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Abstract. This paper is concerned with the numerical solutions of a two-dimensional space-time
fractional differential equation used to model the dynamic properties of complex systems gov-
erned by anomalous diffusion. The space-time fractional anomalous diffusion equation is defined
by replacing the second order space and the first order time derivatives with Riesz and Caputo
operators, respectively. Using the Laplace and Fourier transforms, a general representation of
analytical solution is obtained in terms of the Mittag-Leffler function. Grünwald-Letnikov (GL)
approximation is also used to find numerical solution of the problem. Finally, simulation results
for two examples illustrate the comparison of the analytical and numerical solutions and also
validity of the GL approach to this problem.
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1. Introduction

In recent years, Fractional Order Partial Differ-
ential Equations (FOPDEs) have played an im-
portant role in applied mathematics, physics,
engineering, economics and other research ar-
eas. The dynamic models of a growing number
of physical phenomena in elasticity theory, con-
trol theory, finance, electromagnetics, diffusion
processes and in many other fields can be mod-
eled by FOPDEs which are characterized by
fractional space and/or time derivatives. Sev-
eral analytical and numerical solution methods
have been introduced to obtain the solutions of
FOPDEs.

The space-time fractional differential equa-
tions considered in this work have had more
attention from the view point of physical ap-
plications. For example, anomalous diffusion
or dispersion processes can be modeled by
these type of equations. Some related works
in the literature are as follows. Zhang and

Liu [1] studied the fundamental solutions of
space-time Riesz fractional partial differential
equations in terms of the Caputo fractional
derivatives. Shen et al. [2] proposed the
exact and numerical solutions of the Riesz
advection-dispersion equation which is defined
in terms of the Riemann-Liouville (RL) frac-
tional derivatives, and they also analyzed sta-
bility and convergence of the numerical meth-
ods. Chen et al. [3] obtained the analyti-
cal and numerical solutions of a Riesz space-
fractional reaction-dispersion equation by us-
ing the Laplace and Fourier transforms and
also an explicit finite-difference approximation.
Yang et al. [4] presented the analytical solu-
tion and numerical schemes for the time and
space-symmetric fractional diffusion equation
under homogeneous Dirichlet and Neumann
conditions. Zhuang et al. [5] used the numer-
ical methods for the variable-order fractional
advection-diffusion equation with a nonlinear
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source term. Meerschaert and Tadjeran [6]
also developed some basic numerical methods
to solve one-dimensional fractional advection-
dispersion equations with variable coefficients.
Yang et al. [7] analyzed the numerical solu-
tions of a fractional partial differential equa-
tion with the Riesz space derivatives on a fi-
nite domain by using three numerical meth-
ods. Ciesielski and Leszczynski [8, 9] presented
a numerical method based on finite-difference
method for numerical solutions of ordinary
differential equations in terms of Riesz and
Riesz-Feller operators, respectively. Gorenflo
et al. [10] considered a Cauchy problem for
a partial differential equation of fractional or-
der in terms of the Caputo time derivative
and the Riesz space Pseudo-differential oper-
ators. Saichev and Zaslavsky [11] considered a
generalization of the normal diffusion equation
which can be used to formulate a fractional ki-
netic equation.

Povstenko [12] presented a survey of nonlo-
cal generalizations of the Fourier law and an-
alyzed a heat conduction equation in terms of
time fractional derivative and Riesz space frac-
tional derivative. For solution of the multi-
dimensional fractional partial differential equa-
tions, Meerschaert et al. [13] presented a
practical numerical method which is improved
by using a shifted Grünwald finite difference
scheme. El-Sayed and Gaber [14] applied
the Adomian Decomposition Method to solve
some diffusion-wave equations using the con-
nection between the Caputo and Riesz frac-
tional derivatives. Özdemir et al. [15] re-
searched the solution of an axial-symmetric
diffusion-wave problem in polar coordinates.

Özdemir and Karadeniz [16] applied the GL
approximation to axial-symmetric diffusion-
wave problems defined in cylindrical coordi-
nates. There are some other papers related
to the solution of diffusion-wave equations
concerning analytical and numerical solutions
[17, 18, 19, 20, 21].

In this work, our aim is to find the analyti-
cal and numerical solutions of an initial value
problem defined in terms of space-time frac-
tional differential equation which is used to
model diffusion process. We suppose that the
solution and initial condition functions belong
to the Lizorkin space. The main reason for this
choice is that the Lizorkin space is convenient
while dealing both with the Fourier transform,
and with the fractional integration and differ-
entiation operators. Moreover, this operator is

invariant with respect to the fractional integra-
tion and differentiation operators [22].

After all, we can underline this work as fol-
lows. This work is an extension of a one-
dimensional problem considered in [1] a two
dimensional case. In addition, we not only find
the analytical solution but also study the nu-
merical solution using an approximation of the
Caputo fractional derivative. Since it is not
always possible to find the analytical solution
of fractional differential equations, it is impor-
tant to have numerical approximations of the
solutions.

The paper is organized as follows. In Section
2, some basic mathematical definitions from
fractional calculus which are used for formu-
lation of the problem are given. In Section 3,
the detailed description and formulation of the
problem is given. To find the analytical solu-
tion Laplace and Fourier transforms are used.
In Section 4, the GL approximation is applied
to obtain the numerical results. The applica-
bility of this approach is shown in two- and
three-dimensional figures in Section 5. More-
over, the variation of problem parameters are
analyzed in these figures. Finally, we conclude
our work in Section 6.

2. Preliminaries

In this section, we recall some basic defini-
tions of fractional calculus used in our prob-
lem formulation. There are some prefer-
ences dealt with in the definition of fractional
derivatives such as Riemann-Liouville, Caputo,
Riesz, Weyl, etc [23, 24, 25, 26]. It is noted that
each type of fractional derivative has different
properties and applications. This allows some-
one to decide and choose the proper definition
for problem construction. Here, we give the
definitions of the Riesz Pseudo-differential op-
erator and the Lizorkin space. Furthermore,
we recall the Fourier transform, the Caputo
fractional derivative and the Laplace transform
of the Caputo definition.

Definition 1. Let S be the space of rapidly
decreasing test functions. Denote by V (R) the
set of functions v ∈ S satisfying the conditions:

dnv

dxn
|

x=0
= 0, n = 0, 1, 2, ... (1)

The Lizorkin space Φ (R) is introduced as the
Fourier pre-image of the space V (R) in the
space S , i.e.,
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Φ (R) = {ϕ ∈ S : ϕ̂ ∈ V (R)} . (2)

According to the definition of the Lizorkin
space, any function ϕ ∈ Φ (R) satisfies the or-
thogonality conditions

∫ +∞

−∞
xnϕ (x) dx = 0, n = 0, 1, 2, ....

Definition 2. For a function u of the class
S of a rapidly decreasing test functions on the
real axis R, the Fourier transform is defined as

û (w) = F [u (x) ;w]

=

∫ +∞

−∞
eiwxu (x) dx, w ∈ R,

(3)

whereas the inverse Fourier transform has the
form

u (x) = F−1 [û (w) ;x]

=
1

2π

∫ +∞

−∞
e−iwxû (w) dw, x ∈ R.

(4)

Definition 3. The Riesz pseudo-differential
operator is defined by analytic continuation in
the whole range n − 1 < α ≤ n, n ∈ Z and
α 6= 1 as

∂αu (x, t)

∂ |x|α = −c [−∞Dα
xu (x, t) +x D

α
∞u (x, t)] ,

(5)

where the coefficient c = 1
2 cos(απ

2
)
, and

−∞Dα
xu (x, t) =

(
d

dx

)n [
In−α
+ u (x, t)

]
, (6)

xD
α
∞u (x, t) = (−1)n

(
d

dx

)n [
In−α
− u (x, t)

]

(7)

are the left and right-side Weyl fractional

derivatives. In Eqs.(6) and (7), the I
β
± (β > 0)

denote the Weyl fractional integrals defined as

I
β
+u (x) =

1

Γ (β)

∫ x

−∞
(x− ξ)β−1 u (ξ) dξ,

I
β
−u (x) =

1

Γ (β)

∫ +∞

x

(ξ − x)β−1 u (ξ) dξ.

Definition 4. The Caputo fractional deriva-
tive is defined as

0D
β
t u (t) =

1

Γ (n− β)

×
∫ t

0
(t− τ)n−β−1

(
d

dt

)n

u (τ) dτ,

where n− 1 < β ≤ n, n ∈ Z

Definition 5. The Laplace transform of the
Caputo fractional derivative of order 0 < β ≤ 1
is

L
[
0D

β
t u (t)

]
= sβU (s)− sβ−1u (0) , (8)

where U (s) is Laplace transform of u (t) .

Definition 6. The one-parameter function of
Mittag-Leffler function is defined by series ex-
pansion as

Eβ (z) =
∞∑

k=0

zk

Γ (βk + 1)
, β > 0. (9)

3. Analytical Solution

Let u (x, y, t) be a real-valued, multivariable
function whose arguments (x, y) ∈ [−π, π]×
[−π, π] are the space and t ∈ R

+ is the time
variables. We consider the anomalous diffusion
problem which is described by a Riesz-Caputo
fractional partial differential equation as

0D
β
t u (x, y, t) =

∂αu (x, y, t)

∂ |x|α +
∂αu (x, y, t)

∂ |y|α ,

(10)

0 < β ≤ 1, 0 < α < 1,

with the following initial and boundary condi-
tions

u (x, y, 0) = u0 (x, y) , (11)
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lim
x,y→±∞

u (x, y, t) = 0. (12)

It should be noted that we understand the
space and time fractional derivatives in a sense
of the Riesz and Caputo definitions, respec-
tively. Furthermore, we assume that the so-
lution and initial condition functions can be
expanded into the complex Fourier series.

We suppose that the solution of the problem
is represented by the following series

u (x, y, t) =
∞∑

n=−∞

∞∑

m=−∞

knm (t) einxeimy,

(13)

where i =
√
−1. Firstly, we compute ∂αu(x,y,t)

∂|x|α

by using the definitions given in Section 2. For
this purpose, it is necessary to calculate the
left and right side RL fractional derivatives
with respect to x variable. The calculation of

−∞Dα
xu (x, y, t) and xD

α
∞u (x, y, t) is given as

follows (see also [1]):

−∞Dα
xu (x, y, t)

=
∂

∂x

[
1

Γ (1− α)

∫ x

−∞

u (ξ, y, t)

(x− ξ)α
dξ

]

=
∂

∂x

[
1

Γ (1− α)

×
∞∑

n=−∞

∞∑

m=−∞

knm (t) eimy

∫ x

−∞

einξ

(x− ξ)α
dξ

]

=
∞∑

n=−∞

∞∑

m=−∞

knm (t) eimy

Γ (1− α)
einxΓ (1− α) (in)α

=
∞∑

n=−∞

∞∑

m=−∞

knm (t) (in)α einxeimy,

and

xD
α
∞u (x, y, t)

=
∂

∂x
(−1)

d

dx

[
1

Γ (1− α)

∫ ∞

x

u (ξ, y, t)

(x− ξ)α
dξ

]

= (−1)
d

dx

[
1

Γ (1− α)

×
∞∑

n=−∞

∞∑

m=−∞

knm (t) eimy

∫ ∞

x

einξ

(ξ − x)α
dξ

]

=
∞∑

n=−∞

∞∑

m=−∞

knm (t) eimy

Γ (1− α)
einxΓ (1− α) (−in)α

=
∞∑

n=−∞

∞∑

m=−∞

knm (t) (−in)α einxeimy.

Therefore, we obtain

∂αu (x, y, t)

∂ |x|α = − 1

2 cos
(
απ
2

)

×
∞∑

n=−∞

∞∑

m=−∞

knm (t) einxeimy [(in)α + (−in)α] .

In a similar way, the term ∂αu(x,y,t)
∂|y|α

can be eval-

uated as follows:

∂αu (x, y, t)

∂ |y|α = − 1

2 cos
(
απ
2

)

×
∞∑

n=−∞

∞∑

m=−∞

knm (t) einxeimy [(im)α + (−im)α] .

Substituting Eqs.(13) to (3) into Eq.(10), we
obtain

0D
β
t knm (t) = − 1

2 cos
(
απ
2

)

× [(in)α + (−in)α + (im)α + (−im)α] knm (t) .

Next, we take the Laplace transform with re-
spect to time. Then we have

sβknm (s)− sβ−1knm (0)+Aknm (s) = 0, (14)
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where

A =
1

2 cos
(
απ
2

)

× [(in)α + (−in)α + (im)α + (−im)α] .

Let us consider the main value branch of A for
computational purposes

A
′

= |n|α + |m|α

and using the inverse Laplace transform,
Eq.(14) yields

knm (t) = knm (0)Eβ

(
−A

′

tβ
)
, (15)

where Eβ is the Mittag-Leffler function. Ac-
cording to our assumptions and similar to the
solution function u (x, y, t), the initial condi-
tion function u0 (x, y) can also be expanded
into a Fourier series:

u0 (x, y) =
∞∑

n=−∞

∞∑

m=−∞

u0nm (0) einxeimy,

(16)

where u0nm (0) are the Fourier coefficients

u0nm (0) =
1

(2π)2

∫ π

−π

∫ π

−π

u0 (x, y) e
−inxe−imydxdy.

(17)

On the other hand, we take t = 0 in Eq.(13)
and obtain knm (0) = u0nm (0). Then the
closed form of analytical solution to the prob-
lem is obtained as

u (x, y, t)

=
∞∑

n=−∞

∞∑

m=−∞

u0nm (0)Eβ

(
−A

′

tβ
)
einxeimy.

4. GL Approximation For Numerical

Solution

To find the numerical solution of the problem
we use the Grünwald-Letnikov (GL) formula
which is based on time discretization and is de-
fined as a limit of a fractional-order backward
difference

GLDβf (t) = lim
h→0

(h)−β

[ th ]∑

r=0

(−1)r
(
β

r

)
f (t− rh)

(18)

where β > 0 is the order of fractional deriva-
tive, t is the length of time interval on which
problem is formulated, h is the length of subin-
tervals of time t. From the theoretical back-
ground of fractional calculus it is well known
that when the function f (t) of positive argu-
ment has continuous derivatives of integer or-
der 0, 1, ..., n, the RL and Grünwald-Letnikov
definitions are equivalent [25]. Furthermore,
the relation between the Caputo and RL frac-
tional derivatives give allows us to apply the
GL formula for approximation of the Caputo
fractional derivative. It was mentioned in the
problem formulation that we consider the Ca-
puto time fractional derivative. Therefore, we
give firstly the relation between the RL and
Caputo definitions (see [27])

RLDβf (t) = CDβf (t)+
n−1∑

k=0

Φk−β+1 (t) f
(k) (0)

(19)
where

Φq+1 (t) =

{
tq

Γ(q+1) t > 0

0 t ≤ 0
. (20)

Substituting Eq. (18) into (19), we ob-
tain the numerical calculation formula for
the Caputo fractional derivative in terms of
Grü nwald-Letnikov definition

CDβf (t) = lim
h→0

(h)−β

[ th ]∑

r=0

(−1)r
(
β

r

)
f (t− rh)

− 1

tβΓ (1− β)
f (0) , (0 < β ≤ 1) .

It should be noted that our aim is to sub-
stantiate the approximate numerical solution
of the problem. For this purpose we consider
a finite number series to calculate the approxi-
mate value of the Caputo fractional derivative:
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CDβf (t) ≈ (h)−β

[ th ]∑

r=0

(−1)r
(
β

r

)
f (t− rh)

− 1

tβΓ (1− β)
f (0) .

For analyzing this approach let us consider the
following problem: one-term, constant coeffi-
cient fractional differential equation

0D
β
t k (t) = −A

′

k (t) , 0 < β ≤ 1, (21)

under initial condition

k (0) =
1

(2π)2

∫ π

−π

∫ π

−π

u0 (x, y) e
−inxe−imydxdy,

(22)

where A
′

= |n|α + |m|α , (0 < α < 1). Now,
we use the approximation of the Caputo deriv-
ative given by Eq. (4) and rewrite Eq. (21)
as

1

hβ

M∑

r=0

w
(β)
j k (hM − rh)

− 1

tβΓ (1− β)
k (0) +A

′

k (hM) = 0

or

k (hM) =
1(

1
hβw

(β)
0 +A

′

)

×
[

k (0)

tβΓ (1− β)
− 1

hβ

M∑

r=1

w(β)
r k (hM − rh)

]
,

where M = t
h
and w

(β)
r = (−1)r

(
β
r

)
. In partic-

ular,

w
(β)
0 = 1; w(β)

r =

(
1− β + 1

r

)
w

(β)
r−1,

r = 1, 2, · · · ,M.

The applicability of this numerical approx-
imation is evident from Figures obtained by
MATLAB. In the following section we present
some Figures and validate our analytical and

numerical solutions from different points of
view.

5. Numerical Examples

In this section, we study numerical examples
to demonstrate the applicability of the GL ap-
proximation and investigate the behavior of
anomalous diffusion process for different values
of parameters. For this purpose, we present
two- and three-dimensional graphs. First we
consider the exponential initial condition func-
tion

u0 (x, y) = e−2π|x| + e−2π|y|, (−π < x, y < π) .
(23)

The function u0 (x, y) is continuated periodi-
cally on the whole axis. In the second example,
the parabolic initial condition

u0 (x, y) = x2 + y2, (−π < x, y < π) (24)

is chosen. As above, this function is continu-
ated periodically on the whole axes.

At first, we point out the overlapping of
the analytical and numerical solutions for the
order of time derivative β = 1 and the order
of space derivative α = 0.5, the term num-
bers n = m = 10, the step size h = 0.01 at
x = 0.2 and y = 0.5 in Figures 1a and 1b. The
analytical and numerical solutions are found
to be in good agreement. Figures 2a and 2b
show the solution profiles for different values of
β = 0.1, 0.5, 0.7, 1 for α = 0.5, x = 0.2, y = 0.5
and h = 0.01.

Similarly, Figures 3a and 3b display the vari-
ation of behavior of the solution for the values
α = 0.1, 0.5, 0.7, 0.99 when β = 0.5, x = 0.2,
y = 0.5 and h = 0.01. It should be recalled
that α 6= 1 due to the definition of the Riesz
operator.

In Figures 4a and 4b, we show the contribu-
tion of term numbers n = m = 5, 10, 20, 30, 35
to the solution for α = 0.99, β = 1, x = 0.2,
y = 0.5 and h = 0.01. We obtain that the
numerical solutions coincide for more than 35
terms. In other words, it is enough to take only
35 terms for solution series defined by Eq.(3).
Finally, we present the whole solution of the
problem in Figures 5a and 5b for α = 0.99,
β = 1, h = 0.01 and n = m = 35. In addition,
we show the dependence of u (x, y, t) with re-
spect on x and t variables in Figures 6a and
6b.
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Figure 1a. Comparison of analytical and
numerical solutions for β = 1, α = 0.5 and

u0 (x, y) = e−2π|x| + e−2π|y|
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Figure 1b. Comparison of analytical and
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u0 (x, y) = x2 + y2
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u0 (x, y) = e−2π|x| + e−2π|y|
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Figure 2b. Dependence of solution on time for
different values of parameter β for

u0 (x, y) = x2 + y2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−15

t (time)

u
 (

x,
y,

t)

 

 

α=0.1
α=0.5
α=0.7
α=0.99

Figure 3a. Dependence of solution on time for
different values of parameter α for

u0 (x, y) = e−2π|x| + e−2π|y|
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24 N. Özdemir, et al. / Vol.1, No.1, pp.17-26 (2011) c©IJOCTA

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20
x 10

−15

t (time)

u
 (

x,
y,

t)

 

 

n=m=5
n=m=10
n=m=20
n=m=30
n=m=35

Figure 4a. Contribution of term numbers to the
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0
2

4
6

8

0

0.5

1

1.5
−3

−2

−1

0

1

x 10
−12

x (space)t (time)

u
 (

x
,y

,t
)

Figure 6a. Surface of u (x, y, t) for α = 0.99,
β = 1, y = 0.5 with u0 (x, y) = e−2π|x| + e−2π|y|
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Figure 6b. Surface of u (x, y, t) for α = 0.99,
β = 1, y = 0.5 with u0 (x, y) = x2 + y2
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6. Conclusion

In this paper, the solutions of a two-
dimensional anomalous diffusion problem were
researched. The solutions of the problem were
assumed to have Fourier series expansion. In
the problem formulation, the space deriva-
tives were considered as the Riesz pseudo-
differential operators, and the time derivative
was defined as the Caputo fractional deriva-
tive. To obtain the closed form analytical so-
lution of the problem, the Laplace transform
with respect to time variable and the Fourier
transform with respect to space variables were
applied. The GL approximation of the Ca-
puto fractional derivative was used to obtain
the numerical solutions. The applicability of
the GL numerical scheme was substantiated by
two examples and is evident from the Figures
obtained with MATLAB. In addition, the so-
lutions for different values of parameters were
shown in Figures. Finally, it should be pointed
out that the fundamental solution of the con-
sidered anomalous diffusion problem, which
behaves as subdiffusion process, can be com-
puted easily and effectively by the GL approx-
imation.
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