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Abstract. Investors have limited budget and they try to maximize their return with minimum risk.         

Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are 

considered which are expected return, and risk. In this respect, linear physical programming (LPP) 

technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers 

the period from April 2009 to March 2015. This period is divided into two; April 2009-March 2014 and 

April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. 

April 2014-March 2015 period is used to test the real performance of portfolios. The performance of 

the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP). Then the 

performances of both method, LPP and FGP, are compared with BIST 100 in terms of their Sharpe 

Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP. 
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1. Introduction 

The purpose of investors is to maximize the total 

return of their investments while considering the 

risk factor. In order to minimize the risk, a 

portfolio concept has arisen. Investing funds into 

a portfolio instead of one asset may be less risky 

because poor performance of one investment 

instrument can be easily balanced with good 

performance of another investment instrument. 

In order to maximize the return of assets in 

their portfolio, investors need to manage the 

portfolio efficiently [1]. Portfolio management 

can be defined as the allocation of the funds 

between the securities for ensuring the maximum 

return and minimum risk [2]. In real world, the 

ambiguity exists because of uncertainty and the 

lack of efficient information. Therefore, portfolio

 

 

selection problem is a challenging problem for 

researchers. And various studies have been done 

so far about portfolio selection problem. 

Modern portfolio optimization studies began 

with the work of Markowitz in the 1950’s. 

Markowitz suggested a mean-variance model. 

Markowitz studied how to ensure a portfolio that 

includes stocks with maximum return at a given 

level of risk [3]. Markowitz portfolio optimization 

model was the source of inspiration to many 

studies and was theoretically mostly known 

model, but the model was criticized for the need 

of gathering accurate information and the large 

number of calculations [4, 5].   

Several authors have tried to develop 

Markowitz’ modern portfolio theory. Sharpe [6] 

proposed to estimate the total risk of market  
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instead of estimating the risk of each stock with 

simple regression model. Later on modern 

portfolio theory was elaborated with Sharpe [7], 

Lintler [8], Ross [9], Huberman [10] by proposing 

capital asset pricing and the multifactor arbitrage 

pricing models. Sharpe [11] and Lintler [12] 

developed Capital Asset Pricing Model (CAPM). 

In this model different from modern portfolio 

theory investors have the opportunity to invest in 

risk-free assets. And this theory was evolved with 

arbitrage pricing theory which was proposed by 

Ross [13] and extended by Huberman [14] 

In later years, there were studies that try to 

transform the quadratic problems into linear 

problems such as [15], [16], [17] and [18]. One of 

the most popular of them was mean absolute 

deviation model.  Konno and Yamazki [19] 

proposed an alternative model to quadratic models 

called as mean absolute deviation model. In this 

model, they accepted absolute deviation as the risk 

measure instead of the standard deviation. Many 

researchers try to extend portfolio selection 

problem by using linear models such as maximum 

model [20] minimax model [21, 22]. 

In real world, uncertainty exists for 

determining the expected return and expected risk 

of stocks, therefore some researchers have 

devoted considerable efforts to deal with the 

vague aspirations of a decision maker using fuzzy 

set theory. When the information about the 

objectives is naturally vague, Fuzzy goal 

programming (FGP) approach lets the 

involvement of decision makers (DMs) to the 

determination process of imprecise aspiration 

levels for the goals. FGP have already been 

applied to the portfolio selection problem by Parra 

et al. [23] and Alinezhad et al. [24].  

In order to obtain the optimum stocks for 

portfolio, this study proposes to use linear physical 

programming (LPP) approach. In LPP approach, 

DM can take in account different goals and 

determine these goals in different desirability 

levels such as ideal desirable, tolerable, 

undesirable, highly desirable and unacceptable.  

The major advantage of linear physical 

programming is its capability of taking into 

account of numerous constraints, numerous goals 

and considering the preference range for the goals 

[25]. To show the effectiveness of the use of LPP 

in portfolio selection problem, FGP was also 

applied to the problem and the results of the both 

methods are compared. 

 The remainder of this paper is organized as 

follows. The second section briefly explains the 

linear physical programming method. 

Mathematical modelling of portfolio selection 

problem will be presented in the third section. In 

the fourth part, a real life portfolio selection 

problem will be solved under two conflicting 

objectives: maximum return and minimum risk 

possible. Finally conclusion and further research 

will be discussed..  

2. Linear physical programming 

LPP is a multi-objective optimization method that 

proposes specific algorithms for obtaining the 

weights of multiple objectives and use these 

weights in the optimization process to obtain 

optimal results [26]. 

Different from goal programming and fuzzy 

goal programming techniques that have already 

been applied to portfolio optimization problem, 

LPP uses the satisfaction levels (such as desirable, 

tolerable, undesirable, highly undesirable, or 

unacceptable) at which a particular goal (i.e. 

expected return) to obtain the weights and reach 

optimal results. Mainly, LPP distinguishes itself 

from the other techniques by removing the 

decision maker from the weight determination 

process [27]. 

Weight determination is one of the essential 

steps of multi-objective optimization which has 

inherently the challenge in determining the correct 

weights. A traditionally preprocessing constant 

weight determination may lead to bias in some 

cases [28]. In the LPP, it is not needed to set the 

weights of objectives in priori. Differently, LPP 

determines the weights in a systematic approach 

with the integration of the solution phase to find 

optimal results. Weight determination procedure 

uses the one versus others criterion rule (OVO 

rule) and contains a little complicated arithmetic. 

Therefore it needs to use a computer program to 

obtain the weights. The details of weight 

determination procedure can be found in [28] 

 In the LPP, DMs use four different classes 

named as soft classes to express their preferences 

according to each objective function. The most 

frequently used class functions, Class-1S (Smaller 

is Better) and Class-2S (Larger is Better), can be 

shown in figure 1. The decision variables, the qth 

objective function, the class function that will be 

minimized for the qth objective function are 

denoted by x and gq(x), Zq respectively. In the 

figure 1,  gq(x) is on the horizontal axis, Zq is on 

the vertical axis. As it can be deduced from the 

figure, the smaller value of a class function 

improves the satisfaction level of the goal. 

Therefore, it is desired to obtain the value of the 

class function as zero. Besides soft classes, the 
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constraints that must be satisfied without any 

deviation is defined as Hard Classes.  Each soft 

class function is a part of the weighted aggregated 

objective function of LPP that is wanted to be 

minimized. The weights of Soft Class functions 

are determined by LPP weight algorithm [28].  

 
Figure 1. Smaller is Better and Larger is Better soft 

class functions [27] 

 

Step 1. Selection of the appropriate soft and hard 

classes for each criterion, 

Step 2. Determination of the target values that can 

be defined as the limits of the ranges of different 

degrees of desirability (i.e. 𝑡𝑞𝑠
− , 𝑡𝑞𝑠

+ ). 

Step 3. Determination of the weights for each 

criterion by using the weight algorithm. 

Step 4. Solving the following LP problem: 

𝑀𝑖𝑛 =  ∑ ∑ (𝑤𝑞𝑠
− 𝑑𝑞𝑠

− + 𝑤𝑞𝑠
+ 𝑑𝑞𝑠

+ )5
𝑠=2

𝑛𝑠𝑐
𝑞=1    (1) 

𝑔𝑞 − 𝑑𝑞𝑠
+ ≤ 𝑡𝑞(𝑠−1)

+ ; 

𝑑𝑞𝑠
+ ≥ 0; 𝑔𝑞 ≤ 𝑡𝑞5

+ , 𝑠 = 2, … ,5 ∀𝑞 𝑖𝑛 1𝑆   (2) 

𝑔𝑞 + 𝑑𝑞𝑠
− ≥ 𝑡𝑞(𝑠−1)

− ; 

𝑑𝑞𝑠
− ≥ 0; 𝑔𝑞 ≥ 𝑡𝑞5

− , 𝑠 = 2, … ,5 ∀𝑞 𝑖𝑛 2𝑆     (3) 

 and  hard constraints 

where, s denotes a range, 𝑑𝑞𝑠
+  and 𝑑𝑞𝑠

−  are 

deviational variables, 𝑛𝑠𝑐 denotes the number of 

soft classes, tqs is the limit of different ranges, and, 

wqs denotes the weight of range s in goal q. As it 

can be seen from Figure 1, there are five ranges 

that differs six degrees of desirability form ideal to 

unacceptable. 

3. Model construction for portfolio selection 

problem 

In a portfolio selection problem, it is assumed that 

there are N stocks from M sectors and K indexes 

to be selected for satisfying decision maker’s 

objectives. The selected objectives are as follows; 

 

Expected Rate of Return: The expected rate of 

return measures the return of each stock. The price 

of the stock x at time t is subtracted from the price 

of stock x at time (t-1) then divided by  the price 

of stock x at time (t-1) 

 

Risk: The standard deviation of the expected rate 

of return of each stock  

 

The system parameters and assumptions are 

given in below. 

i stock type i = 1,2,..n. 

j sector type j=1,2,..m. 

k Stock indexes k=1,2..,k. 

Xi the ratio of stock i. 

 

The mathematical representation of the 

objective functions are shown as below: 

 

Objective 1: Maximization of the Expected 

Rate of Return 

𝑍1 = ∑ (𝑟𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1   (4) 

Where 𝑟𝑖 denotes the expected rate of return of the 

Stock i over the planning period. 

 

Objective 2: Minimization of the Risk 

𝑍2 = ∑ (𝜎𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1  (5) 

Where 𝜎𝑖 represents the standard deviation of the 

expected rate of return of each stock over the 

planning period. 

 

The constraints of the portfolio selection 

problem are represented below; 
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Constraint 1: The following formula ensures 

that the total weights of the stocks must equal to 1. 

∑ 𝑋𝑖
𝑛
𝑖=1 = 1  (6) 

Constraint 2: Beyond the objective of 

minimizing expected risk of portfolio, it is 

important to avoid allocating all resources to the 

small number of stocks which operates in the same 

sector. In order to diversify the portfolio, at least 

four different sectors must be included in the 

portfolio selected. In other words, the weights of 

each sector must be at most 25 %. 

∑ 𝑋𝑖𝑖∈𝐼𝐸1
≤ 0.25, ∀𝑗  (7) 

Where SEj represents the set of stocks which 

belong to the jth sector. 

 

Constraint 3: In order to ensure the long-term 

profitability and to maximize the possibility of 

success in the long run, the model proposes to 

invest at least 50 % or more on the firms in Bist 50 

index. 

∑ 𝑋𝑖𝑖∈𝐼𝐸1
≥ 0.5(∑ 𝑋𝑖𝑖∈𝐼𝐸1

+ ⋯ + ∑ 𝑋𝑖𝑖∈𝐼𝐸𝑘
 )  (8) 

Where IEk represent the set of stocks which belong 

to the kth Bist index. 

Moreover in the model lower and upper bound 

for each stock was decided as 0≤xj ≤0.1 in order 

to ensure diversity. 

 0 ≤ 𝑋𝑖 ≤ 0,1   (9) 

3.1. Linear physical programming model for 

portfolio selection problem 

To maximize the expected rate of return of the 

selected portfolio, the first goal is defined as 

Class-2S type (i.e. “Larger is Better). 

∑(𝑟𝑖 ∗ 𝑋𝑖)

𝑛

𝑖=1

+ 𝑑1𝑆
− ≥ 𝑡1(𝑠−1)

− ; 𝑑1𝑆
− ≥ 0;  

∑ (𝑟𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1 ≥ 𝑡15

− ;  𝑠 = 2, … ,5    (10) 

 

The second goal is for portfolio risk measurement 

which is represented by Class-1S type (i.e. “ 

Smaller is Better”).  

∑(𝜎𝑖 ∗ 𝑋𝑖)

𝑛

𝑖=1

− 𝑑2𝑆
+ ≤ 𝑡2(𝑠−1)

+ ; 𝑑2𝑆
+ ≥ 0; 

∑ (𝜎𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1 ≤ 𝑡25

+ ;  𝑠 = 2, … ,5  (11) 

Then, the LPP model can be constructed as 

follows: 

𝑀𝑖𝑛 =  ∑ ∑ (𝑤𝑞𝑠
− 𝑑𝑞𝑠

− + 𝑤𝑞𝑠
+ 𝑑𝑞𝑠

+ )5
𝑠=2

2
𝑞=1      (12) 

Subject to (6) - (11). 

 

3.2. Fuzzy goal programming model for 

portfolio selection problem 

Since there are two conflicting objectives which 

force decision maker to accept trade-off values in 

the final decision, the problem can also be 

modelled by using fuzzy goal programming which 

can handle the ambiguity of the decision making 

process as follows: 

 

Objective 1: The expected rate of return 

∑ (𝑟𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1 ≻  𝑍1̃  (13) 

Where �̃�1 represents the desirable achievement 

value for the expected rate of return objective. The 

symbol “ ≻ ” denotes the statement of 

“approximately greater than or equal to”. The 

fuzzy goal can be expressed as a triangular 

membership function 𝜇(𝑍1) with tolerance limits 

for the goal (𝑍1
𝐿 , 𝑍1

𝑈) as follows: 

𝜇(𝑍1) = {

1
𝑍1−𝑍1

𝐿

𝑍1
𝑈− 𝑍1

𝐿

0

        

𝑖𝑓 𝑍1
𝑈 ≤ 𝑍1

𝑖𝑓 𝑍1
𝐿 ≤ 𝑍1 ≤ 𝑍1

𝑈

𝑍1 ≤ 𝑍1
𝐿

     (14) 

 

The membership function for fuzzy expected rate 

of return goal is shown as in the Figure 2. 

U
Z

1

L
Z

1

1

0
1

Z

1Z


 
Figure 2. Membership function of fuzzy expected rate 

of return goal 

 

Objective 2: The Risk 

 ∑ (𝜎𝑖 ∗ 𝑋𝑖)𝑛
𝑖=1  ≺  𝑍2̃  (15) 

Where �̃�2 represents the desirable achievement 

value for the risk. The symbol “≺ ” means that the 

objective function should be “approximately less 

than or equal to” the predefined limits. The fuzzy 

goal can be expressed as a triangular membership 

function 𝜇(𝑍2) with two parameters (𝑍2
𝐿 , 𝑍2

𝑈) as 

follows: 
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𝜇(𝑍2) = {

1
𝑍2

𝑈−𝑍2

𝑍2
𝑈− 𝑍2

𝐿

0

     

𝑖𝑓 𝑍2 ≤ 𝑍2
𝐿

𝑖𝑓 𝑍2
𝐿 ≤ 𝑍2 ≤ 𝑍2

𝑈

𝑍2 ≥ 𝑍2
𝑈

     (16) 

 

The membership function for fuzzy risk goal is 

shown as in the Figure 3. 

 The lower and upper tolerance limits (i.e. 

𝑍𝐿 , 𝑍𝑈  aspiration levels) are determined by 

constructing a pay-off table which contains the 

solutions of two single objective problems. In the 

solution methodology, the problem is solved 

separately with expected rate of return and risk 

objectives, respectively. Then the best and worst 

values are determined and used as the aspiration 

levels for the fuzzy goals. 

 

1

0
2

Z

2Z


L
Z

2

U
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2

 
Figure 3. Membership function of fuzzy risk goal 

  

After constructing fuzzy membership functions 

for the goals, fuzzy goal programming model can 

be presented as follows [29]: 

𝑀𝑎𝑥 =  λ                          (17) 

𝜇(𝑍1) ≥ 𝜆 

𝜇(𝑍2) ≥ 𝜆 
Subject to (6) - (9) 

 

Where λ denotes overall achievement level of 

fuzzy goals. 

4. A portfolio selection model with the help 

of linear physical programming 

In order to show the effectiveness of LPP on 

portfolio optimization problem, a real-life 

experimental study was performed by selecting 

stocks operating in Borsa İstanbul. The 

performance of the obtained portfolio is compared 

with that obtained from fuzzy goal programming 

(FGP). Then the performances of both methods, 

LPP and FGP are compared with BIST 100 in 

terms of their Sharpe Indexes. The details about 

numerical analysis can be found in the following 

subsections. 

 

4.1. Results for linear physical programming 

model 

In the model we consider two criteria: the 

expected return of stocks and risk. The sample 

consists of 89 companies that traded continuously 

at BIST 100 between April 2009 - March 2014. 

The observation period is April 2009- March 

2015. This period is divided into two; April 2009-

March 2014 and April 2014 – March 2015. April 

2009-March 2014 period is used as data to find an 

optimal portfolio. April 2014-March 2015 period 

is used to test the real performance of selected 

portfolios. The expected rate of return values are 

calculated by using the closing prices at the 

beginning of each month for each stock. The data 

are gathered on monthly basis for April 2009 – 

March 2014 period.  The number of observations 

gathered was 60. 

 The physical programming represents different 

desirability degrees for each criteria. These 

desirability degrees are expressed by using six 

types of ranges which are ideal, desirable, 

tolerable, undesirable, highly undesirable and 

unacceptable [30]. Table 2 represents the target 

values for expected rate of return and risk. 

Generally, decision makers estimate the target 

values based on their knowledge and experience. 

In the paper, the interval target values are also 

estimated, however, a payoff table (see Table 1) 

which contains the solutions of 2-single objective 

problem is constructed to estimate the max. and 

min. limits of these target values which are also 

used in constructing the FGP membership 

functions. 

Table 1. Corresponding pay-off table 

Objectives Expected Rate of 
Return 

Risk 

Maximize 

Expected Rate of 
Return 

4.059 16.326 

Minimize Risk 2.148 10.347 

      

Table 2. Target values for criteria’s 

  Expected 
Rate Of 

Return 

Risk 

Ideal >4.0590 <10.340 

Desirable 4.059-3.247 10.340-12.408 

Tolerable 3.247-2.760 12.408-13.648 

Undesirable 2.760-2.354 13.648-14.688 

Highly Undesirable 2.354-2.140 14.680-16.320 

Unacceptable <2.14 >16.320 

 

Once the class function is defined according to the 

target values, the LPP weight algorithm was used 

to calculate the weights presented below. 

http://www.sciencedirect.com/science/article/pii/S0278612514001010#tbl0025
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𝑤12
+ = 0.1232, 𝑤13

+ = 0.2258, 
 𝑤14

+ = 0.3626 𝑤15
+ = 1.5842  

𝑤22
− = 0.0484, 𝑤23

− = 0.0887, 
 𝑤24

− = 0.1411 𝑤25
− = 0.0229  

 

By solving the LLP mathematical model, 12 

stocks were selected for our portfolio. Table 3 

presents the stocks notations, their expected rate 

of returns, the risks for April 2009 – March 2014 

period, Bist index classification and their sectors. 

And the last column shows the proportions of each 

stock in the portfolio for optimal solution. 

Table 3. Selected stocks for portfolio with the help of 

linear physical programming 

Notation Expected 

Return 

Risk Bist 

Index 

Proportions 

DOAS E 3.5010 15.3098 50 0.0814 

NTTUR E 1.4591 9.0580 100 0.0686 

TCELL E 0.6816 6.3395 30 0.1000 

CCOLA E 3.4262 8.5122 50 0.1000 

TTRAK E 5.2838 11.6482 100 0.1000 

ULKER E 3.9302 10.8275 30 0.0500 

NTHOL E 3.8334 10.8504 100 0.1000 

TAVHL E 3.3310 9.8978 30 0.1000 

YAZIC E 2.4507 8.8134 100 0.0500 

ASELS E 3.3459 16.3101 30 0.1000 

LOGO E 4.1332 13.4042 100 0.1000 

NETAS E 2.7919 23.2095 100 0.0500 

 

4.2. Results for fuzzy goal programming 

model 

In order to compare the performance of LPP, we 

have also solved the problem with FGP. The lower 

and upper tolerance limits are determined as in 

Table 1 by constructing a pay-off table which 

contains the solutions of 2-single objective 

problem. These max-min limits guarantee the 

feasibility of each fuzzy goal in the solution. 

Figure 4 and 5 shows the membership functions 

for satisfaction levels of the expected return and 

risk goals, respectively. 

 

1

0
1

Z

1Z


4.0592.148  
Figure 4. The membership function of expected return 

goal 

1

0
2

Z

2Z


10.347 16.326  
Figure 5. The membership function of risk goal 

 

After applying FGP, the following results were 

obtained. 

Table 4. Selected stocks for portfolio with the help of 

fuzzy goal programming 

Notation Expected 

Return 

Risk Bist Index Proportions 

DOAS E 3.5010 15.3098 50 0.1000 

NTTUR E 1.4591 9.0580 100 0.0500 

TCELL E 0.6816 6.3395 30 0.1000 

CCOLA E 3.4262 8.5122 50 0.1000 

TTRAK E 5.2838 11.6482 100 0.1000 

ULKER E 3.9302 10.8275 30 0.0500 

NTHOL E 3.8334 10.8504 100 0.1000 

TAVHL E 3.3310 9.8978 30 0.1000 

VKGYO E 5.7724 19.8805 100 0.0434 

YAZIC E 2.4507 8.8134 100 0.0066 

ASELS E 3.3459 16.3101 50 0.1000 

LOGO E 4.1332 13.4042 100 0.1000 

NETAS E 2.7919 23.2095 100 0.0500 

 

Table 4 presents the stocks, their notation, their 

expected rate of return and the risk for April 2009 

– March 2014 period when the problem is solved 

with the help of fuzzy goal programming. And the 

last column shows the weights of each stock in the 

portfolio for optimal solution. 

 The overall results of both LPP and FGP 

models are provided in Table 5. The results show 

that the portfolio returns obtained from LPP model 

is fewer than those obtained from the FGP model. 

However, the risk obtained from LPP is fewer than 

the one obtained from FGP model. Although both 

FGP and LPP models provide compromise 

solutions, the piecewise linear goal functions and 

multiple target values of LPP model allow to 

generate the different sets of Pareto optimal 

solutions. 

Table 5. Results for fuzzy goal programming and 

linear physical programming 

Objective FGP LPP 

Expected Rate of Return 3.4292 3.247 

Risk 12.3025 11.706 
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4.3. The performance of portfolio for control 

period 

In order to test the performance of our portfolio, 

we use the control period. The control period is 

April 2014 – March 2015. The performance of our 

portfolio performance will be compared with the 

present market. We assume that the investor 

invests his/her fund in the selected portfolio 

determined by linear physical programming in 

April 2014 and hold this portfolio for 12 months 

till March 2015.  

BIST 100 index is selected to represent the 

market. Firstly the return and risk are calculated 

for both BIST 100 and the selected portfolio on 

monthly basis. In order to compare the 

performance of selected portfolio and the index 

more vigorously, Sharpe index [31] was used. The 

success of the portfolio will be evaluated by 

comparing the Sharpe index of market and Sharpe 

index of selected portfolio. Higher Sharpe Index is 

better. So if the Sharpe Index value of the portfolio 

is higher than the Sharpe Index value of the 

market, the performance of portfolio will be better 

than the market. Sharpe index considers both risk 

and return at the same time. Sharpe index is 

calculated as follows; 

 

S =   (rp – rf)/∂ rp    (17) 

 

  rp = The average return of portfolio for a given 

period, 

rf = The average risk free interest rate (usually 

state bond or treasury bond interest rates are 

accepted) for a given period,   

∂ rp= the standard deviation of portfolio for a 

given period (represents the risk criteria). 

Table 6. Sharpe index value of Bist 100 and the 

portfolios selected with the help of LPP and FGP 

 BIST 100 

Index 
LPP FGP 

Expected 

Rate of 

Return 

% 2.4 % 4.33 %3.90 

Risk % 6.48 % 8.41 %8.96 

Sharpe 

Index 
0.26 0.43 0.36 

 

Table 6 represents the expected rate of return, risk 

and Sharpe Index value of both BIST 100 and the 

portfolio obtained by LPP and FGP. Sharpe Index 

of BIST 100 and the portfolio are calculated for 

April 2014 and March 2015. The risk-free interest 

rate is taken as the average Treasury bond interest 

rate for April 2014 – March 2015 period 

(%0,7220). The findings reveal that the 

performance of the portfolio obtained by LPP was 

better than both the performance of BIST 100 

Index and the portfolio obtained by FGP in terms 

of sharpe index. 

5. Conclusion 

The success of portfolio selection problem can 

only be ensured by successful selection of stocks. 

In this paper, a new technique for portfolio 

optimization problem with the aid of LPP is 

presented. The main purpose of the study is to find 

an optimum portfolio that maximizes the return 

which at the same time minimizes the risk. We 

compared the performance of the portfolios 

obtained by LPP and FGP approaches with the 

present market (BIST 100 Index) for the control 

period within April 2014 – March 2015 in terms 

of Sharpe index. The results revealed that LPP has 

potential to help the investors to find the efficient 

portfolio as much as possible. Finally, this study is 

thought to make contribution to literature by 

introducing the LPP for portfolio selection 

problems. Further research may consider more 

criteria and more constraints. 
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