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Abstract. In this paper, new classes of cone-generalized (,)-convex functions are introduced for a 

nonsmooth vector optimization problem over cones, which subsume several known studied classes. 

Using these generalized functions,  various sufficient Karush-Kuhn-Tucker (KKT) type  nonsmooth 

optimality conditions are established wherein Clarke's generalized gradient is used. Further, we prove 

duality results for both Wolfe and Mond-Weir type duals under various types of cone-generalized 

(,)-convexity assumptions. 
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1. Introduction 

Convexity plays an important role in many 

aspects of optimization theory including 

sufficient optimality conditions and duality 

theorems. In a quest to weaken the convexity 

hypothesis various generalized convexity notions 

have been introduced. Hanson and Mond [8] 

introduced F-convexity and Vial [10] defined -

convexity. Preda [9] unified the two concepts and 

gave the notion of an (F,)-convex function. 

Another generalization of convexity is invexity, 

introduced by Hanson [7]. The concept of (,)-

invexity has been introduced by Caristi et al. [3]. 

Sufficient optimality conditions and duality 

results have been studied under (,)-invexity 

for differentiable single-objective and 

multiobjective programs [3,6]. (,)-invexity 

notion has been extended to the nonsmooth case  

 

 

by Antczak and Stasiak [2].  

In this paper, we use the concept of cones to 

define new classes of nonsmooth functions that 

we call K-generalized (,)-convex, K-

generalized (,)-pseudoconvex and K-

generalized (,)-quasiconvex functions, where 

K is a closed convex pointed cone with nonempty 

interior. Sufficient optimality conditions are 

proved for a nonsmooth vector optimization 

problem over cones using the above defined 

functions. Further, both Wolfe and Mond-Weir 

type duals are formulated and weak and strong 

duality results are established. 

2. Definitions and preliminaries 

Let S be a nonempty open subset of Rn. 

Definition 2.1. A function : RS  is said to 

be locally Lipschitz at a point uS if for some 

0ul  , 
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 | ( ) ( ) | || ||  ux x l x x   

for all x, x  in a neighborhood of u. We say that 

: RS  is locally Lipschitz on S if it is locally 

Lipschitz at each point of S. 

Let 
1 2( , ,...., ) : R

t m

mf f f f S  be a vector-

valued function. Then f is said to be locally 

Lipschitz on S if each fi is locally Lipschitz on S. 

Definition 2.2. [4] Let : RS  be a locally 

Lipschitz function on S. The Clarke's generalized 

directional derivative of  at uS in the direction 

v, denoted as 0 ( ; )u v , is defined by 

 0

0

( ) ( )
( ; ) limsup

y u

t

y tv y
u v

t

 







 
  

Definition 2.3. [4] The Clarke's generalized 

gradient of  at uS, denoted as ( ) u , is given 

by  

0( ) { : ( ; ) , , }     R R
n nu u v v v    . 

The generalized directional derivative of a locally 

Lipschitz function 1( ,..., ) : R
t m

mf f f S  at 

u S  in the direction v is given by 

0 0 0 0

1 2( ; ) ( ( ; ), ( ; ),...., ( ; )) t

mf u v f u v f u v f u v . 

The generalized gradient of  f at u is the set  

1 2( ) ( ) ( ) ... ( )      mf u f u f u f u ,where ( ) if u  

is the generalized gradient of if  at u for i = 1, 

2,...,m. An element 1( ,..., ) ( ) t

mA A A f u  is a 

continuous linear operator from Rn to Rm and  

1( ,..., ) R
t t t m

mAu A u A u for all R
nu . 

Let  R
mK  be a closed convex pointed cone 

with nonempty interior and let intK denote the 

interior of K. The positive dual cone K* and the 

strict positive dual cone 
*sK  of K, are 

respectively defined as 

 
* * *{ : , 0 for all },and   R

mK y y y y K  

* * *{ : , 0 for all \{0}}   R
s mK y y y y K . 

Throughout the paper, we shall denote an element of 

Rn+1 by the ordered pair (a, r), where aRn and rR. 

Consider a function φ : SSRn+1R such that    

φ(x, u; ) is convex on Rn+1 and φ(x, u; (0, r))  0 for 

every x , uS and any real number rR+. Let             

f : SRm  be a locally Lipschitz function , uS ,

1( ,..., ) ( ) t

mA A A f u , 1( ,..., ) R
t m

m  

and ( , ;( , )) x u A  denote the vector 

1 1( ( , ;( , )),..., ( , ;( , )))t

m mx u A x u A    . 

We introduce the following  definitions: 

Definition 2.4. The function  f  is said to be K-

generalized (,)-convex at u on S if for every 

xS 

( ) ( ) ( , ;( , )) , ( ).    f x f u x u A K A f u  

Definition 2.5. The function f  is said to be K-

generalized (,)-pseudoconvex at u   on S if for 

every xS, ( )A f u  

( , ;( , )) int ( ( ) ( )) int .    x u A K f x f u K  

Equivalently, if for every xS 

( ) ( ) int ( , ;( , )) int ,

( ).

   

 

f x f u K x u A K

A f u


 

Definition 2.6. The function f  is said to be K-

generalized (,)-quasiconvex at u  on S if for 

every xS 

( ) ( ) int ( , ;( , )) ,

( ).

   

 

f x f u K x u A K

A f u


 

If f is K-generalized (,)-convex (K-generalized 

(,)-pseudoconvex, K-generalized (,)-

quasiconvex) at every uS then f is said to be K-

generalized (,)-convex (K-generalized (,)-

pseudoconvex, K-generalized (,)-

quasiconvex) on S. 

Remark 2.7: 1) If R
mK += and φ:SSRn+1R 

is of the form 

 φ(x, u; (A, )) = F(x, u, A) + d(x, u) 

where F(x, u,  ) is sublinear,  is a constant and  

d : SSR+, then K-generalized (,)-convexity 

reduces to (F,)-convexity introduced by Preda 

[9]. 

2) If f is a scalar valued function and K =R+, then 

Definition 2.4 becomes the definition of (,)-

invexity given by Antczak and Stasiak [2]. 

3) If f is a differentiable function and R
mK += , 

then the above definitions reduce to the 

corresponding definitions introduced in [6]. 

4) If R
mK +=  then Definition 2.4 becomes the 

definition of (,)-invexity introduced by 

Antczak [1]. 
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Now we give an example of a K-generalized 

(,)-convex function. 

Example 2.8. Let S=
2

R  and

{( , ) : 0, }.  K x y x y x Consider the following  

nonsmooth function 2: ,Rf S

1 2( ) ( ( ), ( )).f x f x f x  

1 1

1 1 2

1 2 1

4

1 2 1

2 1 2
2 2

1 2 1

, 0
( , )

2 , 0

1 1
, 0

( , ) 2 3

, 0

 
 




 

 
  

x x
f x x

x x x

x x x
f x x

x x x

 

Here, 

1 11 12 11 12(0,0) ( , ), [ 1,0], {0}    f A A A A  

and 2 21 22 21 22

1
(0, 0) ( , ), [0, ], {0}.

2
   f A A A A  

Define 
3:   R RS S  as 

1 2

4

1 2 1

( )2 2

1 2 1

( ) , 0
( , ; ( , ))

( ) , 0
 

  
 

 
a a

x x x
x u a

x x e x


  . 

Note that ( , ;(., .))x u  is convex on 3
R , 

( , ; (0, )) 0x u r , for every (x, u)SS  and any 

rR+. 

Set 
1

(0, )
3

  .Then, at (0,0)u  we have 

11 12

21 22

1 1 1

( )2 2

1 2 1 2

( )2 2

1 2 1

( ) ( ) ( , ; ( , ))

1
( , ), 0

6

(2 ( ) ,

( )(1 )), 0

 

 

  


 


  


  


A A

A A

f x f u x u A

x x x

x x x x e

x x e x



 

which gives that, 

( ) ( ) ( , ; ( , )) ,  f x f u x u A K for every xS 

and (0,0).A f  

Hence, f is K-generalized (,)-convex at u on S. 

It is clear that every K-generalized (,)-convex 

function is K-generalized (,)-pseudoconvex. 

Converse of this statement may not be true as 

shown by the following example.  

Example 2.9.  Let S= 2
R  and 

{( , ) : 0, }.  K x y x y x Consider the following  

nonsmooth function 2: ,Rf S

1 2( ) ( ( ), ( )) .f x f x f x  

1 1

1 1 2

1

1 2 1

2 1 2 2 2

1 2 1

, 0
( , )

0, 0

2 , 0
( , )

, 0

 
 



  
 

 

x x
f x x

x

x x x
f x x

x x x

 

Here, 

1 11 12 11 12

2 21 22 21 22

(0,0) ( , ), [ 1,0], {0}

and (0,0) ( , ), [ 1,0], [ 2,0].

    

     

f A A A A

f A A A A

 

Define 
3:   R RS S  as 

1 2

2

1 2 1

2 2

1 2 1

( ) , 0
( , ; ( , ))

( ) , 0


  
 

 
a a

x x x
x u a

x x e x


  . 

Note that, ( , ; (., .))x u  is convex on 3
R , 

( , ; (0, )) 0x u r , for every (x, u)SS  and any 

rR+. 

Set 
1

( , 1)
2

   .Then, at (0,0)u   we have 

1 2( ) ( ) int 0, 0

( , ;( , )) int ,

f x f u K x x

x u A K

    

 
 

for every xS and (0,0).A f  

Thus  f is K-generalized (,)-pseudoconvex at u 

on S. But f fails to be K-generalized (,)-

convex at u on S because for x = (4,1), 

3
( ) ( ) ( , ; ( , )) , 1 .

2

 
      

 
f x f u x u A K  

3. Optimality conditions 

Consider the following nonsmooth vector 

optimization problem over cones. 

(NVOP) K-minimize f(x) 

  subject to g(x) Q, 

where f : SRm, g : SRp are locally Lipschitz 

vector-valued functions and S is a nonempty open 

subset of Rn. K and Q are closed convex pointed 

cones with nonempty interiors in Rm and Rp 

respectively.  

Let S0 = {xS:g(x) Q} denote the set of 

feasible solutions of (NVOP).  

Definition 3.1. A point 0x S  is said to be  



4                               S. K. Suneja, S. Sharma, M. Kapoor / Vol.6, No.1, pp.1-7 (2016) © IJOCTA 

(i) a weak minimum of (NVOP) if for every 

xS0 

( ) ( ) int f x f x K . 

(ii) a  minimum of (NVOP) if for every  

xS0 

( ) ( ) \ {0}. f x f x K  

The following constraint qualification and 

Karush-Kuhn-Tucker type necessary optimality 

conditions are a direct precipitation from Craven 

[5]. 

Definition 3.2. (Slater-type cone constraint 

qualification).The problem (NVOP) is said to 

satisfy Slater-type cone constraint qualification at 

x  if, for all ( )B g x , there exists a vector  

Rn such that intB Q . 

Theorem 3.3. If a vector 0x S  is a weak 

minimum for (NVOP) with S= Rn at which 

Slater-type cone constraint qualification holds, 

then there exist Lagrange multipliers 
* \ {0}K and *Q , such that  

 0 ( )( ) t tf g x   

 ( ) 0t g x . 

Note that, for 

1 1( ,..., ) and ( ,..., )   R R
t m t p

m p      ,  

( )( ) ( ( ) ( ) )     t t t tf g x f x g x    . 

Now we give the generalized form of nonsmooth 

KKT sufficient optimality conditions for 

(NVOP). 

Theorem 3.4. Let f be K-generalized (,)-

convex and g be Q-generalized (,)-convex at 

0x S on 0S . If there exist * \ {0}K and 
*Q , such that 

0 ( ( ) ( ) )   t tf x g x  ,            (1) 

( ) 0t g x ,             (2)

 

1 1

0,
 

  
pm

i j

i j

 

    

          (3)
 

0, t t                 
(4) 

then x  is a weak minimum for (NVOP). 

Proof: Suppose to the contrary that x  is not a 

weak minimum for (NVOP). Then there exists 

0
ˆx S  such that 

 ˆ( ) ( ) int . f x f x K                          (5) 

By virtue of (1), there exist 

 1( ,..., ) ( ) t

mA A A f x  

and 
1( ,..., ) ( ) t

pB B B g x  

such that,  

 0 t tA B  .                                    (6) 

 Since f is K-generalized (,)-convex at x  on  

S0, we have 

 ˆ ˆ( ) ( ) ( , ;( , ))  f x f x x x A K .     (7) 

Adding (5) and (7) we get, 

 ˆ( , ;( , )) int x x A K .                    (8) 

Since * \ {0}K , we have 

 ˆ( , ;( , )) 0 t x x A  .                         (9) 

Also, since g is Q-generalized (,)-convex at x  

on S0and *Q , therefore 

 ˆ ˆ{ ( ) ( ) ( , ;( , ))} 0  t g x g x x x B  . 

However, *

0
ˆ , x S Q  and (2) together imply 

 ˆ( , ; ( , )) 0 t x x B  .                       (10) 

From (9) and (10), we have 

ˆ ˆ( , ;( , )) ( , ;( , )) 0.   t tx x A x x B          (11) 

Define  

1 1

1

 



 
pm

i j

i j



 

, 

 , 1, 2,..., i i i m  , 

 , 1, 2,..., . j j j p   

Let 
1 1( ,..., ) and ( ,..., ) t t

m p      . 

(3), (4) and (6) respectively imply 

0, 0  t t     and 0 t tA B  . 

Also, by definition 
1 1

1
 

  
pm

i j

i j

  . 

Thus, using the properties of φ, we have 



                             Generalized (,)-convexity in nonsmooth vector optimization over cones                               5 

 

1 1 1 1

1 1

ˆ0 ( , ; ( , ))

ˆ( , ; ( , ))

ˆ ˆ( , ; ( , )) ( , ; ( , ))

   

 

  

  

 

   

 

t t t t

p pm m

i i j j i i j j

i j i j

pm

i i i j j j

i j

x x A B

x x A B

x x A x x B

      

      

     

 

ˆ ˆ( ( , ;( , )) ( , ;( , )))   t tx x A x x B     < 0  

   (by (11)), 

which is a contradiction. 

Hence, x  is a weak minimum for (NVOP). 

Theorem 3.5. Let f be K-generalized (,)-

pseudoconvex and g be Q-generalized (,)-

quasiconvex at 0x S  on 0S  and suppose there 

exist * \ {0}K  and *Q  such that (1), (2), 

(3) and (4) hold, then x  is a weak minimum for 

(NVOP). 

Proof. Let, if possible, x  be not a weak 

minimum for (NVOP). Then there exists 0
ˆx S  

such that (5) holds. 

In view of (1) there exist ( )A f x  and

( )B g x  such that (6) is satisfied. 

Since f is K-generalized (,)-pseudoconvex at 

x  on S0, therefore from (5), we have 

 ˆ( , ;( , )) int . x x A K  

Now * \ {0}K  gives ˆ( , ;( , ))t x x A  < 0. 

As 0
ˆx S and *Q , we have ˆ( ) 0t g x . On 

using (2), we get 

 ˆ{ ( ) ( )} 0 t g x g x .                         (12)  

If 0 , then (12) implies ˆ( ) ( ) int g x g x Q . 

Since g is Q-generalized (,)-quasiconvex at x  

on S0, therefore 

ˆ( , ;( , )) , x x B Q   

so that, ˆ( , ;( , ))t x x B   0.                          (13) 

If 0 , then also (13) holds. 

Now proceeding as in the last part of Theorem 

3.4, we get a contradiction. Hence x  is a weak 

minimum for (NVOP). 

Theorem 3.6. Let f be K-generalized (,)-

convex and g be Q-generalized (,)-convex at 

0x S  on S0. Suppose there exist * sK   and 
*Q  such that (1), (2), (3) and (4) hold, then 

x  is a minimum for (NVOP). 

Proof. Let if possible x  be not a minimum for 

(NVOP), then there exists 0
ˆx S  such that 

 ˆ( ) ( ) \ {0} f x f x K .                       (14) 

As (1) holds, there exist 

( ) and  ( ) A f x B g x  such that (6) holds.  

Since f is K-generalized (, )-convex at x  on 

S0, therefore proceeding on the similar lines as in 

proof of Theorem 3.4 and using (14) we have 

 ˆ( , ; ( , )) \ {0} x x A K . 

As * sK , we have ˆ( , ;( , ))t x x A  < 0. 

This leads to a contradiction as in Theorem 3.4. 

Hence x  is a minimum for (NVOP). 

4. Duality 

We associate with the primal problem (NVOP), 

the following Wolfe-type dual problem 

(NWOD): 

(NWOD)K-maximize f(y) + tg(y)l 

 subject to 0 ( ( ) ( ) )t tf y g y    ,  (15) 

* *, int , \ {0}, and 1    ty S l K K Q l   . 

We now establish duality results between 

(NVOP) and (NWOD). 

Let W denote the set of feasible solutions of 

(NWOD) and WY  be the subset of S given by 

{ : ( , , ) }.  WY y S y W   

Theorem 4.1.(Weak Duality). Let x be feasible 

for (NVOP) and ( , , )y    be feasible for 

(NWOD). If f is K-generalized (,)-convex at y 

on 
0 WS Y , g is Q-generalized (, )-convex at 

y on
0 WS Y ,  

1 1

0
 

  
pm

i j

i j

   and 

0 t t    , then 

 ( ) ( ) ( ) int  tf y g y l f x K .         (16) 

Proof. Let if possible, 

( ) ( ) ( ) int  tf y g y l f x K .                      (17) 

Since ( , , )y    is feasible for (NWOD), 

therefore by (15), there exist 
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( ) and ( ) A f y B g y  such that 

 0. t tA B                                    (18) 

 Since f is K-generalized (,)-convex at y on 

0 WS Y , therefore  

 ( ) ( ) ( , ;( , )) .  f x f y x y A K     (19) 

Adding (17) and (19), we get 

 ( ) ( , ;( , )) int . t g y l x y A K    

As * \ {0}K and 1t l , we have 

 ( ) ( , ;( , )) 0  t tg y x y A   .         (20) 

Again, since xS0, g is Q-generalized (,)-

convex at y on 
0 WS Y and *Q , therefore 

[ ( ) ( ) ( , ; ( , ))] 0.  t g x g y x y B              (21) 

From (20) and (21), we have 

( , ;( , )) ( , ;( , )) ( )   t t tx y A x y B g x     . 

Since x is feasible for (NVOP) and 
* , ( ) 0 tQ g x  , so that we have 

 ( , ;( , )) ( , ;( , )) 0   t tx y A x y B    . 

Now proceeding as in proof of Theorem 3.4, we 

obtain a contradiction. Hence (16) holds. 

This weak duality result allows us to obtain 

strong duality result as follows. 

Theorem 4.2. (Strong Duality). Let x  be a 

weak minimum for (NVOP) at which Slater-type 

cone constraint qualification is satisfied. Then 

there exist * \ {0}K and *Q  such that 

( , , )x    is feasible for (NWOD). Moreover, if 

the conditions of Theorem 4.1, are satisfied for 

each feasible solution of (NWOD), then x  is a 

weak maximum for (NWOD). 

Proof. Since x  is a weak minimum of (NVOP), 

therefore by Theorem 3.3, there exist 
* \ {0}K , *Q   such that (1) and (2) hold. 

Thus ( , , )x    is feasible for (NWOD). Now 

assume on the contrary that ( , , )x   is not a 

weak maximum for (NWOD), then there exists a 

feasible solution (y, , ) for (NWOD) such that 

{ ( ) ( ) } { ( ) ( ) } int   t tf y g y l f x g x l K  , 

which on using (2) gives 

( ) ( ) ( ) int  tf y g y l f x K . 

This contradicts Weak Duality Theorem 4.1. 

Hence ( , , )x    is a weak maximum for 

(NWOD). 

Now we consider the following Mond-Weir type 

dual (NMOD) related to problem (NVOP): 

(NMOD)K-maximize f(y) 

 subject to 0 ( ) ( )  t tf y g y       (22) 

 ( ) 0t g y ,                                  (23) 

 
*, \ {0} y S K and *Q . 

Let M denote the set of feasible solutions of 

(NMOD) and MY  be the subset of S defined by 

{ : ( , , ) }.  MY y S y M   

Theorem 4.3. (Weak Duality). Let x be feasible 

for (NVOP) and ( , , )y    be feasible for 

(NMOD). Suppose f is K-generalized (,)-

pseudoconvex and g is Q-generalized (,)-

quasiconvex at y on 0 MS Y  such that 

1 1

0
 

  
pm

i j

i j

   and 0 t t     , then  

 ( ) ( ) int f y f x K .                          (24) 

Proof. Assume on the contrary, 

 ( ) ( ) int f y f x K .                          (25) 

Since ( , , )y    is feasible for (NMOD), there 

exist ( ) and ( ) A f y B g y  such that (18) 

holds. 

As f is K-generalized (,)-pseudoconvex at y on 

0 MS Y  , therefore from (25), we have 

 ( , ;( , )) int . x y A K  

Since * \ {0}K , we get ( , ;( , )) 0 t x y A  . 

Also, 0x S  and 
*Q  so that ( ) 0t g x . This 

together with (23) gives { ( ) ( )} 0 t g x g y . 

Now proceeding on similar lines as in proof of 

Theorem 3.5 we get a contradiction. Hence (24) 

holds. 

Theorem 4.4. (Strong Duality). Let x  be a 

weak minimum of (NVOP) at which Slater-type 

cone constraint qualification is satisfied. Then 

there exist * \ {0}K  and *Q  such that 
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( , , )x    is feasible for (NMOD). Moreover, if 

the conditions of Weak Duality Theorem 4.3 are 

satisfied for each feasible solution ( , , )y    of 

(NMOD), then ( , , )x    is a weak maximum of 

(NMOD). 

Proof. The proof is similar to that of Theorem 

4.2 except that we invoke Theorem 4.3 instead of 

Theorem 4.1. 
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