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Abstract. The paper investigates the problem of constrained reliability maximization by allocating 

redundancy and proposes how to solve it for a broad group of complex coherent systems. Redundancy 

is an effective engineering tool to enhance system reliability to make a system fail-safe. Since adding 

redundancy increases the cost and complexity of a system design, it should be used wisely. The work 

considers an exact solution to the problem under resource constraints and finds optimal redundancy 

numbers. The proposed method can accommodate any number of constraints. Numerical examples 

have been included. A sensitivity analysis has been carried out to show how sensitive the optimal 

allocation of redundant components and the gain in system reliability are to the budget allocation. 
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1. Introduction 

System reliability enhancement is a very 

important issue to the reliability practitioners. 

There are various ways to increase system 

reliability, such as using high-quality 

components, providing better maintenance, 

rearranging components according to some 

component importance measures, etc. Another 

effective way to increase system reliability is 

using redundancy. But the amount of increase 

varies with the number of redundant components 

and the choice of system component to which 

they are added. Problem becomes complex when 

the optimal number of redundant components is 

to be decided, which maximizes the system 

reliability under some constraints, such as the 

constraints of cost, weight, volume, capacity etc. 

There is large amount of literature that studied 

the redundancy allocation problem for enhancing 

the system reliability for a target time for specific 

system designs. Morrison [1] considered optimal 

allocation of spares in systems with two 

subsystems in the problem of maximizing system 

life with the main focus on exponential 

component lives. Misra [2] used the least square 

concept to find an approximate solution. Shaked 

and Shanthikumar [3] studied the problem of 

allocating m active redundancies to an n-

component series system where the lifetimes of 

the original components and redundant 

components are identically and independently 

distributed. Boland et al. [4] solved a redundancy 

allocation problem for series and parallel 

systems. Hsieh [5] solved the redundancy 

allocation problem using a linear programming 

approach to approximate the non-linear reliability 

function, where bounds to the reliability function 

were used. Liu [6] proposed a combination 
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method to obtain the optimal allocations of 

component redundancy.  

It is to be noted that the system reliability can 

be enhanced whenever redundant components are 

added to the system components, but that will 

result in a costlier, heavier system. Therefore, 

while maximizing system reliability using 

redundancy, a trade-off is necessary. Prasad et al. 

[7] maximized the percentile life of a series 

system subject to the resource constraints. In a 

recent work, Bhattacharya and Roychowdhury 

[8] solved a cost minimizing redundancy 

allocation problem where total cost of adding 

redundancy is minimized subject to a constraint 

on system reliability. But there may be some 

situations where achieving a high reliability is of 

more concern. There redundancy should be added 

in order to maximize system reliability under 

budget constraints. The present work solved a 

reliability maximizing redundancy allocation 

problem subject to cost and other constraints such 

as weight, volume, space or capacity etc.  

Here a constrained redundancy allocation 

problem is considered with a broader class of 

coherent systems, which can be decomposed into 

a number of non-overlapping subsystems, in such 

a way that the system fails with the failure of any 

of the subsystems, while a subsystem fails when 

all of its constituent components fail. This class 

of systems is commonly referred to as having the 

series-parallel structures, and very much used in 

various fields of important applications. One can 

mention an office sprinkler system used for fire-

extinguishing purposes (smoke detectors in 

parallel, a standby battery and main supply in 

parallel, a sprinkler in series), river water supply 

system (a duty raw water pump and a standby 

raw water pump in parallel, treatment plant in 

series, trunk mains in parallel, service reservoir, 

emergency supply in series), an air conditioning 

system (number of air conditioning machines in 

parallel, connected to the power source in series), 

an uninterrupted power supply (UPS) in an 

alternate current power supply system (AC power 

supply and battery in parallel, rectifier, inverter, 

in series), a coal transportation system from bin 

to boiler in coal mines (primary feeders in 

parallel, a reclaimer in series, secondary feeders 

in parallel) and many more. 

The novelty of the present work is that the 

method developed here is capable of 

accommodating any number of subsystems and 

any number of constraints. Moreover, no fixed 

form of component life distribution has been 

assumed. Here the redundancy number for each 

subsystem that maximizes the super system 

reliability is the decision variable. The proposed 

method is simple to apply and produces an 

explicit expression for getting an optimal 

solution. Here active redundancy is considered, 

in which the original and the redundant 

component, both function simultaneously. When 

one fails, other continues to work so that the 

system continues to function without 

interruption. The redundant components are 

connected in parallel to the original components 

of the system. Active redundancy may be used in 

case it is difficult or not possible to replace the 

failed components when the system is in 

operation.  

The structure of the article is as follows: 

Section 2 discusses the preliminaries necessary to 

develop the allocation policy. The method of 

finding an optimal solution is discussed in 

Section 3. A numerical example is included in 

Section 4 to illustrate the application of the rule 

with a sensitivity analysis. Section 5 concludes 

the article. 

2. Preliminaries 

Let us consider a complex coherent system with 

components whose lifetimes are independently 

distributed among themselves and independent of 

the lifetimes of the redundant components. An n-

component system is said to be coherent if its 

every component is relevant and the system is 

monotone [9].  

Let Y1, Y2, …, Yn  be the independently 

distributed random lives of the components of an 

n-component coherent system decomposed into k 

non-overlapping subsystems, M1, M2, …, Mk, of 

sizes n1, n2, …, nk, respectively. The components 

of i
th
 subsystem, Mi, of an n-component system 

can be written as },...,,{ 21 iniii  , which is a 

permutation of ni components from the index set 

I = {1, 2, …, n}. Here ij denotes the j
th 

component 

of i
th
 subsystem, Mi,   j = 1, 2,…, ni, i = 1, 2, …, 

k. The reliability of the system is given by 

 R(t) = P(T > t) = E[
 

k

i Mj

j

i

t

1

})({ ],          (1)                            

where T is the system life, νj(t) is the state 

variable, which takes the value 0, if  j
th
 

component is in failing state at time t, and 1, if  j
th
 

component  is in functioning state at time t with 

E(νj(t)) = ρj(t). From (1) it is clear that the system 
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reliability can be expressed in terms of its 

subsystem reliabilities involving ρj(t)’s. 

The present work finds out a general rule as to 

how many redundant components should be 

added at the design stage to each subsystem in 

order to maximize the super system reliability 

under various constraints. The results have been 

derived under the following set up: The coherent 

system considered here is binary (having two 

states, viz., functioning and failing), and all 

components belonging to the same subsystem 

have the same reliability. Sometimes it may also 

be reasonable to assume the reliability of the 

redundant components to be same as that of the 

components belonging to the respective 

subsystem, to which the redundant components 

are to be added.  

3. Optimal Allocation of Redundancy  

Let us consider an n-component binary coherent 

system, with pi as the reliability of the 

components belonging to the i
th
 subsystem, i = 1, 

2, …, k, ηi as the number of active redundant 

components to be attached to the components of 

i
th
 subsystem, i = 1, 2, …, k, in order to optimize 

the system reliability under cost constraint, and ri 

as the respective redundant component reliability. 

Suppose  C  to be the budget limit and ci, the cost 

of a redundant component to be attached to the 

components of  i
th
 subsystem, i = 1, 2, …, k, with 

.
1

Cc i

k

i

i 


   

Our objective is to determine the optimal 

values of decision variables, ,...,, 21 k that 

maximize the non-linear objective function, the 

system reliability, which, by (1), is as follows: 

.])1()1(1[)...,,(

1
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i
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ii rpRR

  

The problem is to maximize )...,,( 21 kR   or, 

equivalently,  maximize:  

)...,,(log)...,,( 2121 kek RL    

subject to  

 Cc i

k

i
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,                          (2)      

where ηi ≥ 0, ci ≥ 0, for all i= 1, 2, …, k. 

Now we prove the following propositions, 

which are required to obtain the optimal solution 

),...,,( **
2

*
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*
k   that maximizes 

)...,,( 21 kL   or )...,,( 21 kR  . 

Proposition 1. )...,,( 21 kL   is a  concave 

function. 

Proof.  The k × k  Hessian matrix of the function 

)...,,( 21 kLL   is given by 
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which is negative, since 0)1(log  ie r  and 

other factors are positive, and 
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for all i, j = 1, 2, …, k,  j ≠ i. 

Here all of n leading principal minors of the 

Hessian matrix )...,,( 21
2

kLD   alternate in sign 
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so that the odd-ordered minors are negative and 

even-ordered minors are positive, and hence the 

matrix )...,,( 21
2

kLD   is negative definite, 

indicating concavity of the function 

)...,,( 21 kL  .   

Let us now define a non-linear function H as 

follows:  

                                  

(4)                   ,)()...,,(log
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where the constant λ (> 0)  is a positive real 

number, which is known as Lagrangian 

multiplier. Here )...,,( 21 kH   is a concave 

function, being a linear combination of two 

concave functions, )...,,(log 21 ke R  (by 

Proposition 1) and 
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 (which is convex as 

well, being a linear function). 

The next proposition finds the stationary point 

of )...,,( 21 kH   at which 0)...,,( 21 kDH  , 

where )...,,( 21 kDH  , the gradient or Jacobian 

of the real-valued function )...,,( 21 kHH  , 

is given by 
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Proposition 2. The stationary point of 

)...,,( 21 kH  , at which 0)...,,( 21 kDH  , is 

obtained by solving the following equations:           
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Hence the result.        

Let )...,,,( **
2

*
1 k  *η  and λ*

 be the solution of 

the k equations, as given by (5), and the cost 

constraint Cc i

k

i

i 



1

. Since )...,,( 21 kH   is 

concave, (η*
, λ*

) maximizes )...,,( 21 kH  .  

The sufficient condition for global maximum 

in the problem of maximizing a function 

),...,,( 21 kxxxf  subject to lkl bxxxh ),...,,( 21 ,        

l = 1, 2, …, m, is given below, which will be 

required to prove Proposition 3.  

If ),...,,( **
2

*
1 kxxx*x  is a maximizer, then 

there exists a ),...,,( **
2

*
1 m*λ  such that 

),( ** λx  satisfies Lagrange conditions 

 

0)()(  ***
xλx DhDf and                                               

mlbh ll  ,...,2,1,)( *x .                                      (6) 

 

Then the sufficient condition for global 

maximum is: 

If ),...,,( 21 kxxxf  is a concave function, each 

),...,,( 21 kl xxxh  is convex, ),( ** λx  satisfies 

Lagrange conditions (6), and  λl  ≥ 0, l = 1, 2, …, 
m, then x

* 
is a global maximizer. 

The following proposition shows that (η*
, λ*

) 

is the global maximizer of )...,,( 21 kLL  , and 

hence gives the optimal solution that maximizes 

system reliability.  

Proposition 3. (η*
, λ*

), that maximizes 

)...,,( 21 kH  , is a global maximizer of 

)...,,( 21 kLL  . 

Proof.  From (4), as given by 
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Thus (η*
, λ*

), the stationary point of 

),...,,( 21 kH  , which is the solution of 

0)...,,( 21 kDH  , satisfies the following 

Lagrange conditions: 
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Thus the sufficient condition for a global 

maximum is satisfied.  

 

Using Propositions 1, 2 and 3, the optimum 

solution (global maximizer) ),...,,( **
2

*
1

*
k   

of (η1, η2, …, ηk), can be obtained by solving k 

equations, as given by (5), subject to Cc i

k

i
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so that )...,,( 21 kR   is maximized.  Thus we 

get the optimal solution *
i  of i  as    
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In particular, if  ri = pi , for all i = 1, 2, …, k, (7) 

reduces to 
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  i = 1, 2, …, k. (8)                  

4.  A Numerical Example 

Let us consider the following system, as shown 

in Figure 1. 

 

 

 

 

Figure 1. A hi-fi system 

The above system is decomposed into three 

subsystems, viz., M1 = {1, 2}, M2 = {3}, M3 = {4, 

5}. The reliability of each of the components 

belonging to subsystem 1, is p1 = 0.9. The 

component reliabilities for subsystems 2 and 3 

are, respectively, p2 = 0.85 and p3 = 0.95. By (1), 

the system reliability is 0.839396.  The cost due 

to adding a redundant component to the 

subsystem 1 is c1 = 40. The costs for adding a 

redundant component to subsystem 2 is c2 = 20 

and to subsystem 3 is c3 = 30. Total cost limit is 

C = 80. The reliabilities of the redundant 

components to be added to the subsystems are, 

respectively, r1 = 0.9, r2 = 0.85 and r3 = 0.95. The 

number of components in the subsystems are, 

respectively, n1 = 2, n2 =1, n3 = 2. Then using (2) 

and (8), the solution for λ is found to be  λ = 
0.000137, and the number of redundant 

components that are to be added to different 

subsystems, subject to the budget constraint, are 

η1 = 1, η2 = 2, η3 = 0, for which the total cost 

becomes 80, and system reliability becomes 

0.993139, with a gain of 18.316%  in reliability.  

Table 1 shows the optimal allocation of 

redundant components for different budget 

constraints. It reflects how sensitive the optimal 

solution and system reliability are to the change 

in budget limit.  

Table 1. Sensitivity of optimal redundancy allocation 

and maximum system reliability  to the budget limits 

 

Budget 

limit 

Optimal 

allocation 
Total 

cost 

Maximum 

system 

reliability 

Gain in 

reliability 

(%) η1 η2 η3 

80 1 2 0 80 0.99314 18.316 

100 1 3 0 100 0.99598 18.657 

200 2 4 1 190 0.99969 19.097 

300 3 6 2 300 0.99998 19.131 

 

4.1. Optimal redundancy allocation under 

more than one constraint 

We can also include the constraints involving 

weight in the problem and solve it in the similar 

manner. In such case, the optimal solution will be 
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In case ri = pi, the solution becomes                 
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4.2. A numerical example 

For the system as displayed in Figure 1, if the 

weights are w1 = 2, w2 = 1, w3 = 3 with a 

constraint of a total weight of 17 units, and the 

costs are c1 = 40, c2 =20, c3 = 30 with a constraint 

of a budget of 300, the optimal solution is η1 = 3, 

η2 = 5, η3 = 2, for which the total cost becomes 

280 with a total weight of 17 units, and the 

system reliability, becomes 0.999972. The gain 

in reliability is 19.12999%. This result may be 

compared with the result obtained before, where 

only the cost constraint was considered. Because 

of the additional weight constraint, the number of 

redundant components to be added to the second 

subsystem becomes one unit less, and hence the 

gain in reliability becomes slightly less (0.001%) 

with a decrease of 20 units in total cost. 

Similarly, if there are m constraints, such that 
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together with the following m equations: 
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where λ1, λ2,…, λm  are the Lagrangian multipliers 

with all λi > 0.  

The optimal solution reduces to  
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  if ri = pi,  

i = 1, 2, …, k . 

 

5. Conclusion and Discussion 

Here the problem of reliability maximization by 

allocating redundancy under cost and other 

constraints is solved. An explicit expression for 

determining the optimal solution to the problem 

has been derived. The method is a generalized 

one in the sense that it can be applied to any form 

of component life distributions, and there is no 

restriction on the number of subsystems that 

constitute the whole system under consideration. 

A sensitivity analysis has been done to examine 

the sensitivity of the optimal allocation of 

redundant components to the budget allocation. 

The percentage gain in system reliability 

becomes more or less stable as budget allocation 

increases, after a certain point. A solution to a 

cost minimizing redundancy allocation problem 

under reliability constraint is in progress, and will 

be reported in a forthcoming paper. 
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