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Abstract. In this paper we prove two proximity point results for finding the distance between two
sets. Unlike the best approximation theorems they provide with globally optimal values. Here our
approach is to reduce the problem to that of finding optimal approximate solutions of some fixed point
equations. We use Geraghty type contractive inequalities in our theorem. Two illustrative examples
are given.
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1. Introduction and Mathematical

Preliminaries

A proximity point problem is a problem of
achieving the minimum distance between two
sets through a function defined on one of the sets
to the other. We have addressed the problem in
the most general setting of a metric space. A
metric is a function which entails the most gen-
eral notion of distance. The problem of finding
minimum distance between two objects is a clas-
sical problem. For example, in geometry we have
the concept of geodesics, a curve along which the
optimal distance between two given points of the
space is realized [20]. Examples abound in phys-
ical theories, especially in the general theory of
relativity, where finding the physically possible
shortest path is sometimes the main task [11].

In proximity point problems our objects are
sets. Here our aim is to find the distance be-
tween two sets A and B with the help of a func-
tion f defined from A to B. Mathematically, we

want to find a solution to the problem of mini-
mizing d(x, fx) where x is varied over the set A.
Equivalently we might want to find the optimal
solution of the equation x = fx although the ex-
act solution does not in general exist as in the
case where A and B are disjoint. At this point
it is worthwhile to draw a comparison with best
approximation theorems. A best approximation
theorem provides us with best approximate so-
lutions which need not be globally optimal. For
instance, let us consider the well known Ky Fan’s
best Approximation theorem.

Theorem 1. [14] Let A be a non-empty compact
convex subset of a normed linear space X and
T : A → X be a continuous function. Then there
exists x ∈ A such that ‖ x − Tx ‖= d(Tx,A) =
inf {‖ Tx− a ‖: a ∈ A}.

The element x in the above theorem need not
give the optimum value of ‖ x − Tx ‖. On the
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other hand the best proximity point theorems as-
sert that the approximate solution is also opti-
mal, that is, a best proximity point theorem ex-
plores the possibility of finding the global minima
of the real valued function x → d(x, Tx) by con-
straining the approximate solution of x = Tx to
satisfy d(x, Tx) = dist(A,B).

Let (X, d) be a metric space. Let A and B
be two subsets of X. A pair (a, b) ∈ A × B is
called a best proximity pair if d(a, b) = d(A,B)=
inf {d(x, y) : x ∈ A and y ∈ B}. If A and
B are two nonempty subsets of a metric space
(X, d), and T is a mapping from A to B, then
d(x, Tx) ≥ d(A,B) for all x ∈ A. A point p ∈ A

is called a best proximity point (with respect to
T ) if at the point p the function d(x, Tx) attains
its global minimum and the value is d(A,B), that
is, d(p, Tp) = d(A,B). Thus the problem is a
problem of global minimization. There is an-
other standpoint from which the problem can be
viewed. For the mapping T : A → B, the idea of
a fixed point, that is, a point for which x = Tx is
not relevant in the cases where A and B are dis-
joint. Even in the cases where A∩B 6= φ, a fixed
point of the function T may not exist. But it is
possible to find a sort of approximate fixed point
in A by minimizing the function d(x, Tx). The
proximity point problem is then to seek an opti-
mal approximate solution of the fixed point equa-
tion x = Tx which satisfies d(p, Tp) = d(A,B) al-
though there may not be any exact solution. In
this work we adopt this view point of the prox-
imity point problem.

There are several works on this topic in con-
temporary literature. Some of these works have
assumed that certain types of contractive in-
equalities are satisfied by the concerned map-
pings. Some examples of these works are noted
in [1, 2, 4, 5, 6, 9, 13, 15, 17, 18, 19]. Some
of these works are on Banach spaces and utilize
the concepts of Banach space geometry. In this
paper we have proved two best proximity theo-
rems in general metric spaces settings. The in-
equalities we have assumed are motivated by an
extension of the Banach’s contraction mapping
principle proved by Geraghty [10] and recently
generalized in [3, 8, 12, 16]. We have given two
illustrative examples.

The following class of functions given in [7] is a
slight modification of the class of functions used
by Geraghty.

Let S denote the class of the functions α :
[0,∞) −→ [0, 1) which satisfies the condition

α(tn) → 1 implies tn → 0.

The mappings we use are cyclic mappings
as described in the following which are non-self
maps between two sets A and B.

A mapping T : A∪B → A∪B is called cyclic
if T (A) ⊆ B and T (B) ⊆ A. Recall that if T is
cyclic, then a point x ∈ A ∪ B is called a best
proximity point for T if d(x, Tx) = dist(A,B).

2. Main Results

Theorem 2. Let A and B be two non-empty
closed subsets of a complete metric space X. Let
T : A ∪ B → A ∪ B be a self mapping satisfying
the following conditions:

(i) T (A) ⊆ B and T (B) ⊆ A,
(ii) d(Tx, Ty) ≤ α(M(x, y))M(x, y) + (1−

α(M(x, y)))d(A, B),

where x ∈ A, y ∈ B, α ∈ S and M(x, y) =
max{d(x, y), d(x, Tx), d(y, Ty)}.

Let x0 ∈ A be any element and the sequence
{xn} be defined as xn+1 = Txn for all n ≥ 0.
Then d(xn, Txn) → d(A, B). If {x2n} has
a convergent subsequence in A, then the subse-
quence converges to a proximity point.

Proof. By the above construction, for all n ≥ 1,
xn−1 ∈ A, xn ∈ B or xn ∈ A, xn−1 ∈ B accord-
ing as n is odd or even. Then, by an application
of condition (ii), for all n ≥ 1, we have

d(xn, xn+1)

= d(Txn−1, Txn)

≤ α(M(xn−1, xn))M(xn−1, xn)

+(1− α(M(xn−1, xn)))d(A, B),

that is,

d(xn, xn+1)− d(A, B)

≤ α(M(xn−1, xn))(M(xn−1, xn)

−d(A, B)). (1)

If possible, for some n, let d(xn, xn+1) >

d(xn−1, xn). Now

M(xn−1, xn)

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}

= d(xn, xn+1).

Then, from (1), we have

d(xn, xn+1)− d(A, B)

≤ α(M(xn−1, xn))(M(xn−1, xn)− d(A, B))

= α(d(xn, xn+1))(d(xn, xn+1)− d(A, B))
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or α(d(xn, xn+1)) ≥ 1, which is a contradiction
since α ∈ S. Therefore, for all n ≥ 1,

d(xn, xn+1) ≤ d(xn−1, xn). (2)

Hence the sequence {d(xn, xn+1)} is a de-
creasing sequence. Also it is bounded below by
d(A, B).

Again, by (2), for all n ≥ 1,

M(xn−1, xn) = d(xn−1, xn). (3)

Therefore, there exists r ≥ d(A, B) > 0 such
that

lim
n→∞

M(xn−1, xn) = lim
n→∞

d(xn−1, xn) = r. (4)

Let, if possible, r > d(A, B). From (1) and (3),
since α ∈ S and for all n ≥ 1, we have

d(xn, xn+1)− d(A, B)

d(xn−1, xn)− d(A, B)
≤ α(d(xn−1, xn)) < 1.

Taking n → ∞, and using (4), we get

lim
n→∞

α(d(xn−1, xn)) = 1.

Since α ∈ S, this implies that

lim
n→∞

d(xn, xn−1) = 0,

which is a contradiction with r > d(A, B). So,
r = d(A, B), that is,

d(xn, Txn) → d(A, B) as n → ∞. (5)

Now let {x2nk
} be a subsequence of {x2n} con-

verging to some z ∈ A, that is,

lim
k→∞

x2nk
= z. (6)

In this case {x2nk−1} is a sequence in B. Then,
for all k > 0,

d(A, B)

≤ d(z, x2nk−1)

≤ d(z, x2nk
) + d(x2nk

, x2nk−1)

= d(z, x2nk
) + d(x2nk−1, Tx2nk−1).

Taking k → ∞, and using (5), we conclude that

lim
k→∞

d(z, x2nk−1) = d(A, B). (7)

Now,

d(z, Tz)

≤ d(z, x2nk
) + d(x2nk

, T z)

= d(z, x2nk
) + d(Tx2nk−1, T z)

≤ α(M(x2nk−1, z))M(x2nk−1, z)

+(1− α(M(x2nk−1, z)))d(A, B) + d(z, x2nk
)

= α(M(x2nk−1, z))(M(x2nk−1, z)− d(A, B))

+d(A, B) + d(z, x2nk
),

or

d(z, Tz)− d(A, B)

≤ α(M(x2nk−1, z))(M(x2nk−1, z)− d(A, B))

+d(z, x2nk
)

≤ M(x2nk−1, z)− d(A, B) + d(z, x2nk
). (8)

Again, by (5) and (7), we have

lim
k→∞

M(x2nk−1, z)

= lim
k→∞

max{d(x2nk−1, z), d(x2nk−1, x2nk
),

d(z, Tz)}

= d(z, Tz), (since d(z, Tz))

≥ d(A, B)). (9)

If possible, let d(z, Tz) > d(A, B). Taking
k → ∞ in (8), and using (9), we have

d(z, Tz)− d(A, B)

≤ lim
k→∞

α(M(x2nk−1, z))(d(z, Tz)− d(A, B))

≤ d(z, Tz)− d(A, B).

Hence we have

lim
k→∞

α(M(x2nk−1, z)) = 1.

Since α ∈ S, this implies that

lim
k→∞

M(x2nk−1, z) = 0,

that is, by (9), d(z, Tz) = 0, which is a contra-
diction with our assumption. Hence d(z, Tz) =
d(A, B), that is, {x2nk

} converges to a proximity
point.

This completes the proof of the theorem. �

In our next theorem we use a cycle mapping
which is not a cyclic contraction.

Theorem 3. Let A and B be two non-empty
closed subsets of a complete metric space X. Let
T : A ∪ B → A ∪ B be a self mapping which
satisfies the following conditions:

(i) T (A) ⊆ B and T (B) ⊆ A,
(ii) d(Tx, Ty) ≤ α(d(x, y))d(x, y) where

x, y ∈ A and α ∈ S,
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(iii) d(Tx, Ty) ≤ d(x, y) where x, y ∈ B,
(iv) d(A, B) < d(x, y) implies that

d(Tx, Ty) < d(x, y) for all x ∈ A and
y ∈ B.

Then a best proximity point is attained, that is,
there exists x ∈ A such that d(x, Tx) = d(A, B).
If T has two distinct best proximity points, then
d(A, B) > 0 and hence the sets A and B are
necessarily disjoint.

Proof. Let x0 ∈ A be any element and xn =
Txn−1 for all n ≥ 0. Then {x2n} ⊂ A and
{x2n+1} ⊂ B.

Now, by (ii) and (iii), we have

d(x2n, x2n+2)

= d(Tx2n−1, Tx2n+1)

≤ d(x2n−1, x2n+1)

= d(Tx2n−2, Tx2n)

≤ α(d(x2n−2, x2n))d(x2n−2, x2n). (10)

Since α ∈ S, we have d(x2n, x2n+2) ≤
d(x2n−2, x2n), for all n ≥ 1. It follows that
the sequence {d(x2n, x2n+2)} is a decreasing se-
quence. Hence, there exists r ≥ 0 such that

lim
n→∞

d(x2n, x2n+2) = r ≥ 0.

Let, if possible, r > 0. Then, from (10), we have

d(x2n, x2n+2)

d(x2n−2, x2n)
≤ α(d(x2n−2, x2n)) < 1.

Taking n → ∞, we get

lim
n→∞

α(d(x2n−2, x2n)) = 1.

Since α ∈ S, this implies that
lim
n→∞

d(x2n−2, x2n) = 0, which contradicts our

assumption that r > 0. Hence

lim
n→∞

d(x2n, x2n+2) = 0. (11)

Now we shall show that {x2n} is a Cauchy se-
quence.

Suppose that {x2n} is not a Cauchy sequence.
Then there exists ǫ > 0 for which we can find
subsequences {x2n(k)} and {x2m(k)} of {x2n} with
2m(k) > 2n(k) > k such that

d(x2m(k), x2n(k)) ≥ ǫ, for all k ≥ 1. (12)

Corresponding to 2n(k), we can choose 2m(k) in
such a way that it is the smallest even integer
with 2m(k) > 2n(k) and satisfying (12). Then,
for all k ≥ 1, we have

d(x2m(k), x2n(k)−2) < ǫ. (13)

From (12) and (13), for all k ≥ 1, we have

ǫ ≤ d(x2m(k), x2n(k))

≤ d(x2m(k), x2n(k)−2) + d(x2n(k)−2, x2n(k))

< ǫ+ d(x2n(k)−2, x2n(k)).

Taking k → ∞, and using (11), we get

lim
k→∞

d(x2m(k), x2n(k)) = ǫ. (14)

Again, for all k ≥ 1,

d(x2m(k), x2n(k))

≤ d(x2m(k), x2m(k)−2) + d(x2m(k)−2, x2n(k)−2)

+d(x2n(k)−2, x2n(k))

and

d(x2m(k)−2, x2n(k)−2)

≤ d(x2m(k)−2, x2m(k)) + d(x2m(k), x2n(k))

+d(x2n(k), x2n(k)−2).

Taking k → ∞ in the above two inequalities, and
using (11), we get

lim
k→∞

d(x2m(k)−2, x2n(k)−2) = ǫ. (15)

Again, by (ii) and (iii), for all k ≥ 1,

d(x2m(k), x2n(k))

= d(Tx2m(k)−1, Tx2n(k)−1)

≤ d(x2m(k)−1, x2n(k)−1)

= d(Tx2m(k)−2, Tx2n(k)−2)

≤ α(d(x2m(k)−2, x2n(k)−2))

d(x2m(k)−2, x2n(k)−2)

≤ d(x2m(k)−2, x2n(k)−2).

Taking k → ∞ in the above inequality, and using
(14) and (15), we get

ǫ ≤ lim
k→∞

α(d(x2m(k)−2, x2n(k)−2))ǫ ≤ ǫ.

Hence,

lim
k→∞

α(d(x2m(k)−2, x2n(k)−2)) = 1.

Since α ∈ S, this implies that

lim
k→∞

d(x2m(k)−2, x2n(k)−2) = 0,

which contradicts (15). Hence, {x2n} is a Cauchy
sequence. Since the space is complete, and A is
closed, there exists x ∈ A such that

x2n → x as n → ∞. (16)

Now, by (ii), for all m,n ≥ 1,
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d(x2m+1, x2n+1)

= d(Tx2m, Tx2n)

≤ α(d(x2m, x2n))d(x2m, x2n)

≤ d(x2m, x2n).

Since {x2n} is a Cauchy sequence, we have

lim
m,n→∞

d(x2m+1, x2n+1) ≤ lim
m,n→∞

d(x2m, x2n) = 0.

This shows that {x2n+1} is a Cauchy sequence.
Hence

x2n+1 → y as n → ∞. (17)

Then, by (ii), we have

d(Tx, y)

≤ d(Tx, x2n+1) + d(x2n+1, y)

= d(Tx, Tx2n) + d(x2n+1, y)

≤ α(d(x, x2n))d(x, x2n) + d(x2n+1, y)

≤ d(x, x2n) + d(x2n+1, y) → 0 as n → ∞.

(by (16) and (17))

Hence,

Tx = y. (18)

Again,

d(Ty, x)

≤ d(Ty, x2n+2) + d(x2n+2, x)

= d(Ty, Tx2n+1) + d(x2n+2, x)

≤ d(y, x2n+1) + d(x2n+2, x) → 0 as n → ∞.

(by (iii), (16) and (17))

Therefore,

Ty = x. (19)

If possible, suppose that, d(A, B) < d(x, y).
Then, by (18), (19) and by condition (iv) of the
theorem, we get

d(x, y) = d(Ty, Tx) < d(x, y),

which is a contradiction. Therefore, d(A, B) =
d(x, y). Hence, by (18), we have

d(x, Tx) = d(A, B).

If x∗ and x∗∗ are two best proximity points of T ,
that is, x∗, x∗∗ ∈ A are such that d(x∗, Tx∗) =
d(x∗∗, Tx∗∗) = d(A, B), then by (ii)

d(x∗, x∗∗)

≤ d(x∗, Tx∗) + d(Tx∗, Tx∗∗) + d(Tx∗∗, x∗∗)

≤ α(d(x∗, x∗∗))d(x∗, x∗∗) + 2d(A, B)

< d(x∗, x∗∗) + 2d(A, B).

Therefore d(A, B) > 0 and hence the sets A and
B are necessarily disjoint. �

3. Example

Let X = [0, 1]×R. A metric d is defined by

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Let A = {(0, x): x ∈ R and x ≥ 0} and
B = {(1, y): y ∈ R and y ≥ 0}. Then A and B

are closed subset of X and d(A, B) = 1.
Let α : [0,∞) → [0, 1) be defined as

α(t) =

{

1
1+t

, for t > 0,

c(< 1), for t = 0.

(A)
Let T : A ∪B → A ∪B be defined as

T ((0, x)) = (1,
x

1 + x
), for all x ≥ 0,

T ((1, y)) = (0,
y

1 + y
), for all y ≥ 0.

Then all the conditions of Theorem 2 are satis-
fied and (0, 0) is a best proximity of the mapping
T .
(B)

Let T : A ∪B → A ∪B be defined as

T ((0, x)) = (1,
1

1 + x
), for all x ≥ 0,

T ((1, y)) = (0,
1

1 + y
), for all y ≥ 0.

Then all the conditions of Theorem 3 are sat-
isfied and (0, −1

2 +
√
5
2 ) is a best proximity point

of the mapping T .

4. Conclusion

The objects we have considered are two closed
sets, rather than two points. It is through map-
pings which satisfy certain contractive conditions
that iterations are constructed by which the min-
imum distances are realized. We have used cyclic
mapping in our theorems. The contraction used
in one of the theorems is cyclic while in the other
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is not cyclic. It is well-known that the contrac-
tive mappings have several applications in di-
verse branches of mathematics. This work is an-
other instance of such applications where map-
pings obeying contractive conditions are applied
to problems of global optimality.

References

[1] Abkar, A., Gabeleh, M., Results on the existence
and convergence of best proximity points, Fixed Point

Theory Appl., Art. ID 386037, 10 pp (2010).
[2] Al - Thagafi, M.A., Shahzad, N., Convergence and

existence results for best proximity points, Nonlinear

Anal., 70, 3665-3671 (2009).
[3] Amini-Harandi, A., Emani, H., A fixed point theo-

rem for contraction type maps in partially ordered
metric spaces and application to ordinary differential
equations, Nonlinear Anal., 72, 2238-2242 (2010).

[4] Anthony Eldered, A., Veeramani, P., Existence and
convergence of best proximity points, J. Math. Anal.

Appl., 323, 1001-1006 (2006).
[5] Anuradha, J., Veeramani, P., Proximal pointwise

contraction, Topology and its Applications, 156, 2942-
2948 (2009).

[6] Choudhury,B. S., Maity,P., Konar,P., A Global Op-
timality Result Using Nonself Mappings, Opsearch,
51(2), 312-320 (2013).

[7] Caballero, J., Harjani, J., Sadarangani, K.,
Contractive-Like mapping principles in ordered met-
ric spaces and application to ordinary differential
equations, Fixed Point Theory Appl., Art. ID 916064,
14 pp (2010).

[8] Caballero, J., Harjani, J., Sadarangani, K., A best
proximity point theorem for Geraghty-contractions,
Fixed Point Theory Appl. 2012, 231 (2012).

[9] Di Bari, C., Suzuki, T., Vetro, C., Best proximity
points for cyclic Meir-Keeler contractions, Nonlinear

Anal., 69, 3790-3794 (2008).
[10] Geraghty, M.A., On contractive mappings, Proc.

Amer. Math. Soc., 40, 604-608 (1973).
[11] Hobson, M.P., Efstathiou, G., Lasenby, A.N., Gen-

eral Reltivity, Cambridge University Press. New York.
(2006).

[12] Karapınar, E., On best proximity point of φ-Geraghty
contractions, Fixed Point Theory Appl., 2013, 200
(2013).

[13] Karpagam, S., Agrawal, S., Best proximity points
for cyclic orbital Meir-Keeler contractions, Nonlinear

Anal., 74, 1040-1046 (2011).
[14] Fan, K., Extensions of two fixed point theorems of

F.E. Browder, Mathematische Zeitschrift, 122, 234-
240 (1969).

[15] Kirk, W.A., Reich, S., Veeramani, P., Proximal re-
tracts and best proximity pair theorems, Numer.

Funct. Anal. Optim., 24, 851-862 (2003).
[16] Kirk, W.A., Srinivasan, P.S., Veeramani, P., Fixed

points for mappings satisfying cyclical contractive
conditions, Fixed Point Theory, 4, 79-89 (2003).

[17] Rezapour, Sh., Derafshpour, M., Shahzad, N., Best
proximity points of cyclic ϕ - contractions on reflex-
ive Banach spaces, Fixed Point Theory Appl., Art. ID
946178, 2010, 7pp (2010).

[18] Sadiq Basha, S., Global optimal approximate solu-
tions, Optim. Lett., 5(4), 639-645 (2011).

[19] Sadiq Basha, S., Best proximity points: global op-
timal approximate solutions, J. Global Optim., 49,
15-21 (2011).

[20] Schutz, B.F., Geometrical Methods of Mathematical

Physics, Cambridge University Press. (1980).

Dr.B.S.Choudhury is a Professor of Mathe-
matics since 2003. He has supervised several
Ph.D. students in different areas of pure and ap-
plied mathematics and theoretical physics and has
published a good number of research articles in
international journals. Particularly he has pub-
lished more than 100 research articles in metric
space related studies. He has served his institute
in several administrative capacities.

Pranati Maity received bachelor of science
in mathematics from Vidyashagar university in
2005. She received her master degree in math-
ematics and bachelor of education from Guru
Ghasidas Viswavidyalaya in 2007 and 2009 re-
spectively. She is going to submit Ph.D thesis.
Her research interest is nonlinear analysis and
optimization.

Pulak Konar completed his master degree in
2007 from Guru Ghasidas Viswavidyalaya, C.G,
India. At present he is pursuing his Ph.D. He
is also working as an Assistant Professor in the
Department of Mathematics in Institute of Tech-
nology & Marine Engineering since 2009. His
research interest is nonlinear analysis, functional
analysis and topology.


