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1. Introduction

Nonlinear integral equations appear in many
problems of contemporary physics and mechan-
ics (see., e.g. [1] - [7]). Integral constraint on the
control functions is inevitable if the control effort
is exhausted by consumption. Such controls arise
in various problems of economics, medicine, biol-
ogy, mechanics and physics (see, [8] - [11]). Note
that control system with integral constraint on
the control functions, where the behavior of the
system is given by a nonlinear differential equa-
tion is investigated in [8, 9].

In this paper the control system described by a
Urysohn type integral equation is considered. It is
assumed that integral equation is nonlinear with
respect to the state vector and is affine with re-
spect to the control vector. The closed ball of the
space Lp (E;Rm) (p > 1) with radius r and cen-
tered at the origin is chosen as the set of admis-
sible control functions. The compactness of the
set of trajectories of the system generated by all
admissible control functions is studied. Note that
compactness of the set of trajectories guaranties

the existence of the optimal trajectories in the
optimal control problem with continuous payoff
functional. Compactness of the set of trajectories
of control systems described by the Volterra type
integral equations is studied in [12, 13].

The paper is organized as follows: In Section 2
the conditions which satisfy the system are for-
mulated (Conditions A, B and C). In Section 3 it
is proved that every admissible control function
generates a unique trajectory of the system (The-
orem 1). In Section 4 it is shown that the set
of trajectories is bounded (Theorem 2). Precom-
pactness of the set of trajectories is specified in
Section 5 (Theorem 3). In Section 6 the closed-
ness of the set of trajectories is shown (Theorem
4), and hence compactness of the set of trajecto-
ries is obtained (Theorem 5).

2. Preliminaries

The control system described by an integral equa-
tion
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x(ξ) = f (ξ, x (ξ)) + λ

∫

E

[

K1 (ξ, s, x (s))

+ K2 (ξ, s, x (s))u (s)
]

ds (1)

is considered, where x ∈ R
n is the state vector,

u ∈ R
m is the control vector, ξ ∈ E, E ⊂ R

k is a
compact set.

Let p > 1 and r > 0 be given numbers. The func-
tion u(·) ∈ Lp

(

E;Rm
)

such that ‖u(·)‖p ≤ r is
said to be an admissible control function, where

‖u(·)‖p =





∫

E

‖u(s)‖p ds





1

p

, ‖·‖ denotes the

Euclidean norm.

The set of all admissible control functions is de-
noted by symbol Up,r , i.e.

Up,r =
{

u(·) ∈ Lp

(

E;Rm
)

: ‖u(·)‖p ≤ r
}

.

If u(·) ∈ Up,r , then Hölder’s inequality yields that
∫

E

‖u(s)‖ ds ≤ [µ(E)]
p−1

p r , (2)

where µ(E) denotes the Lebesgue measure of the
set E.

It is assumed that the functions and a number
λ ∈ R

1 given in system (1) satisfy the following
conditions:

A. The functions f(·) : E × R
n → R

n, K1(·) :
E×E×R

n → R
n andK2(·) : E×E×R

n → R
n×m

are continuous;

B. There exist l0 ∈ [0, 1), l1 ≥ 0 and l2 ≥ 0 such
that

‖f(ξ, x1)− f(ξ, x2)‖ ≤ l0 ‖x1 − x2‖

for every (ξ, x1) ∈ E × R
n, (ξ, x2) ∈ E × R

n and

‖K1(ξ, s, x1)−K1(ξ, s, x2)‖ ≤ l1 ‖x1 − x2‖ ,

‖K2(ξ, s, x1)−K2(ξ, s, x2)‖ ≤ l2 ‖x1 − x2‖

for every (ξ, s, x1) ∈ E × E × R
n, (ξ, s, x2) ∈

E × E × R
n;

C. The inequality

0 ≤ λ
[

l1µ (E) + l2 [µ(E)]
p−1

p r
]

< 1− l0

is satisfied.

We set

l(λ) = l0 + λ
[

l1µ (E) + l2 [µ(E)]
p−1

p r
]

. (3)

If u(·) ∈ Up,r, then (2) and condition C yield

λ

1− l0

∫

E

(l1 + l2 ‖u(s)‖) ds

≤
λ

1− l0

(

l1µ(E) + l2 [µ(E)]
p−1

p r
)

< 1. (4)

Let us define a trajectory of the system (1) gener-
ated by an admissible control function u(·) ∈ Up,r.

A continuous function x(·) : E → R
n satisfying

the integral equation (1) for every ξ ∈ E is said to
be a trajectory of the system (1) generated by the
admissible control function u(·) ∈ Up,r . The set
of trajectories of the system (1) generated by all
control functions u(·) ∈ Up,r is denoted by Xp,r.

For ξ ∈ E we denote

Xp,r(ξ) = {x(ξ) ∈ R
n : x(·) ∈ Xp,r} . (5)

The set Xp,r(ξ) is useful for visualization of the
set of trajectories.

Now, let us give an auxiliary proposition, which
will be used in following arguments.

Proposition 1. Let E ⊂ R
k be a compact set,

v(·) : E → R and h(·) : E → R be continuous
functions, ψ(·) : E → [0,+∞) be a Lebesgue inte-

grable function,

∫

E

ψ(s)ds < 1 and

v(ξ) ≤ h(ξ) +

∫

E

ψ(s)v(s)ds (6)

for every ξ ∈ E. Then the inequality

v(ξ) ≤ h(ξ) +

∫

E

h(s)ψ(s)ds

1−

∫

E

ψ(s)ds

(7)

holds for every ξ ∈ E.

Moreover, if h(ξ) = h∗ for every ξ ∈ E, then it
follows from (7) that

v(ξ) ≤
h∗

1−

∫

E

ψ(s)ds

(8)

for every ξ ∈ E.

Proof. Since ψ(·) is nonnegative function, we
have from (6)

v(ξ)ψ(ξ) ≤ h(ξ)ψ(ξ) + ψ(ξ)

∫

E

ψ(s)v(s)ds

for every ξ ∈ E, and hence
∫

E

v(s)ψ(s)ds ≤

∫

E

h(s)ψ(s)ds

+

∫

E

ψ(s)ds ·

∫

E

ψ(s)v(s)ds.
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Since

∫

E

ψ(s)ds < 1, then the last inequality im-

plies

∫

E

v(s)ψ(s)ds ≤

∫

E

h(s)ψ(s)ds

1−

∫

E

ψ(s)ds

. (9)

(6) and (9) yield the validity of (7). �

3. Existence and Uniqueness of

Trajectories

Conditions A - C guarantee that every admissible
control function generates a unique trajectory.

Theorem 1. Let the conditions A - C be satisfied
and u∗(·) ∈ Up,r. Then the system (1) has unique
trajectory x∗(·) generated by the admissible con-
trol function u∗(·).

Proof. Define a map x(·) → A(x(·)), x(·) ∈
C (E;Rn) , setting

A (x(·)) |(ξ) = f (ξ, x (ξ)) + λ

∫

E

[

K1 (ξ, s, x (s))

+K2 (ξ, s, x (s))u∗ (s)
]

ds, ξ ∈ E, (10)

where C (E;Rn) is the space of continuous func-
tions x(·) : E → R

n with norm ‖x(·)‖C =
max {‖x(ξ)‖ : ξ ∈ E} . Since u∗(·) ∈ Up,r, x(·) ∈
C (E;Rn) then by virtue of condition A we have
that the map ξ → A(x(·))|(ξ), ξ ∈ E, is continu-
ous, and hence A(x(·)) ∈ C (E;Rn) .

Let x1(·) ∈ C (E;Rn) and x2(·) ∈ C (E;Rn) be
arbitrarily chosen functions. From condition B,
(2) and (3) it follows that the inequality

∥

∥A (x2(·)) |(ξ)−A (x1(·)) |(ξ)
∥

∥

≤ l0 ‖x2 (ξ)− x1 (ξ)‖

+λl1

∫

E

‖x2 (s)− x1 (s)‖ ds

+λl2

∫

E

‖x2 (s)− x1 (s)‖ ‖u∗(s)‖ ds

≤

[

l0 + λl1µ (E) + λl2

∫

E

‖u∗(s)‖ ds

]

· ‖x2 (·)− x1 (·)‖C

≤
[

l0 + λl1µ (E) + λl2 [µ(E)]
p−1

p r
]

· ‖x2 (·)− x1 (·)‖C
= l(λ) ‖x2 (·)− x1 (·)‖C

holds for every ξ ∈ E, and consequently
∥

∥A (x2(·)) |(·)−A (x1(·)) |(·)
∥

∥

C

≤ l(λ) ‖x2 (·)− x1 (·)‖C . (11)

According to the condition C and (3) we have
l(λ) < 1. (11) implies that the map A(·) :

C (E;Rn) → C (E;Rn) defined by (10) is con-
tractive, and hence it has a unique fixed point
x∗(·) ∈ C (E;Rn) which is unique solution of the
equation

x∗(ξ) = f (ξ, x∗ (ξ)) + λ

∫

E

[

K1 (ξ, s, x∗ (s))

+ K2 (ξ, s, x∗ (s))u∗ (s)
]

ds, ξ ∈ E.

�

4. Boundedness

In this section the boundedness of the set of tra-
jectories Xp,r is proved. Denote

γ0 = max {‖f(ξ, 0)‖ : ξ ∈ E} , (12)

γ1 = max {‖K1(ξ, s, 0)‖ : (ξ, s) ∈ E × E} , (13)

γ2 = max {‖K2(ξ, s, 0)‖ : (ξ, s) ∈ E × E} . (14)

Proposition 2. Let the functions f(·) : E×R
n →

R
n, K1(·) : E × E × R

n → R
n and K2(·) :

E × E × R
n → R

n×m satisfy the conditions A
and B. Then

‖f(ξ, x)‖ ≤ γ0 + l0 ‖x‖ ,

‖K1(ξ, s, x)‖ ≤ γ1 + l1 ‖x‖ ,

‖K2(ξ, s, x)‖ ≤ γ2 + l2 ‖x‖

for every (ξ, s, x) ∈ E × E × R
n, where the con-

stants l0, l1 and l2 are given in condition B.

Proof. Let us prove the validity of 3rd inequality.
The proofs of 1st and 2nd inequalities are similar.
According to the conditions A and B we have

‖K2(ξ, s, x)−K2(ξ, s, 0)‖ ≤ l2 ‖x‖

for every (ξ, s, x) ∈ E × E × R
n, and hence

‖K2(ξ, s, x)‖ ≤ l2 ‖x‖

+max {‖K2(ξ, s, 0)‖ : (ξ, s) ∈ E × E}

The last inequality and (14) complete the
proof. �

Denote

γ∗ =
γ0 + λγ1µ (E) + λγ2 [µ(E)]

p−1

p r

1− l(λ)
, (15)

where l(λ) is defined by (3), γ0 ≥ 0, γ1 ≥ 0 and
γ2 ≥ 0 are defined by (12), (13) and (14) respec-
tively.

Theorem 2. Let the conditions A - C be satisfied.
Then for every x(·) ∈ Xp,r the inequality

‖x(·)‖C ≤ γ∗

holds.

Proof. Let x(·) ∈ Xp,r be an arbitrary trajec-
tory, generated by the admissible control function
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u(·) ∈ Up,r. Proposition 2 and (2) imply

‖x(ξ)‖ ≤ γ0 + l0 ‖x(ξ)‖

+λ

∫

E

(γ1 + l1 ‖x (s)‖) ds

+λ

∫

E

(γ2 + l2 ‖x (s)‖) ‖u (s)‖ ds

≤ l0 ‖x(ξ)‖+ γ0 + λγ1µ (E)

+λγ2 [µ (E)]
p−1

p r

+λ

∫

E

(l1 + l2 ‖u (s)‖) ‖x (s)‖ ds

for every ξ ∈ E. Since l0 ∈ [0, 1), then we obtain
from the last inequality

‖x(ξ)‖ ≤
γ0 + λγ1µ (E) + λγ2 [µ (E)]

p−1

p r

1− l0

+
λ

1− l0

∫

E

(l1 + l2 ‖u (s)‖) ‖x (s)‖ ds (16)

for every ξ ∈ E. Since u(·) ∈ Up,r, then from (3),
(4), (15), (16) and Proposition 1 it follows

‖x(ξ)‖ ≤
γ0 + λγ1µ (E) + λγ2 [µ(E)]

p−1

p r

1− l0

·
1

1−
λ

1− l0

∫

E

(l1 + l2 ‖u (s)‖) ds

≤
γ0 + λγ1µ (E) + λγ2 [µ(E)]

p−1

p r

1− l0

·
1

1−
λ

1− l0

[

l1µ(E) + l2 [µ(E)]
p−1

p r
]

=
γ0 + λγ1µ (E) + λγ2 [µ(E)]

p−1

p r

1− l(λ)
= γ∗

for every ξ ∈ E, and hence ‖x(·)‖C ≤ γ∗. �

5. Precompactness

Let ∆ > 0 be a given number, γ∗ > 0 be defined
by (15), Bn(γ∗) = {x ∈ R

n : ‖x‖ ≤ γ∗}. Denote

G1 = E ×Bn(γ∗), G2 = E × E ×Bn(γ∗), (17)

ω0(∆) = max
{

‖f(ξ2, x)− f(ξ1, x)‖ :

‖ξ2 − ξ1‖ ≤ ∆,

(ξ1, x) ∈ G1, (ξ2, x) ∈ G1

}

, (18)

ω1(∆) = max
{∥

∥K1(ξ2, s, x)−K1(ξ1, s, x)
∥

∥ :

‖ξ2 − ξ1‖ ≤ ∆, (ξ1, s, x) ∈ G2,

(ξ2, s, x) ∈ G2

}

, (19)

ω2(∆) = max
{

‖K2(ξ2, s, x)−K2(ξ1, s, x)‖ :

‖ξ2 − ξ1‖ ≤ ∆, (ξ1, s, x) ∈ G2,

(ξ2, s, x) ∈ G2

}

, (20)

ϕ(∆) =
1

1− l0

{

ω0 (∆) + λµ(E)ω1(∆)

+ λω2(∆) [µ(E)]
p−1

p r
}

. (21)

The function ϕ(·) : (0,+∞) → [0,+∞) is not de-
creasing and ϕ(∆) → 0+ as ∆ → 0+.

Proposition 3. Let the conditions A - C be sat-
isfied. Then for every x(·) ∈ Xp,r, ξ1 ∈ E, ξ2 ∈ E

the inequality

‖x(ξ2)− x(ξ1)‖ ≤ ϕ (‖ξ2 − ξ1‖)

holds, where ϕ(·) is defined by (21).

Proof. Let us choose an arbitrary x(·) ∈ Xp,r

and ξ1 ∈ E, ξ2 ∈ E. Then there exists u(·) ∈ Up,r

such that

x(ξ) = f (ξ, x (ξ)) + λ

∫

E

[

K1 (ξ, s, x (s))

+ K2 (ξ, s, x (s))u (s)
]

ds

for every ξ ∈ E, and hence

‖x(ξ2)− x(ξ1)‖

≤ ‖f (ξ2, x (ξ2))− f (ξ1, x (ξ2))‖

+ ‖f (ξ1, x (ξ2))− f (ξ1, x (ξ1))‖

+λ

∫

E

∥

∥K1 (ξ2, s, x (s))

−K1 (ξ1, s, x (s))
∥

∥ds

+λ

∫

E

∥

∥K2 (ξ2, s, x (s))

−K2 (ξ1, s, x (s))
∥

∥ ‖u(s)‖ ds . (22)

By virtue of condition B we have

‖f (ξ1, x (ξ2))− f (ξ1, x (ξ1))‖

≤ l0 ‖x(ξ2)− x(ξ1)‖ , (23)

where l0 ∈ [0, 1). Since x(·) ∈ Xp,r , then it follows
from Theorem 2 that

x(s) ∈ Bn(γ∗) (24)

for every s ∈ E. (17), (18), (19), (20) and (24)
imply

‖f (ξ2, x (ξ2))− f (ξ1, x (ξ2))‖

≤ ω0 (‖ξ2 − ξ1‖) , (25)

‖K1 (ξ2, s, x (s))−K1 (ξ1, s, x (s))‖

≤ ω1 (‖ξ2 − ξ1‖) , (26)

‖K2 (ξ2, s, x (s))−K2 (ξ1, s, x (s))‖

≤ ω2 (‖ξ2 − ξ1‖) (27)

for every s ∈ E.
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From (2), (21), (22), (23), (25), (26) and (27) we
obtain that

∥

∥x(ξ2)− x(ξ1)
∥

∥ ≤
1

1− l0

{

ω0 (‖ξ2 − ξ1‖)

+λµ(E)ω1 (‖ξ2 − ξ1‖)

+λω2 (‖ξ2 − ξ1‖)

∫

E

‖u(s)‖ ds
}

≤
1

1− l0

{

ω0 (‖ξ2 − ξ1‖)

+λµ(E)ω1 (‖ξ2 − ξ1‖)

+λω2 (‖ξ2 − ξ1‖) [µ(E)]
p−1

p r
}

= ϕ (‖ξ2 − ξ1‖) .

�

Proposition 4. Let the conditions A - C be satis-
fied. Then the set of trajectories Xp,r ⊂ C (E;Rn)
is a set of equicontinuous functions.

Proof. Since ϕ(∆) → 0+ as ∆ → 0+, then for
given ε > 0 there exists ∆∗(ε) > 0 such that for
every ∆ ∈ (0,∆∗(ε)] the inequality

ϕ(∆) ≤ ε (28)

is satisfied, where ϕ(·) is defined by (21).

Now let x(·) ∈ Xp,r be an arbitrarily chosen tra-
jectory, ξ1 ∈ E, ξ2 ∈ E be such that ‖ξ2 − ξ1‖ ≤
∆∗(ε). Since the function ϕ(·) : (0,+∞) →
[0,+∞) is not decreasing, then from (28) and
Proposition 3 it follows

‖x(ξ2)− x(ξ1)‖ ≤ ϕ (‖ξ2 − ξ1‖) ≤ ϕ (∆∗(ε)) ≤ ε,

and hence the set of trajectories Xp,r ⊂ C (E;Rn)
is a set of equicontinuous functions. �

Theorem 2 and Proposition 4 yield the validity of
the following theorem.

Theorem 3. Let the conditions A - C be satisfied.
Then the set of trajectories Xp,r is a precompact
subset of the space C (E;Rn) .

The Hausdorff distance between the sets P ⊂ R
n

and S ⊂ R
n is denoted by H(P, S) and defined as

H(P, S) = max{sup
p∈P

d(p, S), sup
s∈S

d(s, P )},

where d(p, S) = inf {‖p− s‖ : s ∈ S} .

Proposition 3 implies the validity of the following
proposition.

Proposition 5. Let the conditions A - C be sat-
isfied. Then for every ξ1 ∈ E and ξ2 ∈ E the
inequality

H (Xp,r(ξ2),Xp,r(ξ1)) ≤ ϕ (‖ξ2 − ξ1‖)

is satisfied, where the function ϕ(·) : (0,∞) →
[0,∞) is defined by (21), the sets Xp,r(ξ1) and
Xp,r(ξ2) are defined by (5).

Since ϕ(∆) → 0+ as ∆ → 0+ then we conclude
the validity of the following corollary.

Corollary 1. Let the conditions A - C be satis-
fied. Then the set valued map ξ → Xp,r(ξ), ξ ∈ E,

is continuous.

6. Closedness

Theorem 4. Let the conditions A - C be satis-
fied. Then the set of trajectories Xp,r is a closed
subset of the space C (E;Rn) .

Proof. Let us choose a sequence of trajectories
{xi(·)}

∞

i=1 , where ‖xi(·)− x∗(·)‖C → 0 as i → ∞
and x∗(·) ∈ C (E;Rn) . We have to prove that
x∗(·) ∈ Xp,r .

Since xi(·) ∈ Xp,r , then there exists ui(·) ∈ Up,r

such that

xi(ξ) = f (ξ, xi (ξ)) + λ

∫

E

[

K1 (ξ, s, xi (s))

+ K2 (ξ, s, xi (s))ui (s)
]

ds (29)

for every ξ ∈ E. Since the set of admissible control
functions Up,r ⊂ Lp (E;Rn) is weakly compact,
then without loss of generality, one can assume
that the sequence {ui(·)}

∞

i=1 weakly converges to
a u∗(·) ∈ Up,r . Let y∗(·) : E → R

n be a trajec-
tory of the system (1) generated by the admissible
control function u∗(·) ∈ Up,r . Then

y∗(ξ) = f (ξ, y∗ (ξ)) + λ

∫

E

[

K1 (ξ, s, y∗ (s))

+ K2 (ξ, s, y∗ (s))u∗ (s)
]

ds (30)

for every ξ ∈ E. (29), (30) and condition B yield
that

‖xi (ξ)− y∗ (ξ) ‖

≤
λ

1− l0

∫

E

(l1 + l2 ‖ui(s)‖)

· ‖xi (s)− y∗ (s)‖ ds

+
λ

1− l0

∥

∥

∥

∥

∫

E

K2 (ξ, s, y∗ (s))

· (ui(s)− u∗(s)) ds

∥

∥

∥

∥

(31)

for every ξ ∈ E. Denote w(ξ, s) = K2 (ξ, s, y∗ (s)) .
Since the function w(·) : E × E → R

n×m is con-
tinuous and the sequence {ui(·)}

∞

i=1 weakly con-
verges to u∗(·) ∈ Up,r in the space Lp (E;Rn),
then we have that for each fixed ξ ∈ E

∥

∥

∥

∥

∫

E

w(ξ, s) [ui(s)− u∗(s)] ds

∥

∥

∥

∥

→ 0 (32)

as i→ ∞. From (32) we obtain that for ε > 0 and
fixed ξ ∈ E there exists N(ε, ξ) > 0 such that for
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every i > N(ε, ξ) the inequality
∥

∥

∥

∥

∫

E

w (ξ, s) [ui(s)− u∗(s)] ds

∥

∥

∥

∥

< ε (33)

is satisfied.

Now let us prove that for each ε > 0 there exists
N(ε) > 0 (which does not depend on ξ) such that
for every i > N(ε) and ξ ∈ E the inequality

∥

∥

∥

∥

∫

E

w (ξ, s) (ui(s)− u∗(s)) ds

∥

∥

∥

∥

< ε (34)

holds.

Let us assume the contrary, i.e. let there exist
ε∗ > 0, ij > 0 and ξj ∈ E (j = 1, 2, . . .) such that
ij → ∞ as j → ∞ and

∥

∥

∥

∥

∫

E

w (ξj , s)
[

uij (s)− u∗(s)
]

ds

∥

∥

∥

∥

≥ ε∗ . (35)

Since ξj ∈ E for every j = 1, 2, . . . and E ⊂ R
k is

a compact set, then without loss of generality one
can assume that ξj → ξ∗ as j → ∞ and ξ∗ ∈ E.

(33) implies that for ε∗ > 0 and ξ∗ ∈ E there
exists N1 > 0 such that for every j > N1 the
inequality

∥

∥

∥

∥

∫

E

w (ξ∗, s)
[

uij (s)− u∗(s)
]

ds

∥

∥

∥

∥

<
ε∗

4
(36)

is verified.

Continuity of the function w (·) : E ×E → R
n×m

and compactness of the set E yield that for given
ε∗

8 [µ(E)]
p−1

p r
there exists N2 > 0 such that for

every j > N2 and s ∈ E the inequality

‖w(ξj , s)− w(ξ∗, s)‖ <
ε∗

8 [µ(E)]
p−1

p r
(37)

holds. Since u∗(·) ∈ Up,r, uij (·) ∈ Up,r for every
j = 1, 2, . . . , then from (2) and (37) it follows

∥

∥

∥

∫

E

[w(ξj , s)− w(ξ∗, s)]
[

uij (s)− u∗(s)
]

ds
∥

∥

∥

≤
ε∗

8 [µ(E)]
p−1

p r

∫

E

[ ∥

∥uij (s)
∥

∥+ ‖u∗(s)‖
]

ds

≤ 2
ε∗

8 [µ(E)]
p−1

p r
[µ(E)]

p−1

p r =
ε∗

4
(38)

for every j > N2.

Denote N∗ = max {N1, N2} . Then (36) and (38)
imply that

∥

∥

∥

∥

∫

E

w(ξj , s)
[

uij (s)− u∗(s)
]

ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫

E

[w (ξj , s)− w(ξ∗, s)]

·
[

uij (s)− u∗(s)
]

ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

E

w (ξ∗, s)
[

uij (s)− u∗(s)
]

ds

∥

∥

∥

∥

<
ε∗

4
+
ε∗

4
=
ε∗

2
< ε∗ (39)

for every j > N∗. The inequalities (35) and (39)
contradict, and hence the inequality (34) is held.

Thus, from (31) and (34) we have that for every
ξ ∈ E and i > N(ε) the inequality

‖xi (ξ)− y∗ (ξ) ‖ ≤
λε

1− l0

+
λ

1− l0

∫

E

(l1 + l2 ‖ui(s)‖)

· ‖xi (s)− y∗ (s)‖ ds (40)

is satisfied.

Since ui(·) ∈ Up,r for every i = 1, 2, . . ., then from
(4), (40) and Proposition 1 we have that for every
i > N(ε) and ξ ∈ E the inequality

‖xi (ξ)− y∗ (ξ) ‖

≤
λε

1− l0
·

1

1−
λ

1− l0

∫

E

(l1 + l2 ‖ui(s)‖) ds

≤
λε

1− l0
·

1

1−
λ

1− l0

[

l1µ(E) + l2 [µ(E)]
p−1

p r
]

=
λ

1− l(λ)
· ε

holds, where l(λ) is defined by (3). This means
that xi(·) → y∗(·) as i → +∞. From unique-
ness of the limit we have x∗(·) = y∗(·) and hence
x∗(·) ∈ Xp,r . �

Theorem 3 and Theorem 4 imply compactness of
the set of trajectories.

Theorem 5. Let the conditions A - C be satis-
fied. Then the set of trajectories Xp,r is a compact
subset of the space C (E;Rn) .
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