS

k β∗
k

NFE NGE NFE NGE NFE NGE

Rosenbrock 2 133 63 95 43 95 38

Freud and Roth 2 40 14 45 16 39 14

Beale 2 40 24 74 38 48 28
Helical valley 3 130 50 264 103 152 61
Bard 3 91 53 66 44 75 50
Gaussian 3 7 6 9 7 9 7
Box 3 41 30 44 32 47 37
Powell Singular 4 508 236 351 168 208 110

Wood 4 592 160 414 134 211 70

Biggs EXP6 6 201 139 502 374 338 284
Osborne 2 11 660 344 684 352 1557 762
Broyden tridiagonal 30 90 33 90 33 94 35
Ext. TET 100 17 10 28 15 20 11
Gen. White & Holst 100 11088 2614 9477 2329 14012 3451
Ext. Penalty 500 63 20 51 15 52 15

Ext. Maratos 500 234 109 630 259 257 105

Gen. Rosenbrock 1000 21985 4574 22010 4581 25069 6558
Fletcher 1000 15881 4664 15881 4664 27857 7616
Ext. Rosenbrock 5000 133 63 100 45 103 42

10000 133 63 100 45 103 42

Ext. Powell singular 10000 257 136 623 294 273 154
20000 475 236 1370 656 217 121

Raydan 2 5000 52 52 7 7 6 6

10000 101 101 8 8 6 6

Ext. Beale 10000 77 45 70 42 69 41

20000 77 45 70 42 69 41

Ext. Himmelblau 10000 32 13 38 15 35 14
20000 32 13 38 15 35 14

Ext. DENSCHNB 10000 15 9 19 13 17 10
Ext. DENSCHNF 10000 75 33 90 36 64 29

Ext. Freud & Roth 10000 40 14 45 16 39 14

Ext. White & Holst 10000 300 124 247 92 137 62

Ext. Wood 10000 757 200 450 145 224 74

NONSCOMP 10000 147 59 151 61 173 72
Quartic 10000 81 80 28 27 44 43
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Figure 1. Function evaluations profile.
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Figure 2. Gradient evaluations profile.
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Figure 3. CPU time profile.

5. Conclusion

In this article, a modified quadratic hybridization
of Polak–Ribière–Polyak and Fletcher–Reeves
conjugate gradient method (βS

k ) was presented.
Its global convergence under the strong Wolfe line
search conditions was also established. The βS

k

method presented was tested on a number of un-
constrained problems that have been extensively
used in the literature and compared to the original
quadratic hybridization of Polak–Ribière–Polyak
and Fletcher–Reeves conjugate gradient method

β
HQ−
k . The numerical results show that this pro-

posed modification has a positive effect on the

performance of β
HQ−
k . However, the numeri-

cal results from this study show that further re-
search to improve the efficiency and effectiveness

of βHQ−
k and other conjugate gradient hybrids is

still needed. A number of hybrid conjugate gradi-
ent methods have been proposed in the literature
but there are many problems that are currently
not properly handled by these methods, hence the
need for more research in this field.
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35–43 (1969).

[33] Polyak, B.T., The conjugate gradient method in Ex-
treme problems, USSR Comput. Math. Math. Phys.,
9(4), 94–112 (1969).

[34] Shi, Z.-J., Convergence of line search methods for un-
constrained optimization, Appl. Math. Comput., 157,
393–405 (2004).

[35] Sun, M. and Liu, J., Three modified Polak-Ribière-
Polyak conjugate gradient methods with sufficient de-
scent property, Journal of Inequalities and Applica-
tions, 2015–2125 (2015).

[36] Touati-Ahmed, D. and Storey, C., Efficient hy-
brid conjugate gradient techniques, J Optim. Theory
Appl., 64(2), 379–397 (1990).

[37] Yabe, H. and Sakaiwa, N., A new nonlinear conju-
gate gradient method for unconstrained optimization,
J Oper. Res., 48(4), 284–296 (2005).

[38] Yan, H., Chen, L. and Jiao, B., HS-LS-CD hybrid
conjugate gradient algorithm for unconstrained op-
timization, Second International Workshop on Com-
puter Science and Engineering, IEEE, 264–268 (2009).

[39] Yuan, G. and Lu, X., A modified PRP conjugate gra-
dient method, Ann. Oper. Res., 166, 73–90 (2009).

[40] Zhang, L., Zhou, W. and Li, D.-H., A descent modi-
fied Polak-Ribière-Polyak conjugate gradient method
and its global convergence, IMA J. Numer. Anal., 26,
629–640 (2006).

[41] Zhou, A., Zhu, Z., Fan, H. and Qing, Q., Three new
hybrid conjugate gradient methods for optimization,
Appl. Math., 2(3), 303–308 (2011).

S. Narayanan graduated with an MSc in Mathemat-
ics from the Department of Mathematics, University of
Botswana, in 2015. She is currently pursuing her PhD
in Mathematics from the Department of Mathematics,
University of Botswana. Her research interests are in
Optimization and Analysis.

P. Kaelo is a lecturer in the Department of Mathe-
matics, University of Botswana. He obtained his PhD
in Mathematics from the University of the Witwater-
srand, Johannesburg, South Africa, in 2005. His re-
search interests include Optimization, Optimal Control
Theory, Numerical Analysis and Functional Analysis.

M.V. Thuto is a lecturer in the Department of Math-
ematics, University of Botswana. He obtained his PhD
in Mathematics from the University of Exeter, Eng-
land, United Kingdom, in 2000. His research interests
are in Control Theory, Optimization and Functional
Analysis.

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. A new hybrid conjugate gradient method
	3. Global convergence of the proposed method
	4. Numerical Experiments
	5. Conclusion
	Acknowledgments
	References

