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This study focuses on identical parallel machine scheduling of jobs with de-
teriorating processing times and rate-modifying activities. We consider non-
linearly increasing processing times of jobs based on their position assignment.
Rate modifying activities (RMAs) are also considered to recover the increase
in processing times of jobs due to deterioration. We also propose heuristics
algorithms that rely on ant colony optimization and simulated annealing al-
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time. Finally, we show that ant colony optimization algorithm generates close
optimal solutions and superior results than simulated annealing algorithm.
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1. Introduction

In the last two decades, time-dependent process-
ing times of jobs in scheduling literature have
received increasing attention. The awareness of
human perspective on scheduling jobs or Total
productive maintenance (TPM) on productivity
lead researchers think out of the box. Although
many studies have to included some type of un-
certainties in scheduling or sequencing problems
(see [1–3] for details) in literature, some of the
issues have been restricted by assumptions so as
to simplify the problems. Boudreau et al. [4] dis-
cussed some of these issues from the human per-
spective that labor and task times are assumed
to be deterministic and predictable as if they are
always available.

In scheduling problems, Gupta and Gupta [5] in-
troduced a variable processing time of a job de-
scribed by a polynomial function of its starting
time to include some dynamic parameters of sys-
tems discussed by Gupta et al. [6] and some Rus-
sian papers (see [7] for details). Browne and

Yechiali [8] also introduced the concept of dete-
riorating jobs of which their processing time in-
creases as they await to be processed. For exam-
ple, awaiting steel material in the inventory to be
processed might corrode, a drop in the tempera-
ture of an ingot needs to be reheated, a delay in
medical treatment. Several papers can be given
as appropriate examples to deteriorating jobs as a
linear function of processing time of a job [5,8,9].
Kunnathur and Gupta [10] proposed a model with
piecewise increasing processing times. Mosheiov
[11] presented non-linear deterioration according
to a job-dependent step function. Ozturkoglu and
Bulfin [12] proposed a position-based, nonlinear
increasing function of processing time of a job.
We also implement a non-linear deterioration in
our models. Up to now, all studies have stud-
ied on single machine scheduling problem. Addi-
tional literatures about time-dependent process-
ing times in a single machine scheduling can be
seen in [13] and [14]. Lodree et al. [15] also pre-
sented a detailed survey study about sequence-
dependent studies from the perspective of human
factors.
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Mosheiov [11] formulated parallel, multiple ma-
chine scheduling problem with a job-dependent
step deterioration as an integer program and pro-
posed a heuristic algorithm for the problem. Chen
[16] also studied on parallel machine scheduling
problem that minimizes total completion time
with a consideration of a simple linear deteriora-
tion. The author showed that this problem is NP-
complete in the ordinary sense, not in the strong
sense even with a fixed number of machines.
Mosheiov [17] studied parallel, identical machines
for makespan minimization of deteriorating jobs
with simple linear function of their starting times.
Mosheiov [17] showed that the multi-machine
scheduling problem is NP-complete by reduction
to the single-machine problem and presented an
asymptotically optimal heuristic for minimization
of makespan. For studies published by 2004,
some additional discussions about multi-machine
scheduling problems and their NP-completeness
can be seen in [14]. Kang and Ng [18] presented a
fully-polynomial time approximation scheme (FP-
TAS) for scheduling linearly deteriorating jobs on
m identical parallel machines with the objective of
makespan. Ji and Cheng [19] also proposed an-
other FPTAS for parallel-machine total comple-
tion time problem with linearly deteriorating jobs.
Ji and Cheng [20] developed FPTAS for parallel-
machine scheduling of simple linear deteriorating
jobs with the objective of minimizing makespan,
total completion time and total machine load. Ji
and Cheng [20] also showed the makespan prob-
lem is strongly NP-hard for the fixed number of
machines. All of the above studies considered de-
teriorating jobs in which the processing time of a
job increases due to delay of processing of jobs,
depreciation of machines or workers fatigue.

Lee and Leon [21] introduced the concept of rate-
modifying activities to the scheduling literature.
A rate-modifying activity (RMA) is an activity
that affects and changes the speed or rate of the
resource. Maintenance activities for machines and
rest periods for workers can be given as exam-
ples to this concept. Lee and Lin [22] consid-
ered single-machine scheduling with the objec-
tives of minimizing makespan, total completion
time, total weighted completion time and max-
imum lateness. In their model, they evaluate
the placement of fixed length RMA as well as
sequencing of tasks. They proposed polynomial
time algorithm for makespan and total comple-
tion time problems, and pseudo-polynomial time
algorithms for several different objectives. Lee
and Lin [22] also studied single machine schedul-
ing problems with rate-modifying activities con-
sidering stochastic machine breakdown. In their

model, if the RMA is scheduled before a break-
down, then processing times of jobs are reduced.
If a breakdown occurs, then repair activity is ap-
plied then the resource works with its normal
rates. They considered makespan, total comple-
tion time and maximum lateness as an objective
function. Mosheiov and Sidney [23] developed
an efficient polynomial algorithm that minimizes
makespan for sequencing tasks with both learn-
ing and a RMA. All these studies have consid-
ered rate modifying activities on a single machine
scheduling without consideration of the deterio-
rating jobs.

Lodree et al. [15] integrated two distinct concepts,
deteriorating jobs and RMAs in scheduling mod-
els whose processing times are represented by lin-
ear increasing function of their starting times.
In several studies, the single machine schedul-
ing problem with deteriorating jobs and multi-
ple RMAs is modeled under different objectives,
such as minimizing makespan and total comple-
tion time [12,24–26]. In these studies, researchers
applied position dependent, non-linear function of
processing times for jobs. Additionally, Lee and
Wu [27] consider deteriorating jobs with mainte-
nance activities of scheduling jobs on parallel ma-
chines. They applied simple, linear deterioration
of jobs. In their model, maintenance period is
known in advance for each machine. They evalu-
ated makespan for this problem considering both
resumable and non-resumable cases. Recently,
Dalfard and Mohammadi [28] developed a model
for a multi-objective parallel machine schedul-
ing problem with maintenance activity excluding
deterioration in processing times. Authors also
solved the problem by using simulated annealing
and hybrid genetic algorithms. Cheng et al. [29]
proposed an improved ant colony optimization al-
gorithm for a parallel machine scheduling problem
in which jobs are processed in batches. Wang and
Wei [30] showed that an identical parallel machine
scheduling problem with linear deterioration and
rate-modifying activities can be solvable in poly-
nomial time even the objectives are minimization
of total absolute differences in both completion
and waiting times. Wang et al. [31] also studied
an identical parallel scheduling problem in which
machines are deteriorated due to delaying mainte-
nance activities that cause an increment in main-
tenance time. After a maintenance activity, pro-
cessing times of jobs decrease. Authors proposed
a polynomial time algorithm to solve total com-
pletion time for this scheduling problem. Yang
and Yang [32] proposed two polynomial time algo-
rithms for unrelated parallel machine scheduling
problems with multiple-rate modifying activities.
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They considered that processing times of jobs are
constant until a rate-modifying activity is per-
formed, afterwards it decreases with a constant
rate. Yang et al. [33] developed a polynomial
time algorithm to solve unrelated parallel ma-
chine scheduling problem with controllable pro-
cessing times and rate-modifying activities. The
cost function in their model comprises total com-
pletion time and total job compressions.

To the best of our knowledge, our model is the
first to attempt to evaluate the optimal sequence
of non-linearly deteriorating jobs and sequences
of multiple rate-modifying activities at identical
parallel machines. We use fixed length RMA time
and position-based, nonlinear deterioration simi-
lar to the [12]. The remainder of the paper is orga-
nized as follows. In the next section, we present a
mathematical model for this problem. In the later
sections, we implement ant colony optimization
(ACO) and simulated annealing (SA) algorithms
to solve this problem. Last, we solve the models
and compared their performances.

2. Mathematical model

In our model, we schedule a set of n jobs as
J = {J1, J2, ..., Jn} and at most b number of
RMAs on identical R set of parallel machines,
R = {R1, R2, ..., Rm}. Jobs are non-preemptive
and each job is assigned to only one machine.
We assume that jobs and machines are available
at the beginning of the scheduling, and jobs are
available when a machine is available for process-
ing. A RMA can be given only after a job is
completely processed at a machine (jobs are non-
resumable). The rest of the model parameters are
given in Table 1.

Initial processing time of jobs (pj) are the same
at any machines. Deteriorating processing times
of jobs are nonlinear, increasing functions of pj
based on the positions of assigned jobs. If a job is
assigned to the ith position after the beginning of
the schedule or a given RMA, pji is formulated in
the equation (1) defined by [12]. Additionally, we
assume that jobs revert to their base processing
time as soon as a RMA is performed.

pji = (1 + α)i−1 · pj (1)

Table 1. The mathematical model
parameters..

i the position number of scheduled jobs
at machines

j the index number of jobs
k the position number where an RMA is

given before processing a job at the
kth position

m the index number of machines
α constant deterioration rate of processing

time of jobs, 0 < α ≤ 1
q fixed period of time to perform an RMA
pj the initial (base) processing time of

job j at identical machines
pji is the processing time of deteriorated

job j at position i
xijkm 1, if job j is assigned to the ith position

after an RMA at the kth position
on machine m, otherwise 0

ykm 1 if an RMA is assigned at position k
on machine m

Cim completion time of the job in position i
on machine m

Hence, the developed integer programming (IP)
model can ben described as followings.

min Z = Cmax (2)

subject to

Cmax ≥ Cnm ∀m ∈ R (3)

C1,m =

n
∑

j=1

pj1 · x1j0m (4)

Cim = C(i−1)m +
i

∑

k=1

n
∑

j=1

pjk · xij(i−k)m+

qi · yim, ∀i = 2, ..., n and ∀m ∈ R (5)

n
∑

j=1

i−1
∑

k=0

xijkm = 1, ∀i = 1, ..., n, ∀m ∈ R (6)

n
∑

i=1

i−1
∑

k=0

∑

m∈R

xijkm = 1, ∀j = 1, ..., n (7)

xkjim ≤ y(i+1)m, ∀m ∈ R, ∀i = 1, ..., k − 1,

∀j ∈ J, ∀k = 2, ..., n (8)
n
∑

i+1

yim ≤ b, ∀m ∈ R (9)

xijkm ∈ {0, 1}, yim ∈ {0, 1} (10)

The equation (2) is the objective of minimizing
makespan where Cmax = max{Cz1, Cz2, ..., Czm},
maximum of the completion time of the last job z



170 Ö. Öztürkoğlu / IJOCTA, Vol.7, No.2, pp.167-176 (2017)

in each machine m. This is formulated by Equa-
tion (3). Equations (4) shows the completion time
of the jobs at the first position based on base
processing times of jobs. Equation (5) calculates
the completion time of jobs at the later positions
considering nonlinear deterioration of processing
times and RMA time if given. Equation (6) re-
stricts that each positions on each machine can
only take one job. Equation (7) shows that each
job should be assigned only to one position on
each machine. Equation (8) arranges the order of
RMAs based on the scheduled jobs. To make this
constraint clear, if a job is assigned to position 2
after given a RMA at the end of the first position
at machine 1 (x2j11 = 1), then y21, which repre-
sents that a RMA is given at the beginning of po-
sition 2 at machine 1, should be one. Equation (9)
controls the maximum number of allowable RMAs
in the sequence. Additionally, equations (10) are
the binary constraints.

Mosheiov [11] showed that multi-machine sched-
uling with linear deterioration is NP-hard even
for two machines, our problem is also NP-hard
because this is an extended model with the deci-
sion of optimal sequence of RMAs in a optimal
sequence of jobs of which their processing time is
nonlinearly deteriorated. Lee and Wu [27] also
claimed that the scheduling problems with lin-
early deteriorating jobs and maintenance period
are also NP-hard.

3. Ant colony optimization algorithm

Because our problem is also in NP-hard class, in
this section we propose a unique ant colonoy opti-
mization (ACO) algorithm which is originally de-
veloped by [34]. Sankar et al. [35] studied decen-
tralized distributed scheduling problem in a par-
allel machine shop environment applying an ACO
algorithm to the problem. Tkindt et al. [36] pro-
posed an ACO algorithm and a heuristic based
on simulated annealing (SA) algorithm for two
serial machine scheduling problem for minimiz-
ing both makespan and total completion time to-
gether. Alaykiran et al. [37] proposed an ACO al-
gorithm to solve hybrid flow shop problems con-
sidering makespan as an objective. Arnaout et
al. [38] and Arnaout [39] proposed an ACO algo-
rithm to non-preemptive, unrelated parallel ma-
chine scheduling problem with machine- and job
sequence-dependent setup times. They compared
the algorithm with tabu search algorithm and
one of the existing heuristics in literature. They
showed that ACO algorithm outperformed the
other algorithms. Rossi and Boschi [40] developed

a heuristic basis on a genetic algorithm (GA) and
ACO for the flexible manufacturing systems. In
their heuristic, GA and ACO co-evolve in parallel
so as to improve the performance of the algorithm.
Behnamian et al. [41] integrated three heuris-
tics, ACO, SA and variable neighborhood search
(VNS) to solve the parallel machine scheduling
problem with sequence-dependent setup times for
minimizing the makespan.

In our algorithms, we use a permutation based
encoding which represents the sequence of job
positions, split parameters and RMA parame-
ters. There are (m − 1) number of split pa-
rameters (si) in the encoding shows the po-
sition where jobs are distributed to machines.
rim represents the position of given maximum
of b number of RMAs at machine m. Hence,
the encoding can be shown as {J1, J2, ...Jn|
s1, s2, ..., sm−1|r11, ..., rx1|...|r1m, ..., rxm|}. Addi-
tionally, 0 ≤ r11 ≤ ... ≤ rk1 ≤ s1 < ... <
sm−1 ≤ r1m ≤ ... ≤ rxm. For example, let encod-
ing scheme {3 5 8 1 4 2 9 6 7 10 | 4 | 2 | 7} represent a
solution for a scheduling 10 jobs at parallel two
machines with at most one RMA. Hence, jobs 3,
5, 8 and 1 are scheduled at machine 1 because
s1 is 1, other jobs are at machine 2. An RMA is
scheduled after job 5 at machine 1 (r11 = 2 mean-
ing that RMA is given after the second position
at machine 1) and one RMA is given after job 9 at
machine 2. If any one of the RMA factors is equal
to 0 (start position) or the same as split factor, it
means that RMA is not actually needed at that
machine. The rest of the parameters for our ACO
algorithm is given in Table 2.

We solve our problem with ACO in two stages: se-
quencing and assigning. In the sequencing stage,
we allocate n jobs to the positions like assigning
them to a single machine. In the assigning stage,
we firstly split jobs into machines and allocate
RMAs in each machine. The sequencing and as-
signment are based on the pheromone amounts on
trails or positions and computed by probabilisti-
cally as in equation (11). After calculating proba-
bility of assigning next job, we select the job based
on simple tournament selection applying under q0
strategy. q0 strategy is used in classical ACO to
balance the exploration and exploitation. If a ran-
dom number is greater than q0, we use tourna-
ment selection, otherwise we select the job which

has the maximum value of (τij)
α · (ηij)

β . After
constructing a full schedule, we select the split
factors and then positions of RMAs.
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Table 2. The model parameters for
the ACO algorithm.

a number of ants in population
T number of iterations
τij(t) the intensity of the pheromone trail

on the path between jobs i and j
at time t

ηij(t) the heuristic value (visibility) 1/pj
where pj is the processing time of
job j at time t

λsi
k (t) the intensity of the pheromone on

positions k for split factors at time t
µrim
k (t) the intensity of the pheromone on

positions k for RMA factors at time t
α the relative importance of the

pheromone trail
β the relative importance of the

visibility
∆ addition of pheromone on trail ij or

between positions kn at time t
ρ evaporation factor, 0 < ρ < 1
ξ factor of the online pheromone update,

usually = 0.1
τ0 initial pheromone amount on all paths

and positions
τmin minimum allowance of the pheromone

amount on paths or positions
τmax maximum allowance of the pheromone

amount on paths or positions

P y
ij(t) =

(τij)
α · (ηij)

β

∑

l∈N
y

i
(τij)

α · (ηij)
β
, ∀y = 1, .., a

(11)

P y
sk(t) =

(λk)
α

∑

i∈Ns
(λk)

α , ∀y = 1, .., a (12)

P y
xk(t) =

(µk)
α

∑

l∈Nx
(µk)

α , ∀y = 1, .., a (13)

where, P y
ij(t) is the probability of selecting job j

if job i is scheduled for ant y at time t. Ny
i is the

neighborhood of ant y that comprises unscheduled
jobs up to that time. Ns is the whole available
positions for splitting, and Nx is the appropriate
positions for placing an RMA. P y

sk and P y
xk are

the probability of selecting positions for splitting
and RMAs, respectively, and these only account
for the pheromone amounts at the positions.

We also use two pheromone updating processes,
local and global updates, in our ACO algorithm.
In the local update, as soon as an ant constructs
a full schedule including splits and RMAs they
change the pheromone amount based on the equa-
tions (14), (15) and (16).

τij(t+ 1) = (1− ξ) · τij(t) + ξ · τ (14)

λk(t+ 1) = (1− ξ) · λk(t) + ξ · λ (15)

µk(t+ 1) = (1− ξ) · µk(t) + ξ · µ (16)

In the global update, after all ants construct a so-
lution, firstly some pheromone is evaporated, then
ants contribute to the appropriate paths and po-
sitions based on the equations (17), (18) and (19).

The pheromone amount is added to ij path if
jobs i and j are scheduled consecutively in the
sequence of a machine. After global updates, if
the pheromone amount on trail or at positions
exceeds maximum level or goes below the mini-
mum level, we set the pheromone amounts to the
closest limit.

τij(t+ 1) = ρ · τij(t) +
a

∑

y=1

∆y (17)

λk(t+ 1) = ρ · λij(t) +
a

∑

y=1

∆y (18)

µk(t+ 1) = ρ · µij(t) +
a

∑

y=1

∆y, (19)

where, ∆y = max {Cyz1, Cyz2, ..., Cyzm}, the max-
imum of completion time of the last job in each
machine based on the given solutions by ant y.

The pseudo-code for our ACO algorithm is ex-
plained as in the followings. In this algorithm,
we implement a local search procedure (LS1) to
improve the solution of an ant at every g number
of iterations.

In this local search, if base processing time of a
randomly chosen job is larger than the the sched-
uled job at its previous position, we simply re-
move that job in the sequence of the machine and
insert this job either to the first position or any
position after a given RMA. Hence, we aim to de-
crease the amount of deterioration by performing
the local search.
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Initialize parameters, pheromone amounts,
and ants
Do{ until termination criterion is met.

Do { for all ants
Construct a full schedule, including

splits and RMAs using tournament selection
Evaluate the makespan of an ant
If an ant is better than the best ant,

update best ant
Otherwise, at each g iterations do a

local search (LS1) on the ant, then compare it
with the best ant again

Do online pheromone update after
each ant

Do global pheromone update after
all ants controlled by (τmin, τmax)

}
}

4. Simulated annealing algorithm

Kirkpatrick et al. [42] proposed an iterative, sto-
chastic, neighbor-based search method based on
the analogy of heating and cooling of materials.
Koulamas [43] developed a polynomial decompo-
sition heuristic to minimize total tardiness on par-
allel machines. They embedded SA algorithm
into their heuristic to do local search by swapping
jobs. Park and Kim [44] suggested SA and TS
algorithms that minimize order holding costs for
scheduling these orders on identical parallel ma-
chines with ready times and due date. TS, SA and
GA techniques are implemented to the scheduling
problems with non-preemptable jobs on identical
parallel machines [45]. Hindi and Mhlanga [46]
developed SA and steepest descent algorithms to
solve the makespan minimization problem of jobs
having simple, linear and general linear deteriora-
tion on identical parallel machines. Kim et al. [47]
proposed a SA algorithm to minimize total tar-
diness for scheduling jobs on unrelated parallel
machines with sequence-dependent setup times.
As discussed before, SA is also implemented to
the parallel machine scheduling problem in stud-
ies [36, 41].

We use the same encoding that we discussed in
the previous section in our SA algorithm. In this
study, we modified the canonical SA algorithm by
embedding two local searches so as to improve the
solutions. The first one is the LS1, which is ex-
plained in the previous section. The second local
heuristic (LS2) considers whole neighborhood of
the scheduled jobs in the machine. It utilizes sim-
ple swap operator. Hence, LS2 swaps all jobs in
a machine and if it finds a better solution than
the current one, it updates the current solution.

Additionally, the split factors and RMA factors
are randomly chosen at the beginning of each it-
eration. The pseudo-code for this algorithm is as
in the following.

Initialize parameters and randomly generate
an initial solution
Do{ until termination criterion is met.

Do { for all stages
Move the split and RMA factors

randomly for the schedule
Implement a local search (LS2) for

the given split and RMA factors
If the temporary solution is better

than the current, update the current solution
Otherwise accept the non-improving

solution probabilistically
If the current solution is better

than the best, update best
If there is no improvement on the

best solution for g number of iterations,
implement a local search (LS1) on the best
solution.

}
}

The probability of accepting non-improving so-
lutions is calculated using Equation (20) defined
by [42]. Based on this equation, probability of ac-
cepting non-improving solutions is higher at the
higher temperatures, and it decreases as the tem-
perature decreases.

P = exp

(

−
∆E

c · T ′

)

, (20)

where, ∆E is the difference of the makespan be-
tween the temporary solution and the current so-
lution. c is a Boltzmann constant, and T is the
current temperature level. The other model pa-
rameters used in the SA algorithm are: T0 is
initial temperature, π is the cooling parameter
(0 < π < 1) and ν is the number of moves at each
stage where the local search is applied.

5. Simulation results

In this study, we only work on identical two par-
allel machines (m = 2). However, our models
are capable of considering multiple machines. We
solve our parallel machine scheduling problem for
10, 20, 30 and 50 jobs to investigate the effects
of heuristics. We randomly generate processing
times of jobs based on a uniform distribution that
resides between 1 and 160. We use 10 different
data set for each job set separately. We assume
that RMA time is 5 unit time, and deterioration



Identical parallel machine scheduling with nonlinear deterioration and multiple rate modifying activities 173

rate is selected 0.08. After a simple tuning opera-
tion by trial-and-error, we decide to have 15 ants
in the population in ACO algorithm. The evapo-
ration rate is 0.70 so as to enhance more diversity.
The other ACO parameters are α = 1, β = 2,
ξ = 0.1, q0 = 0.1, τmin = 0.1 and τmax = 0.49.
Last, the algorithm is terminated after 1000 it-
erations. The SA algorithm is simulated for 500
iterations and 5 stages at each iteration. Initial
temperature is selected 100, the cooling parame-
ter is 0.99, and the Boltzmann constant is 0.4. Fi-
nally, the mathematical model (MM) is coded and
solved in IBM ILOG OPL CPLEX Optimization
Studio 12.6. Because of the NP-Hardness of the
problem, solution time is restricted to 3 hours. If
a global optimum integer solution is not obtained
by 3 hours, we used the best integer objective
value found for the comparisons. The ACO and
SA algorithms are coded with JAVA. They all are
run on Intel(R) Core(TM) i5 3.5 GHz PC with
2GB ram. Additionally, we also conduct 10 repli-
cations on the ACO and SA algorithms for each
data set. We use the simple average of the ten
replications for the comparisons.

Tables 3, 4 and 5 show the detailed solutions of
the algorithms. In Table 3, “Gap(%)” represents
absolute tolerance on the gap between the best in-
teger objective and the objective of the best node
remaining when the model is terminated. As seen
in this table, the gap increases as the number of
jobs increases, especially for 50 jobs due to NP-
hardness of the problem. “Best found solution”
column in Tables 4 and 5 show the best solu-
tion obtained by ACO and SA, respectively at the
end of iterations. “CPU time” in these tables is
the computational time that algorithms spend to
obtain the solution over iterations. The average
computational times of ACO algorithm for 10-,
20-, 30- and 50 job-problems are 0.6, 2, 4.8 and
15 seconds. For SA, these are 0.2, 3, 7.8 and 95.8
seconds. As seen, SA algorithm takes more time
than ACO as the number of jobs increases due to
intensive local search.

In order to compare solution quality of ACO and
SA algorithms, we calculate their percentage er-
ror that represents the difference of their solutions
with MM as a basis on mathematical model solu-
tions. These errors are given in Table 6. As seen
in the table, for small number of jobs ACO pro-
vides close solutions to the mathematical model.
The average error of ACO is about 4% for 30 jobs
and it takes only 4.8 seconds. However, the SA al-
gorithm does not provide as good solutions as the
ACO algorithm. The average error of SA is about
7.7% for 30 jobs. In terms of computational time,
even though SA is faster than ACO for 10 jobs,

SA requires more time than ACO as the number
of jobs increases. The reason of this observation
is due to the intensive local search algorithm in
SA.

6. Conclusion

In this study, we developed an integer program-
ming model for parallel machine scheduling with
deteriorating jobs and rate modifying activities.
We consider non-linearly increasing function of
processing times based on the sequence of the
job. We also consider rate-modifying activities
to recover the loss in processing times of the jobs.
Because this problem is NP-hard, we proposed
two meta-heuristic algorithms that rely on Ant
colony optimization and Simulated annealing al-
gorithms. In the ACO algorithm, we proposed
different pheromone update schemes for the prob-
lem. We run our mathematical model and heuris-
tics with two identical parallel machines for four
different sets of jobs; 10, 20, 30 and 50. Results
show that the ACO algorithm performs better
than SA and generates close optimal solutions for
with an average error of 0.7%, 1.6%, 4% and 8.8%
for 10, 20, 30 and 50 jobs, respectively. In terms
of computational time, ACO is also superior than
SA as numbers of job increases. For future stud-
ies, the proposed ACO algorithm might be pow-
ered by an efficient local search algorithm to ob-
tain closer solutions to the best found solutions.
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174 Ö. Öztürkoğlu / IJOCTA, Vol.7, No.2, pp.167-176 (2017)

Table 3. Mathematical model solutions.

Best Found Integer Solution Gap (%)
n 10 20 30 50 10 20 30 50

Data 1 536.85 459.62 1250.6 2526.53 0.00 0.01 0.01 1.13
Data 2 340.9 473.94 1545.4 2646.81 0.02 0.00 0.08 2.01
Data 3 306.92 466.66 1539.9 2648.31 0.00 0.10 0.01 5.08
Data 4 394.83 943.87 1153.8 2848.57 0.00 0.01 0.00 1.70
Data 5 437.03 248.17 1434.8 3010.16 0.01 0.00 0.00 4.43
Data 6 475.68 232.98 1991.3 2530.86 0.01 1.6 0.01 3.11
Data 7 495.38 1156.5 1646.00 2758.91 0.0 0.00 0.02 1.16
Data 8 360.28 857.80 1158.70 2271.40 0.03 0.01 0.01 6.85
Data 9 315.61 665.27 1768.8 2320.72 0.01 0.06 0.05 3.60
Data 10 453.61 885.32 1364.8 2581.11 0.00 0.00 0.01 1.20

Table 4. Ant colony optimization algorithm solutions.

Best Found Solution CPU Time (sec.)
n 10 20 30 50 10 20 30 50

Data 1 541.32 469.06 1314.68 2758.19 0.6 2.0 4.8 15.0
Data 2 344.10 475.57 1605.71 2899.70 0.6 2.0 5.0 14.8
Data 3 310.13 469.94 1593.11 2682.29 0.6 1.8 4.8 14.4
Data 4 399.25 964.71 1208.12 3042.29 0.6 2.0 5.0 15.2
Data 5 443.52 253.84 1492.18 3212.44 0.6 2.0 4.8 14.8
Data 6 478.37 233.61 2041.39 2741.60 0.6 2.0 4.8 15.4
Data 7 497.35 1178.58 1718.31 2963.06 0.6 2.0 4.8 15.0
Data 8 365.52 878.28 1210.17 2503.02 0.6 2.0 4.8 14.8
Data 9 319.61 677.15 1841.23 2535.55 0.6 2.0 4.8 14.8
Data 10 455.71 906.78 1422.92 2808.14 0.6 2.0 4.8 15.4

Table 5. Simulated annealing algorithm solutions.

Best Found Solution CPU Time (sec.)
n 10 20 30 50 10 20 30 50

Data 1 546.70 470.72 1309.87 2885.99 0.2 3.0 13.6 95.0
Data 2 345.06 480.00 1669.84 3186.85 0.2 3.0 14.0 96.0
Data 3 313.08 470.48 1673.91 2867.50 0.2 3.2 14.0 94.8
Data 4 408.04 991.29 1263.99 3216.51 0.2 3.0 13.8 95.8
Data 5 447.87 265.17 1534.22 3464.48 0.2 3.0 14.0 95.0
Data 6 496.52 236.13 2086.18 2940.05 0.2 3.0 13.8 95.6
Data 7 510.22 1202.72 1758.61 3189.91 0.2 3.0 13.8 95.6
Data 8 369.02 918.02 1282.63 2583.84 0.2 3.0 14.0 95.6
Data 9 336.81 705.75 1930.59 2723.22 0.2 3.0 13.8 95.6
Data 10 466.09 945.45 1461.22 2893.22 0.2 3.0 13.8 95.6

[10] Kunnathur, A. and Gupta, S., Minimizing the
Makespan with Late Start Penalties Added to Pro-
cessing Times in a Single Facility Scheduling Problem .
European Journal of Operational Research, 47(1), 56–
64, (1990).

[11] Mosheiov, G., Scheduling Jobs With Step-
Deterioration ; Minimizing Makespan on a Single and
Multi-Machine . Computers and Industrial Engineer-
ing, 28(4), 869–879, (1995)

[12] Ozturkoglu, Y. and Bulfin, R. L., A Unique Inte-
ger Mathematical Model for Scheduling Deteriorating

Jobs with Rate-Modifying Activities on a Single Ma-
chine. The International Journal of Advanced Manu-
facturing Technology, 57(5-8), 753–762, (2011).

[13] Alidaee, B. and Womer, N., Scheduling with Time
Dependent Processing Times: Review and Extensions.
Journal of the Operational Research Society, 50(7),
711–721, (1999).

[14] Cheng, T., Ding, Q., and Lin, B., A Concise Survey of
Scheduling with Time-Dependent Processing Times .
European Journal of Operational Research, 152, 1–13,
(2004).

[15] Lodree, E., Geiger, C., and Jiang, X., Taxonomy for
Integrating Scheduling Theory and Human Factors:



Identical parallel machine scheduling with nonlinear deterioration and multiple rate modifying activities 175

Table 6. The percentage gap among MM, ACO and SA algorithms.

ACO vs. MM SA vs. MM
n 10 20 30 50 10 20 30 50

Data 1 0.83 2.05 5.21 9.17 1.83 2.42 4.74 14.23
Data 2 0.94 0.34 3.90 9.55 1.22 1.28 8.05 20.4
Data 3 0.91 0.69 3.46 8.67 2.01 0.82 8.70 16.17
Data 4 0.83 2.21 4.71 6.80 3.35 5.02 9.55 12.92
Data 5 0.75 2.28 4.00 6.72 2.48 6.85 6.93 15.09
Data 6 0.57 0.27 2.52 8.33 4.38 1.35 4.76 16.17
Data 7 0.40 1.91 4.39 7.40 3.00 4.00 6.84 15.62
Data 8 0.81 2.39 4.44 10.20 2.43 7.03 10.70 13.76
Data 9 0.80 1.79 4.09 9.26 6.72 6.08 9.15 17.34
Data 10 0.46 2.42 4.26 8.80 2.75 6.79 7.06 12.09
Average 0.73 1.64 4.09 8.49 3.02 4.16 7.65 15.38

Review and Research Opportunities . International
Journal of Industrial Ergonomics, 39, 39–51, (2009).

[16] Chen, Z., Parallel Machine Scheduling with Time De-
pendent Processing Times . Discrete Applied Mathe-
matics, 70, 81–93, (1996).

[17] Mosheiov, G., Multi-machine Scheduling with Linear
Deterioration. Infor, 36, 205–214, (1998).

[18] Kang, L. and Ng, C., A Note on a Fully Polynomial-
Time Approximation Scheme for Parallel-Machine
Scheduling with Deteriorating Jobs . International
Journal of Production Economics, 109, 180–184,
(2007).

[19] Ji, M. and Cheng, T., Parallel-Machine Scheduling
with Simple Linear Deterioration to Minimize Total
Completion Time . European Journal of Operational
Research, 188, 341–347, (2008).

[20] Ji, M. and Cheng, T., Parallel-Machine Scheduling of
Simple Linear Deteriorating Jobs . Theoretical Com-
puter Science, 410, 3761–3768, (2009).

[21] Lee, C.-Y. and Leon, V., Machine Scheduling with
Rate-Modifying Activity . European Journal of Oper-
ational Research, 128, 493–513, (2001).

[22] Lee, C.-Y. and Lin, C.-S., Single Machine Scheduling
with Maintenance and Repair Rate-Modifying Activ-
ities . European Journal of Operational Research, 135,
495–513, (2001).

[23] Mosheiov, G. and Sidney, J., New Results on
Sequencing with Rate Modification . Information
Systems and Operational Research, 41(2), 155–163,
(2003).

[24] Ozturkoglu, Y., A Bi-Criteria Single Machine Sched-
uling with Rate-Modifying-Activity. Gazi University
Journal of Science, 26(1), 97–106, (2013).

[25] Kim, B. S. and Ozturkoglu, Y., Scheduling a Sin-
gle Machine With Multiple Preventive Maintenance
Activities And Position-Based Deteriorations Using
Genetic Algorithms. The International Journal of
Advanced Manufacturing Technology, 67(5-8), 1127–
1137, (2013).

[26] Ozturkoglu, Y., An Efficient Time Algorithm for
Makespan Objectives. An International Journal of
Optimization and Control: Theories & Applications
(IJOCTA), 5(2), 75-80, (2015).

[27] Lee, W.-C. and Wu, C.-C., Multi-Machine Scheduling
with Deteriorating Jobs and Scheduled Maintenance .
Applied Mathematical Modeling, 32, 362–373, (2008).

[28] Dalfard, V. M. and Mohammadi, G., Two Meta-
Heuristic Algorithms for Solving Multi-Objective
Flexible Job-Shop Scheduling with Parallel Machine
and Maintenance Constraints. Computers & Mathe-
matics with Applications, 64(6), 2111–2117, (2012).

[29] Cheng, B., Wang, Q., Yang, S., and Hu, X., An Im-
proved Ant Colony Optimization for Scheduling Iden-
tical Parallel Batching Machines With Arbitrary Job
Sizes. Applied Soft Computing, 13(2):765–772, (2013).

[30] Wang, J.-B. and Wei, C.-M., Parallel Machine Sched-
uling With a Deteriorating Maintenance Activity And
Total Absolute Differences Penalties. Applied Mathe-
matics and Computation, 217(20), 8093–8099, (2011).

[31] Wang, J.-J., Wang, J.-B., and Liu, F., Parallel Ma-
chines Scheduling With a Deteriorating Maintenance
Activity. Journal of the Operational Research Society,
62(10), 1898–1902, (2011).

[32] Yang, D.-L. and Yang, S.-J., Unrelated Parallel-
Machine Scheduling Problems with Multiple Rate-
Modifying Activities. Information Sciences, 235, 280–
286, (2013).

[33] Yang, D.-L., Cheng, T., and Yang, S.-J., Parallel-
Machine Scheduling With Controllable Processing
Times and Rate-Modifying Activities to Minimise To-
tal Cost Involving Total Completion Time and Job
Compressions. International Journal of Production
Research, 52(4), 1133–1141, (2014).

[34] Dorigo, M., Maniezzo, V., and Colorni, A., Posi-
tive Feedback as a Search Strategy . Technical Report
91-016, Dip. Elettronica,Politecnico di Milano, Italy,
(1991).

[35] Sankar, S., Ponnambalam, S., Rathinavel, V., and
Visveshvaren, M., Scheduling in Parallel Machine
Shop: An Ant Colony Optimization Approach . In-
dustrial Technology, ICIT, IEEE Industrial Confer-
ence, pages 276–280, (2005).

[36] Tkindt, V., Monmarche, N. Tercinet, F., and Laugt,
D., An Ant Colony Optimization Algorithm to Solve
a 2-Machine Bicriteria Flowshop Scheduling Problem
. European Journal of Operational Research, 142, 250–
257, (2002).

[37] Alaykiran, K., Engin, O., and Doyen, A., Us-
ing Ant Colony Optimization to Solve Hybrid Flow-
shop Scheduling Problems . International Journal
of Advanced Manufacturing Technology, 35, 541–550,
(2007).
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