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Thermally coupled magneto-hydrodynamics (MHD) studies the dynamics of
electro-magnetically and thermally driven flows, involving MHD equations cou-
pled with heat equation. We introduce a partitioned method that allows one
to decouple the MHD equations from the heat equation at each time step and
solve them separately. The extrapolated Crank-Nicolson time-stepping scheme
is used for time discretization while mixed finite element method is used for
spatial discretization. We derive optimal order error estimates in suitable norms
without assuming any stability condition or restrictions on the time step size.
We prove the unconditional stability of the scheme. Numerical experiments are
used to illustrate the theoretical results.
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1. Introduction

Thermally coupled magneto-hydrodynamics has
many applications including in electromagnetic
pumping design [35], electromagnetic filtration
[4], contact-less electromagnetic stirring [32] and
damping convective flow in metal-like melt [34].
Magnetohydrodynamics in general has broad
applications including fusion [19], underwater
propulsion [18], nuclear reactors [13], metallurgy
[1, 2, 11, 31] and astrophysics [30]. In all of these
applications, qualitative and quantitative under-
standing of the dynamics is important to achieve
optimal operating conditions. This has led to
considerable research efforts over the past three
decades into the development of theoretical, see
e.g [16, 24, 26, 27, 29] and efficient and accurate
computational techniques, see e.g. [8,9,20,21] for
MHD equations. Majority of the numerical anal-
ysis work done on the equations has been for
steady state equations. In [17, 23, 25, 33], time
stepping schemes for unsteady MHD equations

have been analyzed. However, these work consider
MHD equations where thermal effects are negli-
gible. Thermally coupled MHD equations model
a complex flow phenomena which is in general
three dimensional, highly nonlinear and repre-
sents multi-physics.

In this work, we propose and analyze a de-
coupled time stepping scheme for the thermally
coupled MHD equations. It uses a semi-implicit
Crank-Nicolson scheme, which combines an im-
plicit treatment of the second derivative terms,
a semi-implicit second order extrapolation of the
nonlinear convective terms and an explicit treat-
ment of the temperature coupling term in the
Navier-Stokes equations. The proposed scheme
solves the MHD equations and the heat equation
separately in each time step (without iteration)
allowing the possibility of optimizing the subprob-
lem’s respective physics. We show unconditional
stability of the scheme and provide a complete er-
ror analysis for fully discrete scheme using finite
element spatial discretization.
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The remaining of the paper is organized as fol-
lows: The continuum problem and some prelimi-
naries are presented in Section 2. In Section 3, we
present the decoupled time-stepping scheme and
analyze its stability, accuracy and convergence.
Finally, we present a numerical example that il-
lustrates our theoretical results.

2. Continuum problem and

preliminaries

To begin with,we present some notations and ba-
sic results that will be used throughout the article.

2.1. Continuum problem

The non-dimensional Boussinesq equations de-
scribing thermally coupled MHD equations are
(see for e.g. [15])





∂u

∂t
− Prθ∆u+ (u · ∇)u+ Prθ∇p

− S(∇×B)×B = PrθRaθi3 + f1 ,

∂B
∂t + PrB∇× (∇×B)

− ∇× (u×B) = 0 ,

∂θ
∂t − ∆θ + u · ∇θ = f2 ,

∇ · u = 0 ,

∇ ·B = 0 ,

(1)

in (0, T ], where T denotes time and Ω ⊂ RI d(d =
2, 3) a bounded region with Lipschitz-continuous
boundary Γ. Moreover the different fields ap-
pearing in the equations are u(x, t) the fluid
velocity, B(x, t) the magnetic field, θ the tem-
perature, p(x, t) the pressure, f the source and
i3 the unit basis vector. The non-dimensional
numbers that appear in the MHD equations are
S := PrBPrθH

2, the Hartman number H, the
Rayleigh number Ra, the thermal Prandtl num-
ber Prθ and the magnetic Prandtl number PrB.
The MHD system we consider is supplemented
with the initial conditions

u(x, 0) = u0(x) , θ(x, 0) = θ0(x) and

B(x, 0) = B0(x) in Ω ,
(2)

along with the boundary conditions





u|Γ = g with
∫
Γ g · n ds = 0 ,

θ|Γ = q̃ ,

B · n|Γ = q with
∫
Γ q ds = 0 ,

P rB (∇×B)× n|Γ
− (u×B)× n|Γ = k

with k · n = 0 ,
∫
Γ k ds = 0 .

(3)

2.2. Function spaces

For a Banach space X, we denote by Lp(0, T ;X)
the time-space function space endowed with the

norm ‖w‖Lp(0,T ;X) :=
(∫ T

0 ‖w‖pX dt
)1/p

if 1 ≤
p <∞ and ess supt∈[0,T ] ‖w‖X if p = ∞ .

We will often use the abbreviated notation
Lp(X) := Lp(0, T ;X) for convenience. The
symbol C([0, T ];X) denotes the set of contin-
uous functions u : [0, T ] → X endowed with
the norm ‖u‖C(0,T ;X) := max0≤t≤T ‖u(t)‖X .

For any integer k ≥ 1, let W k,p(Ω) be the
Sobolev space of functions in Lp(Ω) with deriva-
tives up-to the kth order endowed with the

norm ‖φ‖m,p :=


 ∑

|α|≤m

∫

Ω
|∂αxφ(x)|pdx




1

p

where

∂αxφ(x) :=
∂|α|

∂
α1
x1

···∂αd
xd

φ(x) , α := (α1, · · · , αd), αi ≥

0, |α| :=
d∑

i=1

αi .

We denote by Hk(Ω) the space W k,2(Ω), when
p = 2, and drop the subscripts p(= 2) in referring
to the norm in Hk(Ω). Moreover, we will use the
following simplified norm notations:

‖u‖ := ‖u‖L2(Ω) and ‖u‖∞ := ‖u‖L∞(Ω) .

For g ∈ H
1

2 (Γ) satisfying
∫
Γ g · n ds = 0

and q ∈ H
1

2 (Γ) satisfying
∫
Γ q ds = 0, define

H1
n,q(Ω) := {v ∈ H1(Ω) : v · n|Γ = q } ,

Vg := {v ∈ H1(Ω) : v|Γ = g , ∇·v = 0 } and
H1

q̃ (Ω) := {θ ∈ H1(Ω) : θ|Γ = q̃ } .

We write V = V0, H
1
n(Ω) = H1

n,0(Ω) and V :=

{v ∈ H1(Ω) : ∇ · v = 0 in Ω }. We in-
troduce the time discrete space lp(Z) associated
with Lp(0, T ;Z); lp(Z) is the space of Z-valued
sequences w := {wn;n = 1, . . . , N} with norm
‖ · ‖lp(Z) defined by
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‖w‖lp(Z) :=





(∆t
N∑

n=1

‖wn‖pZ)1/p if 1 ≤ p <∞

max
1≤n≤N

‖wn‖Z if p = ∞ .

For later purposes, we recall the inequality

λm‖B‖21 ≤ ‖∇·B‖2+‖∇×B‖2 ∀B ∈ H1
n(Ω) , (4)

the Poincaré inequality

‖v‖2 ≤ λp‖∇v‖2 ∀v ∈ H1
0(Ω) ,

the Gagliardo-Nirenberg interpolation inequality
[3]

‖u‖q ≤ C‖∇u‖λp‖u‖1−λ
r ∀u ∈ W1,p(Ω) ∩ Lr(Ω)

for 0 ≤ λ ≤ 1 and 1
q = λ(1p − 1

d) + (1 − λ)1r and

the Agmon’s inequality

‖u‖∞ ≤ C‖u‖
1

2

1 ‖u‖
1

2

2 ∀u ∈ H2(Ω) ∩H1
0(Ω) .

We define the explicitly skew-symmetrized trilin-
ear forms

c1(u,v,w) := 1
2

∫
Ω [(u · ∇)v ·w − (u · ∇)w · v] dΩ ,

=
∫
Ω

[
(u · ∇)v ·w + 1

2(∇ · u)v ·w
]
dΩ ,

for all u,v,w ∈ H1(Ω) with (u ·n)v ·w = 0 on Γ
and

c2(u, θ, ψ) := 1
2

∫
Ω [(u · ∇)θ ψ − (u · ∇)ψ θ] dΩ ,

=
∫
Ω

[
(u · ∇)θ ψ + 1

2(∇ · u)ψ θ
]
dΩ ,

for all u ∈ H1(Ω), θ, ψ ∈ H1(Ω) with (u ·n)θ ψ =
0 on Γ.

Moreover, we define the bilinear forms

b(v, r) := −
∫

Ω
Prθ r∇ · v dΩ ,

e(θ,v) := PrθRa

∫

Ω
θi3 · v dΩ ,

and the trilinear form

d(B,C,v) :=

∫

Ω
B× (∇×C) · v dΩ .

Notice that the trilinear form d(·, ·, ·) is skew-
symmetric with respect to the first and last ar-
guments, i.e., d(B,C,v) = −d(v,C,B).

We end this section with a result regarding the ex-
istence and uniqueness of solutions to the initial-
boundary value problem (1)-(3) whose proof can
be furnished by using Galerkin approximations,
a-priori estimates and compactness methods.

Proposition 1. Assume that the given func-
tions f , g, k, q, q̃, u0 and B0 satisfy
f1 ∈ L2(0, T ;H−1(Ω)), f2 ∈ L2(0, T ;H−1(Ω)),

g ∈ H1(0, T ;H
1

2 (Γ)), k ∈ L2(0, T ;H− 1

2 (Γ)) ,

q ∈ H1(0, T ;H
1

2 (Γ)) , q̃ ∈ H1(0, T ;H
1

2 (Γ)),∫
Γ g · n ds = 0 ,

∫
Γ q ds = 0, k · n|Γ =

0 , u0 ∈ Vg(·,0) , B0 ∈ H1
n,q(·,0)(Ω) and

θ0 ∈ H1q̂(·, 0)(Ω). Then, the problem (1)-
(3) has at least one solution (u, p, θ,B) such
that u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Vg),
θ ∈ L2(0, T ;H1

q̃ (Ω)) ∩ L∞(0, T ;L2(Ω)), B ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

n,q(Ω)) and p ∈
L2(0, T ;L2

0(Ω)) . In two-spatial dimension (d =
2), these solutions are unique.

2.3. Properties of finite element spaces

and projections

In order to keep the exposition simple, we re-
strict our attention to convex polyhedral domains.
Let Th be a family of subdivisions (e.g. triangula-
tion) of Ω ⊂ Rd satisfying Ω = ∪K∈ThK so that
diameter(K) ≤ h and any two closed elementsK1

and K2 ∈ Th are either disjoint or share exactly
one face, side or vertex. Suppose further that Th is
a shape regular and quasi-uniform triangulation.
That is, there exists a constant C > 0 such that
the ratio between the diameter hK of an element
K ∈ Th and the diameter of the largest ball con-
tained in K is bounded uniformly by C, and hK is
comparable with the mesh size h = maxK∈Th hK
for all K ∈ Th . For example, Th consists of trian-
gles for d = 2 or tetrahedra for d = 3 that are non-
degenerate as h → 0. We choose families of finite
dimensional spaces Xh ⊂ H1(Ω), Yh ⊂ H1

n(Ω),
Zh ⊂ H1(Ω) and Qh ⊂ L2(Ω), parameterized by
a parameter h such that 0 < h < 1. Let gh, qh
and q̃h be approximations of g, q and q̃, respec-
tively, such that there exists vh ∈ Xh, Ch ∈ Yh

and satisfying vh|Γ = gh , Ch · n|Γ = qh and
θh|Γ = q̃h . We then define Xh,gh := Xh ∩ H1

gh ,
Yh,qh := {Ch ∈ Yh(Ω) : Ch · n|Γ = qh },
Zh,q̃h := Zh ∩ H1

q̃h and Qh := Qh ∩ L2
0(Ω) . We

also define the discretely divergence free space is
given by

Vh,gh := {vh ∈ Xh,gh : (∇ · vh, rh) = 0∀rh ∈ Qh}.
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We set Vh := Vh,0, Yh := Yh,0, Zh := Zh,0 and
Xh = Xh,0 .

We make the following assumptions on the finite
dimensional subspaces Xh,Yh,Zh and Qh:

Assumption A1.

We have the approximation properties: there ex-
ists an integer k and a constant C, independent
of h, v, B, θ and r, such that

inf
vh∈Xh

[‖v − vh‖+ h‖∇(v − vh)‖] ≤ Chℓ+1‖v‖ℓ+1

inf
Bh∈Yh

[‖B−Bh‖+h‖∇(B−Bh)‖] ≤ Chℓ+1‖B‖ℓ+1

inf
θh∈Zh

[‖θ − θh‖+ h‖∇(θ − θh)‖] ≤ Chℓ+1‖θ‖ℓ+1

and
inf

rh∈Qh

‖r − rh‖ ≤ Chℓ‖r‖ℓ

for all v ∈ Hℓ+1(Ω) ,B ∈ Hℓ+1(Ω) , θ ∈ Hℓ+1(Ω) ,
and r ∈ Hℓ(Ω) 1 ≤ ℓ ≤ k .

Assumption A2. (Discrete inf-sup condition)
For every rh ∈ Qh, there exists a nonzero func-
tion vh ∈ Xh and β > 0 such that

|(rh,∇ · vh)| ≥ β‖∇vh‖‖rh‖ ,

with an inf-sup constant β > 0 that is indepen-
dent of the mesh size h.

Assumption A3. For any integers l and m
(0 ≤ l ≤ m ≤ 1) and any real numbers p and
q (1 ≤ p ≤ q ≤ ∞) it holds that

‖ψh‖m,q ≤ chl−m+d(1/q−1/p)‖ψh‖l,p ∀ψh ∈ Xh .

There are many conforming finite element spaces
satisfying the assumptions (A1)-(A3). One may
choose, for example, the Taylor-Hood element
pair for the velocity and pressure (i.e, piecewise
quadratic polynomial for velocity and piecewise
linear polynomial for pressure), and piecewise
quadratic polynomials for the magnetic field and
temperature. Then, hypothesis (A1)-(A3) hold
with k = 2.

We define Stokes, Maxwell and Ritz projections as
follows: Given (u, p) ∈ H1(Ω)×L2

0(Ω), θ ∈ H1(Ω)
and B ∈ H1(Ω), we define the Stokes projection

(P s
hu, P

s
hp) ∈ Xh,gh × Qh as the solution of the

problem

Prθ(∇(u− P s
hu),∇vh) + b(vh, (p− P s

hp))

= 0 ∀vh ∈ Xh ,

b(u− P s
hu, rh) = 0 ∀rh ∈ Qh ,

(5)

the Maxwell projection Pm
h B ∈ Yh,qh as the so-

lution of the problem

(∇× (B − Pm
h B),∇× φh)

+ (∇ · (B− Pm
h B),∇ · φh)

= 0 ∀φh ∈ Yh ,

(6)

and the Ritz projection P r
hθ ∈ Zh,q̃h as the solu-

tion of the problem

(∇(θ − P r
hθ),∇ψh) = 0 ∀ψh ∈ Zh , (7)

We have the following convergence and bounded-
ness results for these projections.

Lemma 1. Suppose that assumptions (A1)-(A2)
hold with a positive integer k, and that (u, p) ∈
Hk+1 × (L2

0(Ω) ∩Hk(Ω)), θ ∈ Hk+1(Ω) and B ∈
Hk+1(Ω). Then, for any h ∈ (0, h0] the Stokes
projection (P s

hu, P
s
hp) of (u, p) satisfies

‖u− P s
hu‖1 + ‖p− P s

hp‖ ≤ chk(‖u‖k+1 + ‖p‖k) ,
(8)

the Maxwell projection Pm
h B of B satisfies

‖B− Pm
h B‖1 ≤ chk‖B‖k+1 , (9)

and the Ritz projection P r
hθ of θ satisfies

‖θ − P r
hθ‖1 ≤ chk‖θ‖k+1 . (10)

Moreover, suppose that assumption (A3) holds.
Then, P s

hu, P
m
h B and P r

hθ satisfy

‖P s
hu‖∞ + ‖P s

hu‖1,3 ≤ c(‖u‖2 + ‖p‖1) , (11)

‖Pm
h B‖∞ + ‖Pm

h B‖1,3 ≤ c‖B‖2 , (12)

and

‖P r
hθ‖∞ + ‖P r

hθ‖1,3 ≤ c‖θ‖2 . (13)
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Proof. The proof of (8)-(10) follows by the regu-
larity properties of the Stokes, Maxwell and Ritz
projections and by duality argument. In order to
prove (11)-(13), we first notice that Gagliardo-
Nirenberg’s inequality yields

‖φ‖0,∞ + ‖φ‖1,3 ≤ C‖φ‖1/21 ‖φ‖1/22 .

Therefore the approximation properties (8)-(1)
together with Agmon’s inequality yield the de-
sired result. �

Let ∆t denote the step size for t so that tn =
n∆t, n = 0, 1, 2, . . . , N . For notational conve-

nience, we denote φn := φ(tn), D(φn) := φn+1−φn

∆t ,

φn+1/2 := φn+1 + φn and I(φn+1/2) := φn +
1
2φ

n−1 − 1
2φ

n−2, [5, 14].

Lemma 2. If φ(t) is smooth enough, then

(i)‖φn+1/2 − φ(tn+1/2)‖2k
≤ (∆t)3

48

∫ tn+1

tn
‖∂2t φ‖2k dt ,

(ii)‖∂tφ(tn+1/2) − D(φ(tn))‖2

≤ (∆t)3

1280

∫ tn+1

tn
‖∂3t φ(t)‖2 dt ,

(iii)‖I(φ(tn+1/2)) − φ(tn+1/2)‖2Hk

≤ c(∆t)3/2
∫ tn+1

tn
‖∂2t φ(t)‖2k dt.

Moreover, let P s
hu be the Stokes projection of u,

Pm
h B the Maxwell projection of B and P r

hθ the
Ritz projection of θ. If assumptions (A1)-(A2)
hold with a positive integer k, then

(iv)‖D(u(tn+1) − P s
hu(tn+1))‖

≤ chk√
∆t

‖(∂tu, ∂tp)‖L2(tn,tn+1;Hk+1×Hk) ,

(v)‖D(B(tn+1) − Pm
h B(tn+1))‖

≤ chk√
∆t

‖∂tB‖L2(tn,tn+1;Hk+1) ,

(vi)‖D(θ(tn+1) − P r
hθ(tn+1))‖

≤ chk√
∆t

‖∂tθ‖L2(tn,tn+1;Hk+1) .

Proof. The proof of (i)-(iii) follows by Taylor
expansion with integral remainder whereas the
proof of (iv)-(vi) follows as a consequence of
Lemma 1. �

We will need the following well known discrete
Grönwall lemma.

Lemma 3. (Discrete Grönwall lemma) Let
d, ∆t, {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0

be nonnegative numbers such that

am +∆t
m∑

n=1

bn ≤ ∆t
m−1∑

n=0

andn +∆t
m−1∑

n=0

cn + d ,

for m ≥ 1 . Then we have

am +∆t
m∑

n=1

bn ≤ exp(∆t
m−1∑

n=0

dn)(∆t
m−1∑

n=0

cn + d)

for m ≥ 1 .

A proof of this result can be found, for e.g, in [12].

3. Decoupled Crank-Nicolson

time-stepping scheme

We discretize the system (1) by Crank-Nicholson
scheme in time and Galerkin finite element in
space. The time discretization combines an im-
plicit treatment of the second derivative terms, a
semi-implicit second-order extrapolation for the
nonlinear convective terms and explicit treatment
of the temperature coupling term in the Navier-
Stokes equations.

Algorithm 1. Given (ui
h,B

i
h, p

i
h, θ

i
h) ∈ Xh,gi

h
×

Yh,qi
h

× Qh × Zh,q̃i
h
, i = 0, 1, find

{(un
h,B

n
h, p

n
h, θ

n
h) ∈ Xh,gn

h
× Yh,qn

h
× Qh × Zh,q̃i

h

such that





(Dun
h,vh) + Prθ(∇u

n+1/2
h ,∇vh)

+ c1(I(un+1/2
h ),u

n+1/2
h ,vh)

+ b(vh, p
n+1/2
h )

+ Sd(I(Bn+1/2
h ),B

n+1/2
h ,vh)

= e(I(θn+1/2
h ),vh)

+ (f
n+1/2
1 ,vh) ∀vh ∈ Xh ,

b(u
n+1/2
h , rh) = 0 ∀rh ∈ Qh ,

(DBn
h,φh) + PrB[(∇×B

n+1/2
h ,∇× φh)

+ (∇ ·Bn+1/2
h ,∇ · φh)]

+ d(u
n+1/2
h ,φh, I(Bn+1/2

h ))

= (kn+1/2,φh)Γ ∀φh ∈ Yh ,

(Dθnh , ψh) + (∇θn+1/2
h ,∇ψh)

+ c2(I(un+1/2
h ), θ

n+1/2
h , ψh)

= (f
n+1/2
2 , ψh) ∀ψh ∈ Zh ,

(14)

for n = 1, . . . , N , where u
n+1/2
h , B

n+1/2
h , θ

n+1/2
h

and p
n+1/2
h are the intermediate variables defined

by u
n+1/2
h := un+1

h + un
h, B

n+1/2
h := Bn+1

h + Bn
h,

θ
n+1/2
h := θn+1

h + θnh and p
n+1/2
h := pn+1

h + pnh,
respectively.
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3.1. Stability analysis

In this section, we demonstrate the unconditional
energy stability of the decoupled scheme proposed
in Section 2. We first recall a few basic facts and
some notation that are needed below. Let us de-
fine the discrete trace spaces of Xh, Yh and Zh

by

Λh(Γ) := {gh ∈ H
1

2 (Γ) : there exists

vh ∈ Xh such that λh|∂K∩Γ

= vh|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅} ,

Λ̂h(Γ) := {qh ∈ H
1

2 (Γ) : there exists

Ch ∈ Yh such that qh|∂K∩Γ

= Ch · n|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅}

and

Λ̃h(Γ) := {q̃h ∈ H
1

2 (Γ) : there exists

φh ∈ Zh such that q̃h|∂K∩Γ

= φh|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅} .

Moreover, we define

Λh,0(Γ) := {λh ∈ Λh(Γ) :

∫

Γ
λh · n ds = 0 }

and

Λ̂h,0(Γ) := {λh ∈ Λ̂h(Γ) :

∫

Γ
λh ds = 0 } .

Then there exists a discrete extension operator
Eh : Λh,0(Γ) → Vh such that Eh(gh)|Γ = gh and
‖Eh(gh)‖1 ≤ C‖gh‖1/2,Γ , see [10, 28] . Similarly,

we can define discrete extension operators Êh and

Ẽh such that Êh(qh)·n|Γ = qh and Ẽh(q̃h)|Γ = q̃h .

In order to prove, we first define suitable bound-

ary extensions. Let (Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h)) ∈

Vh,gh × Yh,qn
h

× Zh,q̃n
h

be the extension of

(gn
h , q

n
h , q̃

n
h) for each n ≥ 0. Set ζnh = un

h −
Eh(g

n
h),ξ

n
h = Bn

h − Êh(q
n
h) and χ

n
h = θnh − Ẽh(q̃

n
h)

so that (ζnh, ξ
n
h, χ

n
h) ∈ Vh ×Yh × Zh.

We make the following assumptions about the ex-

tension operators Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h) .

Assumption A4.

The extension operators satisfy

(i) |c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ δ(‖∇ζ
n−1/2
h ‖+ ‖∇ζ

n−3/2
h ‖)‖∇ζ

n+1/2
h ‖

and

|d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))|
≤ δ∗(‖∇ × ξ

n−1/2
h ‖+ ‖∇ × ξ

n−3/2
h ‖)

‖∇ × ξ
n+1/2
h ‖ ,

(ii) |Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h )), ζ

n+1/2
h )|

≤ δ∗∗(‖∇ × ξ
n−1/2
h ‖+ ‖∇ × ξ

n−3/2
h ‖)

‖∇ζ
n+1/2
h ‖ ,

(iii) |c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )|

≤ δ∗∗∗(‖∇ζ
n−1/2
h ‖+ ‖∇ζ

n−3/2
h ‖)

‖∇χn+1/2
h ‖ .

Theorem 1. Suppose assumption (A4) holds
and let {(gn

h , q
n
h , q̃

n
h)}Nn=0 satisfies (gh, qh, q̃h) ∈

l4(Λh,0(Γ)) × l4(Λ̂h,0(Γ)) × l4(Λ̃h,0(Γ)) and

(Dgh,Dqh,Dq̃h) ∈ l2(Λh,0(Γ)) × l2(Λ̂h,0(Γ)) ×
l2(Λ̃h,0(Γ)), and let f1 ∈ l2(H−1(Ω)) , f2 ∈
l2(H−1(Ω)) and k ∈ l2(H−1/2(Γ)). Suppose
that (ui

h,B
i
h, θ

i
h) ∈ Vh,gi

h
× Yh,qi

h
× Zh,q̃i

h
for

i = 0, 1 are such that ‖u2
h‖2 +∆t

1∑

i=0

‖ui+1/2
h ‖21 <

∞, ‖B2
h‖2 + ∆t

1∑

i=0

‖Bi+1/2
h ‖21 < ∞ and

‖θ2h‖2 + ∆t
1∑

i=0

‖θi+1/2
h ‖21 < ∞ as h,∆t → 0 .

Then the solutions (un
h,B

n
h, θ

n
h) of (14) sat-

isfies ‖uh‖l∞(L2(Ω)) + ‖∇uh‖l2(L2(Ω)) < M1 ,
‖Bh‖l∞(L2(Ω)) + ‖∇Bh‖l2(L2(Ω)) < M2 and
‖θh‖l∞(L2(Ω)) + ‖∇θh‖l2(L2(Ω)) < M3 , for some
constants M1,M2,M3 > 0.

Proof. Substituting un
h = ζnh+Eh(g

n
h), θ

n
h = χn

h+

Ẽh(q̃
n
h) and Bn

h = ξnh+ Êh(q
n
h) into (14), then set-

ting (vh,φh, ψh) = (ζ
n+1/2
h , ξ

n+1/2
h , χ

n+1/2
h ) and

using the skew-symmetry of c1(·, ·, ·) and c2(·, ·, ·),
we obtain



A decoupled Crank-Nicolson time-stepping scheme for thermally coupled magneto-hydrodynamic system 49





(Dζnh , ζ
n+1/2
h ) + Prθ‖∇ζ

n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ (f
n+1/2
1 , ζ

n+1/2
h )− (DEh(g

n
h), ζ

n+1/2
h )

+ e(I(χn+1/2
h ), ζ

n+1/2
h )

− Prθ(∇Eh(g
n+1/2
h ),∇ζ

n+1/2
h )

+ e(I(Ẽh(q̃
n+1/2
h )), ζ

n+1/2
h )

− c1(I(Eh(g
n+1/2
h )), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I((Êh(q
n+1/2
h )), Êh(q

n+1/2
h )), ζ

n+1/2
h )

− c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h )), ζ

n+1/2
h )

=:
∑9

i=1A
n
i

(Dξnh , ξ
n+1/2
h ) + PrB[‖∇ × ξ

n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ (kn+1/2, ξ
n+1/2
h )Γ − (DÊh(q

n
h), ξ

n+1/2
h )

− PrB(∇× Êh(q
n+1/2
h ),∇× ξ

n+1/2
h )

− PrB(∇ · Êh(q
n+1/2
h ),∇ · ξn+1/2

h )

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(Êh(q

n+1/2
h )))

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))

(Dχn
h , χ

n+1/2
h ) + ‖∇χn+1/2

h ‖2 ≤ (f
n+1/2
2 , χ

n+1/2
h )

− (DẼh(q̃
n
h), χ

n+1/2
h )

− (∇Ẽh(q̃
n+1/2
h ),∇χn+1/2

h )

− c2(I(Eh(g
n+1/2
h )), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )

− c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h ) .

(15)

Let us next bound each term on the right-hand
side of (15)1 except the last two. The first five
terms can be estimated using Cauchy/Duality
and Young’s inequalities to obtain

|
5∑

i=1

An
i | ≤ C[‖fn+1/2

1 ‖2−1 + ‖∇Eh(g
n+1/2
h )‖2

+ ‖I(Ẽh(q̃
n+1/2
h ))‖2 + ‖DEh(g

n
h)‖2−1]

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2 + 9

2Prθ
‖I(χn+1/2

h )‖2 .

We estimate An
6 and An

7 using Hölder’s,
Gagliardo-Nirenberg and Young’s inequalities as
follows

|An
6 | = |c1(I(Eh(g

n+1/2
h )), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ C‖I(Eh(g
n+1/2
h ))‖L4(Ω)[

‖∇Eh(g
n+1/2
h )‖‖ζn+1/2

h ‖L4(Ω)

+ ‖∇ζ
n+1/2
h ‖‖Eh(g

n+1/2
h )‖L4(Ω)

]

≤ C‖I(Eh(g
n+1/2
h ))‖1‖Eh(g

n+1/2
h )‖1

‖∇ζ
n+1/2
h ‖

≤ C
2∑

i=0

‖Eh(g
n−i+1/2
h )‖41

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2

and

|An
7 | = |Sd(I(Êh(q

n+1/2
h )), Êh(q

n+1/2
h )), ζ

n+1/2
h )|

≤ C‖I(Êh(q
n+1/2
h ))‖L4(Ω)

‖∇ × Êh(q
n+1/2
h ))‖‖ζn+1/2

h ‖L4(Ω)

≤ C
2∑

i=0

‖Êh(q
n−i+1/2
h )‖41

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2 .

Collecting these estimates in (15)1, we obtain

(Dζnh , ζ
n+1/2
h ) + 11Prθ

18 ‖∇ζ
n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ C[‖fn+1/2
1 ‖2−1 + ‖DEh(g

n
h)‖2−1

+ ‖gn+1/2
h ‖21

2
,Γ
+

2∑

i=1

‖q̃n−i+1/2
h ‖21

2
,Γ

+
2∑

i=0

(‖qn−i+1/2
h ‖41

2
,Γ
+ ‖gn−i+1/2

h ‖41
2
,Γ
)]

+
9

2Prθ
‖I(χn+1/2

h )‖2

− c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h ), ζ

n+1/2
h ) .

(16)

We employ similar arguments to bound the terms
on the right-hand-side of (15)2 and (15)3 to obtain
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(Dξnh , ξ
n+1/2
h ) + PrB

2 [‖∇ × ξ
n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ C[‖kn+1/2‖2− 1

2
,Γ

+ ‖qn+1/2
h ‖21

2
,Γ
+ ‖DÊh(q

n
h)‖2−1

+ ‖gn+1/2
h ‖41

2
,Γ
+

2∑

i=1

‖qn−i+1/2
h ‖41

2
,Γ
]

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))
(17)

and

(Dχn
h , χ

n+1/2
h ) + 1

2‖∇χ
n+1/2
h ‖2 ≤ C[‖fn+1/2

2 ‖2−1

+ ‖DẼh(q̃
n
h)‖2−1

+ ‖q̃n+1/2
h ‖21

2
,Γ
+ ‖q̃n+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖gn−i+1/2
h ‖41

2
,Γ
]

− c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h ) .

(18)

Finally we estimate the last terms in (16)-(18)
using assumption (A4) and Young’s inequality to
obtain

|c1 ( I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ Prθ
18 ‖∇ζnh‖2

+ Prθ
9 (‖∇ζ

n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2)

|d( Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))|
≤ PrB

8 ‖∇ × ξ
n+1/2
h ‖2

+ PrB
16 (‖∇ × ξ

n−3/2
h ‖2 + ‖∇ × ξ

n−1/2
h ‖2)

|Sd( I(ξnh), Êh(q
n+1/2
h )), ζ

n+1/2
h )|

≤ Prθ
18 ‖∇ × ζ

n+1/2
h ‖2

+ PrBS
9 (‖∇ × ξ

n−3/2
h ‖2 + ‖∇ × ξ

n−1/2
h ‖2)

|c2 ( I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )|

≤ 1
18‖∇χ

n+1/2
h ‖2

+
Pr2

θ

9ǫ (‖∇ζ
n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2) ,

(19)

where ǫ is a suitably chosen positive constant.
Employing these estimates in (16)-(18), we obtain

(Dζnh , ζ
n+1/2
h ) + Prθ

2 ‖∇ζ
n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ C[‖fn+1/2
1 ‖2−1

+ ‖DEh(g
n
h)‖2−1 + ‖gn+1/2

h ‖21
2
,Γ

+
2∑

i=0

(‖qn−i
h ‖41

2
,Γ
+ ‖gn−i

h ‖41
2
,Γ
)]

+
9

2Prθ
‖I(χn+1/2

h )‖2

+
∑2

i=1 ‖q̃
n−i+1/2
h ‖21

2
,Γ

+ Prθ
9 (‖ζn−3/2

h ‖21 + ‖ζn−1/2
h ‖21)

+ PrBS
9 (‖ξn−3/2

h ‖21 + (‖ξn−1/2
h ‖21) ,

(Dξnh , ξ
n+1/2
h ) + 5PrB

8 [‖∇ × ξ
n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ C[‖kn+1/2‖2− 1

2
,Γ
+ ‖qn+1/2

h ‖21
2
,Γ

+ ‖DÊh(q
n
h)‖2−1 + ‖gn+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖qn−i+1/2
h ‖41

2
,Γ
] +

PrB
16

(‖ξn−3/2
h ‖21

+ ‖ξn−1/2
h ‖21)

(Dχn
h , χ

n+1/2
h ) + 4

9‖∇χ
n+1/2
h ‖2 ≤ C[‖fn+1/2

2 ‖2−1

+ ‖DẼh(q̃
n
h)‖2−1

+ ‖q̃n+1/2
h ‖21

2
,Γ
+ ‖q̃n+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖gn−i+1/2
h ‖41

2
,Γ
)]

+
Pr2

θ

9ǫ (‖∇ζ
n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2) .

(20)

Now summing each of the inequalities in (20) from
n = 2 to m, using the skew symmetry of d(·, ·, ·)
and the telescoping property, we obtain that
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[‖ζmh ‖2 + S‖ξmh ‖2 + ‖χm
h ‖2]

+ ∆tPrθ

m∑

n=2

‖∇ζ
n+1/2
h ‖2

+ 7∆tPrBSλm
∑m

n=2 ‖ξ
n+1/2
h ‖21

+ ∆t
∑m

n=2 ‖∇χ
n+1/2
h ‖2 ≤M ,

(21)

for some constant M > 0 by the as-
sumptions. The required stability bound fol-
lows by setting (ζnh, ξ

n
h, χ

n
h) = (un

h,B
n
h, θ

n
h) −

(Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h)) and applying triangle

inequality. �

3.2. Error analysis

In this section we discuss the accuracy and conver-
gence of the decoupled Crank-Nicolson scheme.
In the subsequent analysis, we will assume the
boundary data is independent of time for simplic-
ity.

Theorem 2. Suppose that the assumption (A1)-
(A3) hold with a positive number h0 and a positive
integer k, that the solution (u,B, p, θ) of (1)-(3)
satisfy u ∈ C([0, T ];Vg) ∩ H1(0, T ;Hk+1(Ω)) ∩
H3(0, T ;L2(Ω)) , B ∈ C([0, T ];H1

n,q) ∩
H1(0, T ;Hk+1(Ω)) ∩ H3(0, T ;L2(Ω)) , θ ∈
C([0, T ];H1

n,q̂)∩H1(0, T ;Hk+1(Ω))∩H3(0, T ;L2(Ω)) ,

p ∈ C([0, T ];L2
0(Ω) ∩ Hk(Ω)) and that the ini-

tial conditions (ui
h,B

i
h, θ

i
h) , i = 0, 1 satisfy∑1

i=0 ‖ui
h−u(ti)‖+S‖Bi

h−B(ti)‖+‖θih−θ(ti)‖ ≤
chk . Then, for any h ∈ (0, h0] the approximate
solutions (uh,Bh, θh) of (14) satisfy the following
error estimates

‖u− uh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk) ,

‖B−Bh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk)

and

‖θ − θh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk) .

for some constant C independent of the mesh size
h and time step ∆t.

Proof. Let (P s
hu(tn), P

s
hp(tn)) be the Stokes pro-

jection of (u(tn), p(tn)), let Pm
h B(tn) be the

Maxwell projection of B(tn) and let P r
hθ(tn) be

the Ritz projection of θ(tn). Let (e
n
1h, e

n
2h, e

n
3h, e

n
4h)

be the errors defined by en1h := un
h −

P s
hu(tn) , en2h := pnh − P s

hp(tn) , en3h := Bn
h −

Pm
h B(tn) and e

n
4h := θnh − P r

hθ(tn) . We first sub-
tract (1) from (14) and obtain

(Dun
h − ∂tu(tn+1/2),vh) + Prθ(∇u

n+1/2
h ,∇vh)

+ b(vh, p
n+1/2
h ) =< ℵn

h,vh >

+ Prθ(∇u(tn+1/2),∇vh)

+ b(vh, p(tn+1/2) ,

0 = b(u
n+1/2
h − u(tn+1/2), rh) ,

(DB
n+1/2
h − ∂tB(tn+1/2), φh)

+ PrB[(∇×B
n+1/2
h ,∇× φh)

+ (∇ ·Bn+1/2
h ,∇ · φh)]

= PrB[(∇×B(tn+1/2),∇× φh)

+ (∇ ·B(tn+1/2),∇ · φh)]

+ < ℵ̂n
h,φh > ,

(Dθnh − ∂tθ(tn+1/2), ψh) + (∇θn+1/2
h ,∇ψh)

= < ℵ̃n
h, ψh > +(∇θ(tn+1/2),∇ψh)

for all vh ∈ Xh , rh ∈ Qh, φh ∈ Yh, ψh ∈ Zh, at

each time step n, where ℵn
h, ℵ̂n

h and ℵ̃n
h are defined

by

< ℵn
h,vh > := c1(u(tn+1/2),u(tn+1/2),vh)

− c1(I(un+1/2
h ),u

n+1/2
h ,vh)

+ e(I(θn+1/2
h )− θ(tn+1/2),vh)

+ S d(B(tn+1/2),B(tn+1/2),vh)

− S d(I(Bn+1/2
h ),B

n+1/2
h ,vh) ,

< ℵ̂n
h,φh > := d(u(tn+1/2),φh,B(tn+1/2))

− d(u
n+1/2
h ,φh, I(Bn+1/2

h ))

and

< ℵ̃n
h, ψh > := c2(u(tn+1/2), θ(tn+1/2), ψh)

− c2(I(un+1/2
h ), θ

n+1/2
h , ψh) .

Using the definition of Stokes, Maxwell and Ritz
projections, we obtain the basic error equations
of the method
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(Den1h , vh) + Prθ(∇e
n+1/2
1h ,∇vh)

+ b(vh, e
n+1/2
2h ) =< ℵn

h,vh >

+ (∂tu(tn+1/2)−DP s
hu(tn),vh)

b(e
n+1/2
1h , rh) = 0

(Den3h , φh) + PrB[(∇× e
n+1/2
3h ,∇× φh)

+ (∇ · en+1/2
3h ,∇ · φh)]

= (∂tB(tn+1/2)−DPm
h B(tn),φh)

+ < ℵ̂n
h,φh >

(Den4h , ψh) + (∇en+1/2
4h ,∇ψh) =< ℵ̃n

h, ψh >

+ (∂tθ(tn+1/2)−DP r
hθ(tn), ψh) ,

(22)

for all vh ∈ Xh , rh ∈ Qh, φh ∈ Yh, ψh ∈ Zh,.
We next split the nonlinear terms < ℵn

h,vh >,

< ℵ̂n
h,φh > and < ℵ̃n

h, ψh > on the right-hand
side of (22) into several terms as follows:

<ℵ̂n
h,φh >

=d((u(tn+1/2)− P s
hu(tn+1/2)),φh,B(tn+1/2))

+d(P s
hu(tn+1/2),φh,B(tn+1/2)− I(B(tn+1/2)))

+d(P s
hu(tn+1/2),φh, I(B(tn+1/2)

−Pm
h B(tn+1/2)))

−d(P s
hu(tn+1/2)),φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(Pm

h B(tn+1/2)))

=:
∑4

i=1 < ℵ̂n
i ,∇× φh >

−d(en+1/2
1h ,φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(Pm

h B(tn+1/2))) ,

<ℵ̃n
h, ψh >

=c2(u(tn+1/2), θ(tn+1/2)− P r
hθ(tn+1/2), ψh)

+c2(u(tn+1/2)− I(u(tn+1/2))

, P r
hθ(tn+1/2), ψh)

+c2(I(u(tn+1/2))− I(P s
hu(tn+1/2))

, P r
hθ(tn+1/2), ψh)

−c2(I(en+1/2
1h ), P r

hθ(tn+1/2), ψh)

−c2(I(en+1/2
1h ), e

n+1/2
4h , ψh)

−c2(I(P s
hu(tn+1/2)), e

n+1/2
4h , ψh)

=:
∑6

i=1 < ℵ̃n
i , ψh >

and

< ℵn
h,vh >

=c1(u(tn+1/2),u(tn+1/2)− P s
hu(tn+1/2),vh)

+c1(u(tn+1/2)− I(u(tn+1/2)), P
s
hu(tn+1/2),vh)

+c1(I(u(tn+1/2))− I(P s
hu(tn+1/2), P

s
hu(tn+1/2),vh)

−c1(I(en+1/2
1h ), P s

hu(tn+1/2),vh)

−c1(I(P s
h(u(tn+1/2))), e

n+1/2
1h ,vh)

−c1(I(en+1/2
1h ), e

n+1/2
1h ,vh)

+S(B(tn+1/2)× (∇× (B(tn+1/2)

−Pm
h B(tn+1/2))),vh)

+S((B(tn+1/2)− I(B(tn+1/2)))

×(∇× Pm
h B(tn+1/2)),vh)

+S(I(B(tn+1/2)− Pm
h B(tn+1/2))

×(∇× Pm
h B(tn+1/2)),vh)

−S(I(en+1/2
3h )× (∇× Pm

h B(tn+1/2)),vh)

+e(I(en+1/2
4h ),vh)

+e(I(P r
hθ(tn+1/2)− θ(tn+1/2)),vh)

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h ),vh)

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ),vh)

=:
∑12

i=1 < ℵn
i ,vh >

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ),vh)

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h ),vh) .

Notice < ℵn
5 , e

n+1/2
1h >=< ℵn

6 , e
n+1/2
1h >=<

ℵ̃n
5 , e

n+1/2
4h >=< ℵ̃n

6 , e
n+1/2
4h >= 0 due to skew-

symmetry of tri-linear forms c1(·, ·, ·) and c2(·, ·, ·),
respectively. Therefore, setting vh = e

n+1/2
1h ,φh =

e
n+1/2
3h , ψh = e

n+1/2
4h into (22) we can write it as
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(Den1h, e
n+1/2
1h ) + Prθ‖∇e

n+1/2
1h ‖2

=(∂tu(tn+1/2)−DP s
hu(tn), e

n+1/2
1h )

+
∑4

i=1 < ℵn
i , e

n+1/2
1h >

+
∑12

i=7 < ℵn
i , e

n+1/2
1h >

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ), e

n+1/2
1h )

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h )

, ‖en+1/2
1h ) ,

(Den3h, e
n+1/2
3h ) + PrB[‖∇ × e

n+1/2
3h ‖2

+‖∇ · en+1/2
3h ‖2]

=(∂tB(tn+1/2)−DPm
h Bn, e

n+1/2
3h )

+
∑4

i=1 < ℵ̂n
h, e

n+1/2
3h > ,

+(e
n+1/2
1h × I(en+1/2

3h ),∇× e
n+1/2
3h )

+(e
n+1/2
1h × I(Pm

h B(tn+1/2))

, ∇× e
n+1/2
3h ) ,

(Den4h, e
n+1/2
4h ) + ‖∇en+1/2

4h ‖2

=
∑4

i=1 < ℵ̃n
h, e

n+1/2
4h >

+(∂tθ(tn+1/2)−DP r
hθ(tn), e

n+1/2
4h ) .

(23)

By Cauchy-Schwarz inequality, triangle inequality
and Lemma 2, we have

( ∂tu(tn+1/2)−DP s
hu(tn), e

n+1/2
1h )

≤ C
{
(∆t)3/2‖∂3t u‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖(∂tu, ∂tp)‖L2(tn,tn+1;(Hk+1×Hk)(Ω)

}

· ‖en+1/2
1h ‖ ,

(24)

( ∂tB(tn+1/2)−DPm
h B(tn), e

n+1/2
3h )

≤ C
{
(∆t)3/2‖∂3tB‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖∂tB‖L2(tn,tn+1;Hk+1(Ω))

}
‖en+1/2

3h ‖
(25)

and

( ∂tθ(tn+1/2)−DP r
hθ(tn), e

n+1/2
4h )

≤ C
{
(∆t)3/2‖∂3t θ‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖∂tθ‖L2(tn,tn+1;Hk+1(Ω))

}
‖en+1/2

4h ‖ .
(26)

Using Hölders inequality, Gagliardo-Nirenberg in-
equality and Lemma 1, we obtain

| < ℵn
1 , e

n+1/2
1h > |

≤ c∗‖u(tn+1/2)‖1‖u(tn+1/2)− P s
hu(tn+1/2)‖1

·‖ en+1/2
1h ‖1

≤ c∗hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)‖en+1/2
1h ‖ ,

| < ℵn
2 , e

n+1/2
1h > |

≤ c∗‖u(tn+1/2)− I(u(tn+1/2))‖
·(‖∇P s

hu(tn+1/2)‖L3

+ ‖P s
hu(tn+1/2)‖∞)‖en+1/2

1h ‖1
≤ c∗(∆t)3/2‖∂2t u‖L2(tn,tn+1;L2(Ω))‖en+1/2

1h ‖1 ,

| < ℵn
3 , e

n+1/2
1h > |

≤ c∗‖I(u(tn+1/2))− I(P s
hu(tn+1/2))‖1

·(‖P s
hu(tn+1/2)‖∞

+ ‖∇P s
hu(tn+1/2)‖L3)‖en+1/2

1h ‖
≤ c∗hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)‖en+1/2

1h ‖ ,

| < ℵn
4 , e

n+1/2
1h > |

≤ c∗‖I(en+1/2
1h )‖

· (‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖en+1/2
1h ‖1

≤ c∗(‖en1h‖+ ‖en−1
1h ‖)‖en+1/2

1h ‖1 .

We estimate ℵn
7 − ℵn

12 using Hölders inequality,
Gagliardo-Nirenberg inequality and Lemma 1 as
follows

| < ℵn
7 , e

n+1/2
1h > |

= |S(B(tn+1/2)

× (∇× (B(tn+1/2 − Pm
h B(tn+1/2))), e

n+1/2
1h )|

≤ C‖B(tn+1/2)‖∞
· ‖B(tn+1/2)− Pm

h B(tn+1/2)‖1‖en+1/2
1h ‖

≤ c hk‖B‖C([tn,tn+1];Hk+1))‖en+1/2
1h ‖ ,
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| < ℵn
8 , e

n+1/2
1h > |

= |S((B(tn+1/2)− I(B(tn+1/2)))

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖B(tn+1/2 − I(B(tn+1/2))‖
· ‖∇ × Pm

h B(tn+1/2)‖L3‖en+1/2
1h ‖1

≤ c∗(∆t)3/2‖∂2tB(tn+1/2)‖L2(tn,tn+1;L2(Ω))

· ‖en+1/2
1h ‖1 ,

| < ℵn
9 , e

n+1/2
1h > |

= |S(I(B(tn+1/2)− Pm
h B(tn+1/2))

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖

· |∇ × Pm
h B(tn+1/2)‖L3‖en+1/2

1h ‖1
≤ chk‖B(tn+1/2)‖C([tn,tn+1];Hk+1))

· ‖en+1/2
1h ‖1 ,

| < ℵn
10, e

n+1/2
1h > |

= |S(I(en+1/2
3h )

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖∇Pm
h B(tn+1/2)‖L3

· ‖I(en+1/2
3h )‖‖en+1/2

1h ‖1 ,

| < ℵn
11, e

n+1/2
1h > | ≤ C‖I(en+1/2

4h )‖‖en+1/2
1h ‖ ,

and

| < ℵn
12, e

n+1/2
1h > | ≤ C‖I(P r

hθ(tn+1/2)− θ(tn+1/2))‖
· ‖en+1/2

1h ‖ .

Thus, we have

4∑

i=1

| < ℵn
i , e

n+1/2
1h > |+

12∑

i=7

| < ℵn
i , e

n+1/2
1h > |

≤ c{hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

+ hk‖θ‖C([tn,tn+1];Hk+1)

+ (∆t)3/2‖(∂2t u, ∂2tB)‖L2(tn,tn+1;L2(Ω))

+ ‖hkB‖C([tn,tn+1];Hk+1×Hk)

+ ‖en1h‖+ ‖en−1
1h ‖

+ ‖en3h‖+ ‖en−1
3h ‖+ ‖en4h‖+ ‖en−1

4h ‖}
· ‖en+1/2

1h ‖1 .
(27)

We can estimate ℵ̂n
1 − ℵ̂n

4 similarly using Hölders
inequality, Gagliardo-Nirenberg inequality and
Lemma 1-2 as follows

| < ℵ̂n
1 , e

n+1/2
3h > |

≤ c‖u(tn+1/2)− P s
hu(tn+1/2)‖

· ‖B(tn+1/2)‖∞‖∇ × e
n+1/2
3h ‖

≤ chk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

· ‖∇ × e
n+1/2
3h ‖ ,

| < ℵ̂n
2 , e

n+1/2
3h > |

≤ c‖P s
hu(tn+1/2)‖∞

· ‖B(tn+1/2)− IB(tn+1/2)‖
· ‖∇ × e

n+1/2
3h ‖

≤ c{(∆t)3/2‖∂2tB‖L2(tn,tn+1;L2(Ω))

· ‖∇ × e
n+1/2
3h ‖

| < ℵ̂n
3 , e

n+1/2
3h > |

≤ c‖P s
hu(tn+1/2)‖∞

· ‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖

· ‖∇ × e
n+1/2
3h ‖

≤ chk‖B‖C([tn,tn+1];Hk+1)‖∇ × e
n+1/2
3h ‖

| < ℵ̂n
4 , e

n+1/2
3h > |

≤ c‖I(en+1/2
3h )‖‖P s

hu(tn+1/2)‖∞‖∇ × e
n+1/2
3h )‖ .

Therefore, we have
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4∑

i=1

| ℵ̂n
i , e

n+1/2
3h > |

≤ c{(∆t)3/2‖∂2tB‖L2(tn,tn+1;L2(Ω))

+ hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

+ hk‖B‖C([tn,tn+1];Hk+1)‖

+ ‖en3h‖+ ‖en−1
3h ‖}‖∇ × e

n+1/2
3h ‖

(28)

Estimating ℵ̃n
1 − ℵ̃n

4 similarly, we obtain

4∑

i=1

| < ℵ̃n
i , e

n+1/2
4h > |

≤ c{(∆t)3/2‖∂2t u‖L2(tn,tn+1;L2(Ω))

+ hk‖(u, p, θ)‖C([tn,tn+1];Hk+1×Hk×Hk+1)

+ ‖en1h‖+ ‖en−1
1h ‖}‖∇e

n+1/2
4h ‖

(29)

Employing (24)-(29) into (23) and using Young’s
inequality, we obtain





(D(en1h) , e
n+1/2
1h ) + Prθ

4 ‖∇e
n+1/2
1h ‖2

≤ Υn
1 + c

{
‖en1h‖2 + ‖en−1

1h ‖2

+ ‖en3h‖2 + ‖en−1
3h ‖2 + ‖en4h‖2

+ ‖en−1
4h ‖2

}

− S(I(en+1/2
3h )× (∇× e

n+1/2
3h ), e

n+1/2
1h )

− S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h )

, e
n+1/2
1h )

(D(en3h) , e
n+1/2
3h ) + PrB

4 [‖∇ × e
n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2] ≤ Υn

2

+ c
{
‖en3h‖2 + ‖en−1

3h ‖2
}

+ (e
n+1/2
1h × I(en+1/2

3h ), (∇× e
n+1/2
3h ))

+ (e
n+1/2
1h × I(Pm

h B(tn+1/2)),∇× e
n+1/2
3h ) ,

(D(en4h) , e
n+1/2
4h ) + ‖∇en+1/2

4h ‖2 ≤ Υn
3

+ c
{
‖en1h‖2 + ‖en−1

1h ‖2
}
,

(30)

where

Υn
1 := c

{
(∆t)3‖∂3t u‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ (∆t)3‖(∂2t u, ∂2tB)‖2L2(tn,tn+1;L2(Ω))

+ h2k‖B‖2C([tn,tn+1];Hk+1)

}

Υn
2 := c

{
(∆t)3‖∂3tB‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖∂tB‖2
L2(tn,tn+1;Hk+1)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;L2(Ω))

+ h2k‖B‖2C([tn,tn+1];Hk+1)
} ,

Υn
3 := c

{
(∆t)3‖∂3t θ‖L2(tn−1,tn+1;L2(Ω))

+ h2k

∆t ‖∂tθ‖L2(tn,tn+1;Hk+1)

+ h2k‖(u, p, θ)‖C([tn,tn+1];Hk+1×Hk×Hk+1)

+ (∆t)3‖∂2t u‖2L2(tn,tn+1;L2(Ω)) } .

We next add the three equations in (30) and use
the identity (A×B,∇×C) = (B× (∇×C),A)
to obtain

(D(en1h) , e
n+1/2
1h ) + S(D(en3h), e

n+1/2
3h )

+ (D(en4h), e
n+1/2
4h )

+ S PrB
4 [‖∇ × e

n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2] + Prθ

4 ‖∇e
n+1/2
1h ‖2

+ ‖∇en+1/2
4h ‖2

≤ c[‖en−1
3h ‖2 + ‖en3h‖2 + ‖en−1

1h ‖2

+ ‖en1h‖2 + ‖en−1
4h ‖2 + ‖en4h‖2]

+ Υn ,
(31)

where
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Υn :=
∑3

i=1Υ
n
i

= c
[
(∆t)3‖(∂3t u, ∂3tB, ∂3t θ)‖2L2(tn,tn+1;L2(Ω))

+ (∆t)3‖(∂2t u, ∂2tB)‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tB, ∂tθ, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p, θ)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1 ] .

From the assumptions on the solution (u, p,B, θ)
it holds that

∆t
N∑

n=1

Υn ≤ c((∆t)4 + h2k) . (32)

Therefore summing (31) from n = 1 to m and the
discrete Grönwall inequality (Lemma 3), we have
that

[‖em1h‖2 + S‖em3h‖2 + ‖em4h‖2]

+ Prθ∆t
m∑

n=1

‖∇e
n+1/2
1h ‖2

+ ∆t
m∑

n=1

‖∇en+1/2
4h ‖2

+ S PrB∆t

m∑

n=1

[‖∇ × e
n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2]

≤ c((∆t)4 + h2k) .

(33)

The required error estimate now follows from (33)
and triangle inequality. �

Theorem 3. Under the assumptions in Theorem
2, the approximate pressure ph of (14) satisfies

‖p− ph‖l2(L2(Ω)) ≤
c√
∆t

(∆t2 + hk) ,

for some constant c independent of mesh size h
and time step ∆t.

Proof. From (22)1 and the inf-sup condition it
holds that

‖en+1/2
2h ‖ ≤ 1

β sup
vh∈Xh

b(vh, e
n+1/2
2h )

‖vh‖1

≤ 1
β sup

vh∈Xh

1

‖vh‖1
{−(Den1h,vh)

− Prθ(∇e
n+1/2
1h ,∇vh)

+ (∂tu(tn+1/2)−DP s
hu(tn),vh)

+ < ℵn
h,vh >

≤ c
{
‖Den1h‖+ ‖∇e

n+1/2
1h ‖

+ ‖∂tu(tn+1/2)−DP s
hu(tn)‖Xh

∗

+
∑12

i=1 ‖ℵn
i ‖Xh

∗

+ ‖I(en+1/2
3h )× (∇× e

n+1/2
3h )‖Xh

∗

+ ‖I(Pm
h B(tn+1/2))

× (∇× e
n+1/2
3h )‖Xh

∗

}
.

(34)

We start estimating ‖ℵn
5‖Xh

∗ , ‖ℵn
6‖Xh

∗ ,

‖I(en+1/2
3h )×(∇×e

n+1/2
3h )‖Xh

∗ and ‖I(Pm
h B(tn+1/2))×

(∇ × e
n+1/2
3h )‖Xh

∗ below. First, by Hölder’s and
Gagliardo-Nirenberg inequalities, we obtain

| < ℵn
5 ,vh > | ≤ c(‖I(P s

h(u(tn+1/2))‖∞
+ ‖∇(I(P s

h(u(tn+1/2)))‖L3)

· ‖en+1/2
1h ‖‖vh‖1

and

| < I(Pm
h (B(tn+1/2))× (∇× e

n+1/2
3h ),vh > |

≤ C‖I(Pm
h (B(tn+1/2))‖∞‖∇ × e

n+1/2
3h ‖‖vh‖ .

Before estimating the other two terms, notice that
by the inverse estimate (Assumption (A3)) and
(33), we obtain

‖en+1/2
1h ‖1 ≤ c∗min{h−1‖en+1/2

1h ‖, ‖en+1/2
1h ‖1}

≤ cmin{h−1(∆t2 + hk)

, (∆t)−1(∆t2 + hk)}
≤ c .

(35)

Similarly, we can show

‖∇ × e
n+1/2
3h ‖ ≤ c . (36)

Therefore, by Hölder’s, Gagliardo-Nirenberg in-
equalities and (35)-(36), we obtain
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| < ℵn
6 ,vh > | ≤ c‖I(en+1/2

1h )‖1‖en+1/2
1h ‖1

· ‖vh‖1
≤ c∗‖I(en+1/2

1h )‖1‖vh‖1

and

< I(en+1/2
3h ) × (∇× e

n+1/2
3h ),vh >

≤ c‖I(en+1/2
3h )‖1‖∇ × e

n+1/2
3h ‖

· ‖vh‖1
≤ c‖I(en+1/2

3h )‖1‖vh‖1 .

Estimating other terms in (34) as we did in the
proof of Theorem 2, we obtain

‖en+1/2
2h ‖ ≤ c

{
‖Den1h‖+ ‖∇e

n+1/2
1h ‖

+ ‖∇ × e
n+1/2
3h ‖+ ‖I(en+1/2

1h )‖
+ ‖I(en+1/2

1h )‖1 + ‖I(en+1/2
3h )‖1

+ ‖I(en+1/2
4h )‖+ ‖en+1/2

1h ‖

+ (∆t)3/2 + hk + hk√
∆t
.
}

(37)

The required error estimate now follows from last
inequality by using Theorem 2 and triangle in-
equality. �

The error estimate for the pressure in the previous
theorem can be improved under stronger regular-
ity properties of the solution. To this end, we next
derive optimal order error estimates for the time
derivatives of velocity, magnetic field and temper-
ature.

Corollary 1. Suppose the assumptions of
Theorem 2 hold. Moreover, assume u,B ∈
H2(0, T ;H1(Ω)) and θ ∈ H2(0, T ;H1(Ω)).
In addition, assume the initial conditions
(ui

h,B
i
h, θ

i
h) , i = 0, 1 satisfy

∑1
i=0 ‖u(ti) − ui

h‖1 ,∑1
i=0 ‖B(ti) − Bi

h‖1 ,
∑1

i=0 ‖θ(ti) − θih‖1 ≤ chk

and b(ui
h, rh) = 0 , ∀rh ∈ Qh . Then for any

h ∈ (0, h0] the approximate velocity un
h, magnetic

field Bn
h and temperature θnh satisfy

‖∂tu−Duh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

‖∂tB−DBh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

and

‖∂tθ −Dθh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

for some constant c independent of the mesh size
h and time step ∆t Moreover, we have

‖u− uh‖l∞(H1(Ω)) ≤ c(∆t2 + hk) ,

‖θ − θh‖l∞(H1(Ω)) ≤ c(∆t2 + hk) ,

and

‖B−Bh‖l∞(H1(Ω)) ≤ c(∆t2 + hk)

for some constant c independent of the mesh size
h and time step ∆t.

Proof. Putting vh = D(en1h), φh = D(en3h), ψh =
D(en4h) into (22) and splitting the nonlinear terms
as in the proof of Theorem 2, we obtain





‖ D(en1h)‖2 + PrθD(‖∇en1h‖2)
= (∂tu(tn+1/2)−D(P s

hu(tn)),D(en1h))

=
∑14

i=1 < ℵn
i ,D(en1h) > ,

‖ D(en3h)‖2 + PrB[D(‖∇ × en3h‖2)
+ D(‖∇ · en3h‖2)]
= (∂tB(tn+1/2)−D(Pm

h B(tn)),D(en3h))

+
∑6

i=1 < ℵ̂n
i ,D(en3h > ,

‖ D(en4h)‖2 +D(‖∇en4h)‖2)
= (∂tθ(tn+1/2)−D(P r

hθ(tn)),D(en4h))

+
∑6

i=1 < ℵ̃n
i ,D(en4h) > .

(38)

Let us start estimating < ℵn
i ,D(en1h) > for

i = 1, . . . , 14. First using Hölder’s inequality and
Gagliardo-Nirenberg inequality, we obtain

| < ℵn
1 ,D(en1h) > |

≤ c(‖u(tn+1/2)‖∞ + ‖∇u(tn+1/2)‖L3)

· ‖u(tn+1/2)− P s
hu(tn+1/2)‖1‖D(en1h)‖ ,

| < ℵn
2 ,D(en1h) > |

≤ c‖u(tn+1/2)− I(u(tn+1/2))‖1
· (‖P s

hu(tn+1/2)‖∞ + ‖∇P s
hu(tn+1/2)‖L3)

· ‖D(en1h)‖ ,
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| < ℵn
3 ,D(en1h) > |

≤ c(‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖I(u(tn+1/2)− P s
hu(tn+1/2))‖1‖D(en1h)‖ ,

| < ℵn
4 ,D(en1h) > |

≤ c(‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖I(en+1/2
1h )‖1‖D(en1h)‖ ,

and

| < ℵn
5 ,D(en1h) > |

≤ c(‖I(P s
hu(tn+1/2))‖∞ + ‖∇I(P s

hu(tn+1/2))‖L3)

· ‖en+1/2
1h ‖1‖D(en1h)‖ .

From the inverse inequality (Assumption (A3))
and Gagliardo-Nirenberg inequality, it follows
that

‖φh‖∞ + ‖∇φh‖L3(Ω) ≤ ch−
d
6 ‖φh‖1 ∀φh ∈ Xh .

(39)

Using (39), we estimate < ℵn
6 ,D(en1h) > as below

| < ℵn
6 ,D(en1h) > |

≤ [‖I(en+1/2
1h )‖∞ + ‖∇I(en+1/2

1h )‖L3 ]

· ‖en+1/2
1h ‖1‖D(en1h)‖

≤ c∗‖en+1/2
1h ‖1‖I(en+1/2

1h )‖1h−
d
6

· ‖D(en1h)‖ .

(40)

Alternatively, we can estimate < ℵn
6 ,D(en1h) > as

follows

| < ℵn
6 ,D(en1h) > |

= | 1
2∆tc1(I(e

n+1/2
1h ), en1h, e

n−1
1h )|

+ | 1
2∆tc1(I(e

n+1/2
1h ), en−1

1h , en1h)|
≤ c∗

∆t‖I(e
n+1/2
1h )‖1‖en1h‖1‖en−1

1h ‖1 .

(41)

Combining (40) and (41), we have

| < ℵn
6 ,D(en1h) > | ≤ cγn‖I(en+1/2

1h )‖1[‖D(en1h)‖
+ ‖en−1

1h ‖1] ,
(42)

where

γn := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
1h ‖1 . (43)

Estimating other terms as before, we obtain

| < ℵn
7 ,D(en1h) > |

≤ c‖B(tn+1/2)‖∞‖B(tn+1/2)− Pm
h B(tn+1/2)‖1

· ‖D(en1h)‖ ,

| < ℵn
8 ,D(en1h) > |

≤ c‖B(tn+1/2)− I(B)(tn+1/2)‖1
· ‖∇ × Pm

h B(tn+1/2)‖L3(Ω)‖D(en1h)‖ ,

| < ℵn
9 ,D(en1h) > |

≤ c‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖1

· ‖∇ × Pm
h B‖L3(Ω)‖D(en1h)‖ ,

| < ℵn
10,D(en1h) > |

≤ c‖I(en+1/2
3h )‖1‖∇ × Pm

h B(tn+1/2)‖L3(Ω)

· ‖D(en1h)‖ ,

| < ℵn
11,D(en1h) > | ≤ c‖I(en+1/2

4h )‖‖D(en1h)‖ ,

| < ℵn
12,D(en1h) > |

≤ C‖I(P r
hθ(tn+1/2)− θ(tn+1/2))‖

· ‖D(en1h)‖ ,

| < ℵn
13,D(en1h) > | ≤ c‖I(Pm

h B)‖∞
· ‖∇ × e

n+1/2
3h ‖‖D(en1h)‖ .

Estimating as we did with < ℵn
6 ,D(en1h) >, we get

| < ℵn
14,D(en1h) > | ≤ cγ̂n‖I(en+1/2

3h )‖1
· [‖D(en1h)‖
+

∑1
i=0 ‖en−i

1h ‖1] ,

where

γ̂n := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
3h ‖1 .

Let us next start estimating ℵ̂1 − ℵ̂6. First, we
rewrite them using integration by parts formula
and then we estimate them using Hölder’s in-
equality and Gagliardo-Nirenberg inequality
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| < ℵ̂n
1 ,∇×D(en3h) > |

≤ c[‖B(tn+1/2)‖∞ + ‖∇ ×B(tn+1/2)‖L3 ]

· ‖u(tn+1/2)− P s
h(u(tn+1/2))‖1‖D(en3h)‖ ,

| < ℵ̂n
2 ,∇×D(en3h) > |

≤ c[‖P s
hu(tn+1/2)‖∞ + ‖∇P s

h(u(tn+1/2))‖L3(Ω)]

· ‖B(tn+1/2)− I(B(tn+1/2))‖1
· ‖D(en3h)‖ ,

| < ℵ̂n
3 ,∇×D(en3h) > |

≤ c[‖P s
hu‖∞ + ‖∇P s

h(u(tn+1/2)‖L3(Ω)]

· ‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖1‖D(en3h)‖ ,

| < ℵ̂n
4 ,∇×D(en3h) > |

≤ c[‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3(Ω)]

· ‖I(en+1/2
3h )‖1‖D(en3h)‖ ,

| < ℵ̂n
6 ,∇×D(en3h) > |

≤ c[‖I(Pm
h B(tn+1/2))‖∞

+ ‖∇I(Pm
h B(tn+1/2))‖L3(Ω)]

· ‖en+1/2
1h ‖1‖D(en3h)‖ .

Estimating as we did with < ℵn
14,D(en1h) >, we

get

| < ℵ̂n
5 ,∇×D(en3h) > |

≤ cγn‖I(en+1/2
3h )‖1[‖D(en3h)‖

+
∑1

i=0 ‖en−i
3h ‖1] ,

where γn is defined as in (43). Finally, we estimate

ℵ̃1 − ℵ̃6 as follows

| < ℵ̃n
1 ,D(en4h) > |

≤ c(‖u(tn+1/2)‖∞ + ‖∇ × u(tn+1/2)‖L3)

· ‖θ(tn+1/2)− P r
h(θ(tn+1/2))‖1‖D(en4h)‖ ,

| < ℵ̃n
2 ,D(en4h) > |

≤ c(‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

h(θ(tn+1/2))‖L3(Ω))

· ‖u(tn+1/2)− I(u(tn+1/2))‖1‖D(en4h)‖ ,

| < ℵ̃n
3 ,D(en3h) > |

≤ c‖I((u(tn+1/2)− P s
h(u(tn+1/2))‖1

· (‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

h(θ(tn+1/2))‖L3(Ω))

· ‖D(en4h)‖ ,

| < ℵ̃n
4 ,D(en4h) > |

≤ c(‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

hθ(tn+1/2)‖L3(Ω))

· ‖Ien+1/2
1h ‖1‖D(en4h)‖ ,

| < ℵ̃n
6 ,D(en4h) > |

≤ c[‖I(P s
hu(tn+1/2))‖∞

+ ‖∇I(P s
hu(tn+1/2))‖L3(Ω)]

· ‖en+1/2
4h ‖1‖D(en4h)‖ .

Estimating as we did with < ℵn
14,D(en1h) >, we

get

| < ℵ̃n
5 ,D(en4h) > |

≤ cγ̃n‖I(en+1/2
1h )‖1[‖D(en4h)‖

+ ‖en−1
4h ‖1] ,

where γ̃n := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
4h ‖1 . Em-

ploying these estimates in (38), we can write it
as





1
2‖D(en1h)‖2 + Prθ

2 D(‖∇en1h‖2)
≤ c(γ2n‖I(e

n+1/2
1h )‖21

+ γ̂2n‖I(e
n+1/2
3h )‖21

+ αn),

1
2‖D(en3h)‖2 + PrB

2 [D(‖∇ × en3h‖2)
+ D(‖∇ · en3h‖2)]
≤ c

{
α̂n + γ2n‖I(en3h)‖21

}
,

1
2‖D(en4h)‖2 + 1

2D(‖∇en4h‖2)
≤ c

{
α̃n + γ̃2n‖I(en1h)‖21

}
,
(44)

where
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αn := (∆t)3‖∂3t u‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1)

+ h2k‖θ‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;H1(Ω))

+ (∆t)3‖∂2t u‖2L2(tn,tn+1;H1(Ω))

+
∑1

i=0[‖en−i
1h ‖21 + ‖en−i

4h ‖21] + ‖en+1/2
3h ‖21

+ ‖en+1/2
1h ‖21 ,

α̂n := (∆t)3‖∂3tB‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖∂tB‖2
L2(tn,tn+1;Hk+1)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;H1(Ω))

+
∑2

i=0[‖en−i
1h ‖21 + ‖en−i

3h ‖21] ,

α̃n := h2k‖θ‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2t θ‖2L2(tn,tn+1;H1(Ω))

+ h2k

∆t ‖∂tθ‖2L2(tn,tn+1;Hk+1)

+ (∆t)3‖∂3t θ‖2L2(tn,tn+1;L2(Ω))

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+
∑1

i=0 ‖en−i
1h ‖21 + ‖en+1/2

4h ‖21 .

Notice that by (33) and (43), we have that

∆t
N∑

i=1

γ2i ≤min{h− d
3 , (∆t)−2}∆t

N∑

i=1

‖ei1h‖21

≤ cmin{h− d
3 , (∆t)−2}(h2k + (∆t)4)

≤ cmin{h2k− d
3 + (∆t)2}

≤ c .
(45)

Similarly, we can show that

∆t
N∑

i=1

γ̂2i ≤ c and ∆t
N∑

i=1

γ̃2i ≤ c . (46)

Using the regularity properties of the solution
(u, p, θ) and (33), we obtain

∆t
∑N

i=1 αi , ∆t
∑N

i=1 α̂i and

∆t
∑N

i=1 α̃i ≤ c((∆t)4 + h2k) .
(47)

Summing (44) from n = 1 to m and the assump-
tions about initial conditions (ui

h,B
i
h, θ

i
h), i =

0, 1, we obtain





‖∇em1h‖2 + 2
Prθ

∆t
∑m

i=1 ‖D(en1h)‖2

≤ c
{

4
Prθ

∆t
∑m

i=1 γ
2
i ‖I(ei1h)‖21

+ 4
Prθ

∆t
∑m

i=1 γ̂
2
i ‖I(ei3h)‖21

+ (∆t)4 + h2k
}
,

‖∇ × em3h‖2 + ‖∇ · em3h‖2

+ 2
PrB

∆t
∑m

i=1 ‖D(en3h)‖2

≤ c
{

4
Prθ

∆t
∑m

i=1 γ
2
i ‖I(ei3h)‖21

+ (∆t)4 + h2k
}
,

‖∇em4h‖2 + 2∆t
∑m

i=1 ‖D(en4h)‖2

≤ c
{
4∆t

∑m
i=1 γ̃

2
i ‖I(ei1h)‖21

+ (∆t)4 + h2k
}
.

(48)

The required results now follows from (45), (46)
and (48). �

Corollary 2. Suppose the assumptions of Corol-
lary 3.3 hold. Then the approximate pressure

p
n+1/2
h in (14) satisfies

‖p− ph‖l2(L2(Ω)) ≤ c(∆t2 + hk) .

Proof. We provide only a sketch of the proof of
this Corollary as it is similar to the proof of The-
orem 2. It follows from (3.35) that

∆t‖Den1h‖2 ≤ c((∆t)4 + h2k) . (49)

Therefore using (49) in (37), we obtain the re-
quired estimate. �

4. Numerical results

In this section, we present a numerical example
to illustrate the theoretical results of the previ-
ous section. We set Ω := (0, 1)× (0, 1) and choose
the standard piecewise quadratic finite space for
approximating the magnetic field and tempera-
ture. We also choose the Taylor-Hood element
pair, i.e., continuous piecewise-quadratic and con-
tinuous piecewise linear finite element space for
the fluid velocity and pressure approximations,
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respectively. Uniform triangular meshes are cre-
ated by first dividing the rectangular domain Ω
into identical small squares and then dividing each
square into two triangles. We set the exact solu-
tions to

u = ((y + y2)e−t, (x+ x2)e−t)

B = ((sin(y) + y)e−t, (sin(x) + x2)e−t)

p = (x+ y)e−t

θ = (1 + xy)e−t .

The right-hand side data in the MHD system, ini-
tial conditions and boundary conditions are then
chosen correspondingly. For simplicity, we set the
parameters Prθ, S, PrB, Ra equal to 1.0. In or-
der to determine the order of convergence α with
respect to the time step ∆t, we fix the spatial
spacing h and use the following approximation

α ≈ log2
‖vh,∆t(x, tN )− vh,∆t

2

(x, tN )‖
‖vh,∆t

2

(x, tN )− vh,∆t
4

(x, tN )‖ . (50)

A set of values of α are listed in Table 4.1 with
a fixed spacing h = 1/32 and varying time step
∆t = 1/20, 1/40, 1/80, 1/160, 1/320, which clearly
suggest the concerned orders of convergence in
time are all O(∆t2) for the decoupled scheme.
Thus, the numerical experiments clearly suggest
that the orders of convergence in time in error es-
timates in Theorem 2 for the L2− norm of u, B
and θ are optimal.

Table 1. Convergence order of

O(∆t
α) of the partitioned

scheme at time tN = 1.0, with
the fixed spacing h = 1

32

∆t ‖u(tn)− un
h‖ Order

1/20 4.13475× 10−5 -
1/40 1.0724423× 10−5 1.9469
/80 0.2699941× 10−5 1.9899
1/160 0.0675874× 10−5 1.9981
1/320 0.0169062× 10−5 1.9992

∆t ‖B(tn)−Bn
h‖ Order

1/20 3.92644× 10−5 -
1/40 0.9977026× 10−5 1.97654
/80 0.2512598× 10−5 1.98943
1/160 0.0630024× 10−5 1.9957
1/320 0.0157597× 10−5 1.99916

∆t ‖θ(tn)− θnh‖ Order

1/20 3.659835× 10−5 -
1/40 0.9312186× 10−5 1.9745867
/80 0.2344775× 10−5 1.98967

1/160 0.0588082× 10−5 1.99536
1/320 0.0147111× 10−5 1.99911
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