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1. Introduction

Nonlinear differential equations are powerful
mathematical tools used to model real-world
problems arising in several fields of study [1, 2].
The analysis of their solutions is of great impor-
tance, as they are for comparison with the col-
lected data [3]. It is worth noting that, most of
the time, obtaining their exact solutions is some-
times impossible. Researchers have therefore de-
veloped different approaches to help guarantee the
existence and uniqueness of these solutions [4–7].
We note that several researchers have provided
different conditions in the case of uniqueness in
the last decades. For existence, many iterative
approaches have been suggested, for example, Pi-
card, Toneli, and others. For uniqueness, Witte
provided several conditions that can be tested to
conclude that a given nonlinear ordinary differ-
ential equation with a classical derivative has a

unique solution. Several other researchers, like
Caratheordory, Nagumo, and others, have also
provided some important conditions [8, 9]. While
several works have been published for ordinary
differential equations with integer-order deriva-
tives, much attention has not been devoted to
classical and fractional nonlinear ordinary differ-
ential equations in fractal calculus [10, 11]. Frac-
tional calculus and fractal calculus are intercon-
nected fields, primarily through their shared focus
on non-integer dimensions and scales. Fractional
calculus extends the concept of differentiation
and integration to non-integer orders, allowing
for more flexible mathematical modeling of com-
plex systems. A key connection is that fractional
calculus provides the mathematical tools needed
to describe the dynamics of processes on fractal
structures. For example, the study by Metzler
and Klafter [12] titled ”The random walk’s guide
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to anomalous diffusion: a fractional dynamics ap-
proach” discusses how fractional calculus can be
applied to model diffusion processes on fractal me-
dia . Whereas these equations are suitable for the
depiction of several complex real-world problems
that cannot be modeled using classical ordinary
differential equations. In this paper, we shall con-
sider four classes of nonlinear ordinary differential
equations, including those with classical differen-
tiation in fractal calculus, those with power law,
exponential decay, and generalized Mittag-Leffler
kernels in fractal calculus. For each case, we will
find conditions of uniqueness based on the frame-
work of Witte [9].

2. Preliminaries

We shall provide some definitions that will be
used in this paper.

df(t)
dtβ

= lim
t1→t

f(t1) − f(t)
tβ
1 − tβ

, β > 0, (1)

which the fractal derivative of the function f with
respect to a fractal measure t with scaling indice
β [11]. We note that if f is differentiable then,

df(t)
dtβ

= f ′(t)
βtβ−1 . (2)

Fractal-fractional derivatives of the function f
with power law, exponential decay and Mittag-
Leffler kernel are given below respectively [10].

F F P
t0 Dα,β

t f(t) = d
dtβ

1
Γ(1−α)

t∫
t0

f(τ)(t − τ)−αdτ,

(3)

F F E
t0 Dα,β

t f(t) = d
dtβ

1
(1−α)

t∫
t0

f(τ) exp
(

−α
1−α(t − τ)

)
dτ,

(4)

F F M
t0 Dα,β

t f(t) = d
dtβ

1
(1−α)

t∫
t0

f(τ)Eα

(
−α
1−α(t − τ)α

)
dτ,

(5)

where (α, β) ∈ (0, 1].
Their respective integrals are given as below:

F F P
t0 Jα,β

t f(t) = β

Γ (α)

t∫
t0

(t − τ)α−1τβ−1f(τ)dτ,

(6)

F F E
t0 Jα,β

t f(t) = (1 − α)βtβ−1f(t) + αβ

t∫
t0

τβ−1f(τ)dτ,

(7)
F F M
t0 Dα,β

t f(t) = (1 − α)βtβ−1f(t) (8)

+ αβ

Γ (α)

t∫
t0

(t − τ)α−1τβ−1f(τ)dτ.

We note that, when β = 1, we recover all the
fractional differential and integral operators.

3. The Witte’s uniqueness conditions
for classical fractal ordinary
differential equations

In this section, we are interested in the following
general fractal differential equation.

{ F
t0Dα

t y(t) = f(t, y(t)), t > t0.
y(t0) = y0,

(9)

The aim is to establish uniqueness conditions
based on the Witte’s uniqueness.

Theorem 1. Let assume that f(t, y) is contin-
uous in S+ = {(t, y) | t0 < t ≤ a, |y| < ∞} and
satisfies
i) ∀(t, y), (t, y) ∈ S+

|f(t, y) − f(t, y)| ≤ h(t) |y − y| , (10)

ii)|f(t, y)| ≤ φ(t)h(t) exp

 t∫
a

h(τ)dτ

 in S+,

where h(t) > 0 is continuous in [t0, a] and φ(t) is
continuous in [t0, a] and φ(t0) = 0.

Then the considered equation has almost one so-
lution.

Proof. To proof the above, we shall first provide
the proof of the following Lemma. □

Lemma 1. Let Ω(t) be a nonnegative continuous
function on [t0, a] and let
i) h(t) > 0 be continuous functions in [t0, a],
ii) There exists a function H(t) in [t0, a] such
that H ′(t) = h(t) for almost all t ∈ [t0, a] and
lim

t→t+
0

H(t) exists, it can be finite,

iii) Ω(t) ≤
t∫

t0

h(τ)Ω(τ)dτ, t ∈ [t0, a],

iv) Ω(t) = o (exp (tαH (t))) as t → t+
0 . Then

Ω(t) = 0.



324 A. Atangana, I. Koca / IJOCTA, Vol.14, No.4, pp.322-335 (2024)

Proof. Let the mentioned conditions hold, then

Ψ(t) = α

t∫
t0

τα−1h(τ)Ω(τ)dτ. (11)

Thank to the hypothesis of the Lemma Ψ(t) exists
and is continuous on [t0, a]. Then

F
t0Dα

t Ψ(t) = 1
αtα−1

d

dt

α

t∫
t0

τα−1h(τ)Ω(τ)dτ

 ,

(12)

= 1
αtα−1

[
αtα−1h(t)Ω(t)

]
,

= h(t)Ω(t) ≤ h(t)Ψ(t).
We define

F (t) = exp (−tαH(t)) Ψ(t). (13)
F
t0Dα

t F (t) (14)

= 1
αtα−1

d

dt

t∫
t0

F (τ)dτ = 1
αtα−1 F ′(t),

= 1
αtα−1

×

 Ψ′(t) exp (−tαH(t))

−Ψ(t)
(

−αtα−1H(t)
−tαh(t)

)
exp(−tαH(t))

 ,

= 1
αtα−1 exp(−tαH(t))

×

 Ψ′(t)

−Ψ(t)
[

αtα−1H(t)
−tαh(t)

]  ,

≤ 1
αtα−1 exp(−tαH(t)) h(t)Ψ(t)αtα−1

−Ψ(t)
[

αtα−1H(t)
−tαh(t)

]  ,

≤ Ψ(t) exp(−tαH(t))
αtα−1

[
αtα−1h(t)

−αtα−1H(t) − tαh(t)

]
,

≤ Ψ(t) exp(−tαH(t))
αtα−1

[
tαh(t)

−αtα−1H(t) − tαh(t)

]
,

≤ −H(t)Ψ(t) exp(−tαH(t)),
≤ −H(t)F (t) ≤ 0.

We can say that ∀t ∈ [t0, a], Ψ(t) exp(−tαH(t))
is decreasing. We now choose ε > 0 with t small
enough

Ψ(t) exp(−tαH(t)) (15)

= exp(−tαH(t))
t∫

t0

ατα−1h (τ) Ω(τ)dτ,

≤ ε exp(−tαH(t))α
t∫

t0

τα−1h (τ) exp(ταH(τ))dτ,

≤ ε exp(−tαH(t))α
t∫

t0

ταh (τ) exp(ταH(τ))dτ,

≤ ε exp(−tαH(t))α
t∫

t0

(
ταh (τ)

+ατα−1H (τ)

)
× exp(ταH(τ))dτ,

= εα exp(−tαH(t)) exp(tαH(t)),
= εα.

lim
t→t+

0

exp(−tαH(t))Ψ(t) = 0, (16)

thus
exp(−tαH(t))Ψ(t) ≤ 0 for t > 0, (17)

this also implies that

α

t∫
t0

τα−1h(τ)Ω(τ)dτ ≤ 0. (18)

Therefore we should have
Ω(t) = 0. (19)

□

The new uniqueness criteria will be presented be-
low. This is more general that the previous con-
dition of the theorem.

Theorem 2. Let f(t, y) be continuous in S+ in
addition to the hypothesis in theorem 1, we have

|f(t, y) − f(t, y)| = o (exp(tαH(t))) , (20)
as t → t+

0 uniformly with respect to y, y ∈ [−λ, λ],
λ > 0 arbitrary with h(t) and H(t) the same like
in Lemma 1. Then the considered equation has
almost one solution in [t0, a].

Proof. Let y(t) and y(t) be two different solu-
tions of one equation

y(t) = y(t0) + α

t∫
t0

τα−1f(τ, y(τ))dτ,

(21)

|y(t) − y(t)| ≤ α

t∫
t0

τα−1 |f(τ, y(τ)) − f(τ, y(τ))| dτ,

≤ α

t∫
t0

τα−1h(τ) |y − y| dτ,
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≤ α

t∫
t0

(
τα−1H(τ) + ταh(τ)

)
exp (ταH(τ)) dτ,

≤ ε exp (tαH(t)) .

From the Lemma, the result is obtained. □

Corollary 1. Let f satisfies the following con-
ditions; ∀(t, y), (t, y) ∈ S+, β ∈ (1, 2] and α ∈
(0, 1] :
i) (f(t, y) − f(t, y)) (y − y)β−1 ≤ β

α th(t) (y − y)β ,

ii) f(t, y) − f(t, y) = o (exp(tαH(t))) ,

as t → t+
0 uniformly with respect to y, y ∈

[−δ, δ] , δ > 0 arbitrary. Then the considered
equation has almost one solution.

Proof. Let y and y be different solutions in S+.

Let put Φ(t) = (y(t) − y(t))β then we have that,

F
t0Dα

t Φ(t) = 1
αtα−1

d

dt
[Φ(t)] ,

= 1
αtα−1

(
β (y(t) − y(t))

)′
(y(t) − y(t))β−1 ,

= β
(

F
t0Dα

t y(t) −F
t0 Dα

t y(t)
)

(y(t) − y(t))β−1 ,

= β (f (t, y(t)) − f(t, y(t))) (y(t) − y(t))β−1 .

(22)

By the hypothesis (i), we have that

F
t0Dα

t Φ(t) ≤ βh(t) (y(t) − y(t))β , (23)

= β

α
th(t)Φ(t).

Therefore
F
t0Dα

t Φ(t) ≤ β

α
h(t)Φ(t)t. (24)

Note that
F
t0Dα

t

(
Φ(t) exp

(
−βtαH(t)

))

= 1
αtα−1


Φ′(t) exp

(
−βtαH(t)

)
+Φ(t)

[
−βtαh(t)

−βαtα−1H(t)

]
exp

(
−βtαH(t)

)
 ,

= exp
(
−βtαH(t)

)
F
t0Dα

t Φ(t)

−Φ(t)
(

β
α th(t)

+βH(t)

)  ,

≤ exp
(
−βtαh(t)

) [ F
t0Dα

t Φ(t)
−β t

αh(t)Φ(t)

]
,

≤ 0.

(25)

Since
F
t0Dα

t Φ(t) − β
t

α
h(t)Φ(t) ≤ 0, (26)

F
t0Dα

t

(
exp

(
−βtαH(t)

)
Φ(t)

)
≤ 0. (27)

The conclusion is that the function
exp

(
−βtα

)
Φ(t) is non increasing for almost

∀t ∈ [t0, a] . On the other hand we have that

exp
(
−βtαH(t)

)
Φ(t) (28)

= exp
(
−βtαH(t)

)
(y(t) − y(t))β ,

= exp
(
−βtαH(t)

)

×

α

t∫
t0

τα−1 (f (τ, y) − f (τ, y)) dτ

β

.

However by hypothesis (ii), we can find ε > 0
small enough such that

exp
(
−βtαH(t)

)
Φ(t) (29)

≤ exp
(
−βtαH(t)

)
αβ

×

 t∫
t0

εβ

(
ατα−1H(τ)
+ταh (τ)

)
exp

(
ταβH(τ)

)
dτ

β

,

≤ exp
(
−βtαH(t)

)
αβεβ

×

 t∫
t0

exp
(
ταβH(τ)

)′
dτ

 ,

≤ exp
(
−βtαH(t)

)
αβεβ exp

(
tαβH(t)

)
,

= αβεβ = (αε)β ,

and then

lim
t→t+

0

exp
(
−βtαH(t)

)
Φ(t) = 0. (30)

Therefore Φ(t) = 0 so we get

y(t) = y(t), (31)

which completes the proof. □

We shall now evaluation the above condition
in the case of the fractal fractional with power
law.This will be acheived in the next section

4. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with
exponential kernel

We shall consider in this section, the following
fractal-fractional differential equation
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{
F F E
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(32)

that under the witte’s condition α, β ∈ (0, 1].
The aim of this section is to show that under the
Witte’s condition equation has a unique solution
if such solution exists in [t0, a] . We will start our
investigation on with the following lemma.

Lemma 2. Let f(t, y(t)), h(t) and H(t) satisfy
the properties presented before

i) Φ(t) ≤ (1 − α)βtβ−1h(t)Φ(t) +

αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ,

ii) Φ(t) = o (exp (H(t))) as t → t+
0 , then Φ(t) = 0

in [t0, a] .

Proof. Let set
Ω(t) = (1 − α)βh(t)tβ−1Φ(t) (33)

+ αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ.

From the hypothesis, we have that Ω(t) exists and
is continuous in [t0, a] . We recall that

F F E
t0 Dα,β

t

(
F F E
t0 Jα

t u(t)
)

= u(t). (34)

Thus applying F F E
t0 Dα,β

t on both sides yields

F F E
t0 Dα,β

t Ω(t) = h(t)Φ(t) ≤ h(t)Ω(t). (35)

Now, we shall find the sign of the
F F E
t0 Dα,β

t [Ω(t) exp (−H(t))] (36)

= 1
βtβ−1

CF R
t0 Dα

t [Ω(t) exp(−H(t))] ,

= 1
βtβ−1

CF
t0 Dα

t [Ω(t) exp(−H(t))] .

Since Ω(t0) = 0, therefore, we have that
CF R
t0 Dα

t Ω(t) =CF
t0 Dα

t Ω(t). (37)

Therefore
F F E
t0 Dα,β

t [Ω(t) exp (−H(t))]

= 1
βtβ−1


1

1−α

t∫
t0

exp
(

−α
1−α(t − τ)

)
×
[

Ω′ (τ) exp(−H(τ))
−h (τ) Ω (τ) exp(−H(τ))

]
 dτ,

= 1
βtβ−1

 1
1−α

t∫
t0

exp
(

−α
1−α(t − τ)

)
× [Ω′ (τ) − h (τ) Ω (τ)] exp(−H(τ))

 dτ,

≤ 0.

(38)
In reference [9] it was shown that under the con-
dition prescribed here

Ω′ (t) − h (t) Ω (t) ≤ 0, (39)

therefore

F F E
t0 Dα,β

t [exp (−H(t)) Ω(t)] ≤ 0. (40)

Since by the hypothesis the integral is positive
therefore

F F E
t0 Dα,β

t [exp (−H(t)) Ω(t)] ≤ 0, (41)

almost every where in [t0, a] .

exp (−H(t)) Ω(t)

= exp (−H(t))


(1 − α) βh (t) Φ (t) tβ−1

+βα

t∫
t0

τβ−1h (τ) Φ(τ)dτ

 .

For a sufficient small t, we choose ε > 0 such that
in the view of (iv), we get

Ω(t) exp (−H(t)) ≤ exp (−H(t))

×


(1 − α) βh (t) tβ−1 exp (H(t)) ε′

+βαε′
t∫

t0

τβ−1h (τ) exp (H(τ)) dτ

 ,

≤ exp (−H(t))

×
[

(1 − α) βh (t) (t0)β−1 exp (H(t)) ε′

+ (t0)β−1
βαε′ exp (H(t))

]
,

≤ (1 − α) βh (t) (t0)β−1
ε′ + (t0)β−1

βαε′.

Using the continuity of h (t) in [t0, a] . ∃t1 ∈ [t0, a]
such that ∀t ∈ [t0, a]

h (t1) ≥ h (t) , (42)
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therefore
exp (−H(t)) Ω(t) ≤ (t0)β−1

β
(
h (t1) ε′ (1 − α) + αε′) ,

≤ µε′ = µ

µ
ε = ε.

(43)

where
ε′ = ε

µ
= ε

(t0)β−1
β (h (t1) (1 − α) + αβ)

. (44)

Therefore

Φ(t) = 0. (45)
□

Theorem 3. Let f(t, y) be continuous in S+ in
addition to Theorem 2 and Lemma 2 we have

∀ε′ > 0,

ε′ = ε

(1 − α) βh (t) (t0)β−1 + (t0)β−1
βα

. (46)

Then the initial value problem (32) has almost one
solution.

Proof. Let y(t) and y(t) be two different solu-
tions of our equation, then
|Φ(t)| = |y(t) − y(t)| ≤ (1 − α)βtβ−1 |f(t, y(t)) − f(t, y(t))|

+ αβ

t∫
t0

τβ−1 |f(τ, y(τ)) − f(τ, y(τ))| dτ,

≤ (1 − α)βtβ−1h (t) Φ (t)

+ αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ,

≤ (1 − α) βh (t) (t0)β−1
ε′ exp (H(t))

+ (t0)β−1
βαε′ exp (H(t)) ,

≤
(

(1 − α) βh (t) (t0)β−1

+ (t0)β−1
βα

)
ε′ exp (H(t)) ,

≤ µε′ exp (H(t)) = ε exp (H(t)) .

(47)

□

Theorem 4. Let f(t, y) satisfies all the condition
described in Theorem 3.

Proof. Let y(t) and y(t) be two different solution
of equation (32). We set as before

Ψ(t) = (y − y)β . (48)

We have that Ψ(t0) = 0, thus
F F E
t0 Dα,β

t Ψ(t) (49)

= 1
βtβ−1

CF R
t0 Dα

t Ψ(t) = 1
βtβ−1

CF
t0 Dα

t Ψ(t),

= 1
βtβ−1

1
1 − α

t∫
t0

Ψ′(τ) exp
( −α

1 − α
(t − τ)

)
dτ,

= 1
βtβ−1

1
1 − α

t∫
t0

[
β (y − y)′ (y − y)β−1

]

× exp
( −α

1 − α
(t − τ)

)
dτ,

≤ βδ
[

F F E
t0 Dα,β

t y −F F E
t0 Dα,β

t y
]

,

≤ βδ |f(t, y(t)) − f(t, y(t))| ,

≤ βδh(t)Ψ(t),
here

δ =


max

t∈[t0,a]
|y − y|β−1 , if y′ − y′ > 0,

min
t∈[t0,a]

|y − y|β−1 , if y′ − y′ < 0.

In the view of the first hypothesis. Thus
F F E
t0 Dα,β

t Ψ(t) ≤ ∆Ψ(t), (50)

almost every where in [t0, a] .

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(51)

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

× exp
(
−βH(τ)

)
Ψ(τ)dτ,

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×
(
Ψ(τ) exp

(
−βH(τ)

))′
dτ

− 1
βtβ−1

1
1 − α

Ψ(t0) exp
(
−βH(t0)

)
exp

( −α

1 − α
t

)
.

But

Ψ(t0) = 0, (52)

therefore
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F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(53)

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×
(
exp

(
−βH(τ)

)
Ψ(τ)

)′
dτ,

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×

 Ψ′(τ) exp
(
−βH(τ)

)
−βH(τ) exp

(
−βH(τ)

)
Ψ(τ)

 dτ.

In reference [9], it was shown that

Ψ′(t) exp
(
−βH(t)

)
−βH(t) exp

(
−βH(t)

)
Ψ(t) < 0.

(54)
Therefore

F F E
t0 Dα,β

t

[
Ψ(t) exp

(
−βH(t)

)]
≤ 0.

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(55)

= 1
βtβ−1

CF R
t0 Dα

t

[
exp

(
−βH(t)

)
Ψ(t)

]
,

= 1
βtβ−1

CF
t0 Dα

t

[
exp

(
−βH(t)

)
Ψ(t)

]
,

= 1
βtβ−1

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×

 −Ψ′(τ)β exp
(
−βH(τ)

)
−βh(τ) exp

(
−βH(τ)

)
Ψ(τ)

 dτ,

= 1
βtβ−1

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×
[[

Ψ′(τ) + h(τ)Ψ(τ)
]
exp

(
−βH(τ)

)]
dτ,

= 1
βtβ

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×
[[

Ψ′(τ) − h(τ)Ψ(τ)
]
exp

(
−βH(τ)

)]
dτ,

≤ 0.

Therefore, we have

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
< 0. (56)

Following the routine presented earlier we shall
have for ε′

exp
(
−βH(t)

)
Ψ(t)

= exp
(
−βH(t)

)
(y(t) − y(t))β ,

= exp
(
−βH(t)

)
(1 − α)βtβ−1 (f(t, y(t)) − f(t, y(t)))

+αβ

t∫
t0

τβ−1 (f(τ, y(τ)) − f(τ, y(τ))) dτ


β

,

≤ exp
(
−βH(t)

)
(1 − α)βtβ−1ε′ exp (H(t)) h(t)

+αβ

t∫
t0

h(τ)τβ−1ε′ exp (H(τ)) dτ


β

,

≤ exp
(
−βH(t)

)
(1 − α)β (t0)β−1

ε′ exp (H(t)) h(t)

+ (t0)β−1
αβε′

t∫
t0

h(τ) exp (H(τ)) dτ


β

,

≤ exp
(
−βH(t)

)( (1 − α)β (t0)β−1
ε′ exp (H(t)) h(t)

+ (t0)β−1
αβε′ exp (H(t))

)β

,

≤ exp
(
−βH(t)

)( (1 − α)β (t0)β−1
ε′ exp (H(t)) h(t1)

+ (t0)β−1
αβε′ exp (H(t))

)β

,

≤ exp
(
−βH(t)

)
exp (βH(t))

(
ε′)β ((1 − α)β (t0)β−1 + (t0)β−1

αβ
)β

,

≤
(
ε′)β µβ, µ = ((1 − α)β + αβ) (t0)β−1

.

(57)
We choose

ε′ = ε

µ
, (58)

such that

exp
(
−βH(t)

)
Ψ(t) ≤ ε2. (59)

Therefore

lim
t→0+

exp
(
−βH(t)

)
Ψ(t) = 0. (60)

So we conclude that

Ψ(t) = 0 (61)
⇒ y(t) = y(t),

which concludes the proof. □

5. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with
power-law kernel

In this section, we shall consider the following dif-
ferential equation

{
F F P
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(62)

We aim to show that if the solution
of the above equation exists in S+ =
{(t, y) | t0 < t ≤ a, |y| < ∞}, α ∈ (0, 1], β ∈
(0, 1] then it is unique.
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Lemma 3. Let Φ(t) be a non negative continuous
in (t0, a] such that Φ(t0) = 0. Let

i) h(t) > 0 be continuous function in (t0, a],

ii) We can find a function H(t) in (t0, a] such
that H ′(t) = h(t) for almost all t ∈ (t0, a] and
lim

t→t+
0

H(t) exists,

iii) Φ(t) ≤ β
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

∀t ∈ (t0, a] and

iv) Φ(t) = o (exp(H(t))) as t → t+
0 . Then

Φ(t) = 0, (63)
in (t0, a].

Proof. Let

Ω(t) = β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ. (64)

The existence and the continuty of the func-
tion Ω(t) is assumed since the hypothesis of the
Lemma. Therefore we have that

F F P
t0 Dα,β

t Ω(t) = h(t)Φ(t) ≤ h(t)Φ(t). (65)

We note that

F F P
t0 Dα,β

t Ω(t)

= β

Γ (α)
F F P
t0 Dα,β

t

 t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ

 ,

= β

Γ (α) βtβ−1
d

dt

1
Γ (1 − α)

×

 t∫
t0

τβ−1 (t − τ)−α

 τ∫
t0

lβ−1 (τ − l)α−1 h(l)Φ(l)dl

 dτ

 ,

= β

βtβ−1
RL
t0 Dα

t

[
RL
t0 Jα

t

(
tβ−1h(t)Φ(t)

)]
,

= βtβ−1h(t)Φ(t)
βtβ−1 ,

= h(t)Φ(t).
(66)

We recall that Ω(t0) = 0, then

RL
t0 Dα

t Ω(t) =C
t0 Dα

t Ω(t). (67)

F F P
t0 Dα,β

t [exp(−H(t))Ω(t)]

= 1
βtβ−1

RL
t0 Dα

t [exp(−H(t))Ω(t)] ,

= 1
βtβ−1

C
t0Dα

t [exp(−H(t))Ω(t)] ,

= 1
βtβ

1
Γ (1 − α)

t∫
t0

(t − τ)−α
[

Ω′(τ) exp(−H(τ))
−h(τ)Ω(τ) exp(−H(τ))

]
dτ,

= 1
βtβ

1
Γ (1 − α)

t∫
t0

(t − τ)−α exp(−H(τ))
[
Ω′(τ) − h(τ)Ω(τ)

]
dτ,

(68)
We have due to reference [9] that

Ω′(τ) − h(τ)Ω(τ) ≤ 0. (69)
Therefore

F F P
t0 Dα,β

t [exp(−H(t))Ω(t)] ≤ 0. (70)
We can now have for a small t

exp(−H(t))Ω(t)

= exp(−H(t)) β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp(−H(t))β
Γ (α)

t∫
t0

τβ (t − τ)α h(τ)Φ(τ)dτ,

≤ exp(−H(t))βaβ+α

Γ (α)

t∫
t0

h(τ)Φ(τ)dτ.

(71)
By hypothesis (iv), we have

exp(−H(t))Ω(t) ≤ exp(−H(τ))βaβ+α

Γ (α) ε exp
(

H(τ) × Γ (α)
βaβ+α

)
,

≤ ε.

(72)

lim
t→0+

exp(−H(t))Ω(t) = 0. (73)

This leads to

exp(−H(t))Ω(t) ≤ 0, ∀t > t0, (74)
which implies

β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ ≤ 0, (75)

which is a contradiction therefore

Φ(t) = 0. (76)
□
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Theorem 5. Let f be continuous in
S+ = {(t, y) | t0 < t ≤ a, |y| < ∞} such that
∀(t, y), (t, y) ∈ S+

i)|f(t, y) − f(t, y)| ≤ h(t) |y − y| ,

ii)f(t, y) − f(t, y) = o (exp(H(t))) ,

as t → t+
0 uniformly with respect to y, y ∈ [−δ, δ],

δ > 0 arbitrary, where h(t) = H ′(t) are the same
as in above. Then the considered equation has al-
most one solution.

Proof. Let y(t) and y(t) be two different solu-
tions, we have that

|y(t) − y(t)| ≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
∣∣∣∣ f (τ, y(τ))

−f (τ, y(τ))

∣∣∣∣ dτ,

≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h (τ) |y − y| dτ,

≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α h (τ) |y − y| dτ.

(77)
In the view of (ii), we have

|y(t) − y(t)| ≤ ε
βΓ (α)

βaβ+αΓ (α)

t∫
t0

aβ+αh (τ) exp(H(τ))dτ,

≤ ε exp(H(t)).
(78)

The result of the previous lemma leads to

y(t) = y(t). (79)

□

Theorem 6. Let f be continuous in S+ =
{(t, y) | t0 < t ≤ a, |y| < ∞} such that β ∈ (1, 2],
α, β ∈ (0, 1] ,∀(t, y), (t, y) ∈ S+, we have

i) (f(t, y) − f(t, y)) (y − y) ≤ h(t) (y − y)β ,

ii) f(t, y) − f(t, y) = o (h(t) exp (H(t))) ,

uniformly with respect to y, y ∈ [−δ, δ] , δ > 0
arbitrary then

y(t) = y(t). (80)

Proof. Let y and y be two solutions, we put
Φ(t) = (y(t) − y(t))β . We have that at t = t0,
Φ(t0) = 0 initial condition then we will have that

C
t0Dα

t Φ(t) = RL
t0 Dα

t Φ(t). (81)

However,

F F P
t0 Dα,β

t Φ(t)

= 1
βtβ−1

RL
t0 Dα

t Φ(t) = 1
βtβ−1

C
t0Dα

t Φ(t),

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α Φ′(τ)dτ,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α
[
β (y − y)′ (y − y)β−1

]
dτ,

= 1
βtβ−1


1

Γ(1−α)

t∫
t0

β (y)′ (y − y)β−1 (t − τ)−α dτ

− 1
Γ(1−α)

t∫
t0

βy′ (y − y)β−1 (t − τ)−α dτ


,

≤ βΛ
(

F F P
t0 Dα,β

t y′ −F F P
t0 Dα,β

t y
)

,

≤ βΛ |f(t, y(t)) − f(t, y(t))| ,

≤ βΛh(t) (y(t) − y(t))β .

(82)
here

Λ =


max

t∈[t0,a]
|y − y|β−1 , if y′ − y′ > 0,

min
t∈[t0,a]

|y − y|β−1 , if y′ − y′ < 0.

By the hypothesis (i), thus

F F P
t0 Dα,β

t Φ(t) ≤ βΛh(t)Φ(t), (83)
≤ βΛh(t)Φ(t).

F F P
t0 Dα,β

t Φ(t) − βΛh(t)Φ(t) ≤ 0. (84)
F F P
t0 Dα,β

t

[
exp(−βH(t))Φ(t)

]
= 1

βtβ−1
RL
t0 Dα

t

[
exp(−βH(t))Φ(t)

]
,

= 1
βtβ−1

C
t0Dα

t

[
exp(−βH(t))Φ(t)

]
,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α
(
exp(−βH(τ))Φ(τ)

)′
dτ,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α

[
−βh(τ)Φ(τ)

−β (y − y)′ (y − y)β−1 H(τ)

]
dτ,

= −1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α

[
βh(τ)Φ(τ)

+β (y − y)′ (y − y)β−1 H(τ)

]
dτ,

≤ 0,

(85)
for almost all t ∈ [0, a]. This shows that
exp(−βH(t))Φ(t) is non increasing for a small t.

exp(−βH(t))Φ(t) = exp(−βH(t)) (y − y)β ,

= exp(−βH(t))

×

 β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
∣∣∣∣ f (τ, y(τ))

−f (τ, y(τ))

∣∣∣∣ dτ


β

.

(86)
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In the view of the second hypothesis, we will have
that
exp(−βH(t))Φ(t)

≤
(

β

Γ (α)
Γ (α) aβ+α

βaβ+α

)β

εβ exp(βH(t)) exp(−βH(t)),

= εβ.

(87)
Therefore

exp(−βH(t))Φ(t) ≤ εβ, (88)
lim

t→0+
exp(−βH(t))Φ(t) = 0.

Therefore
Φ(t) = 0, (89)

=⇒ y(t) = y(t) in [t0, a].
□

6. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with the
Mittag Leffler kernel

In this section, we will consider the following
fractal-fractional differential equation

{
F F M
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(90)

Assuming the existence of the solution y(t), we
shall show that y(t) is unique.
Lemma 4. Let Φ(t) be a nonnegative continuous
in [t0, a] and
i) Let h(t) > 0 be a continuous function in (t0, a]
such that 1 − zh(t1) > 0,

ii) Φ(t) ≤ (1 − α)tβ−1βh(t)Φ(t) +

αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

iii) and β
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)dτ, exists Then

Φ(t) = 0. (91)
in [t0, a].

Proof. Let Φ(t) and h(t) satisfy the condition of
the theorem, then, we set

Ω(t) = (1 − α)tβ−1βh(t)Φ(t) + αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ.

(92)
We have from the fundamental theorem of fractal-
fractional calculus that

F F M
t0 Dα,β

t

(
F F M
t0 Jα,β

t f(t)
)

= f(t). (93)

Therefore
F F M
t0 Dα,β

t Ω(t) =F F M
t0 Dα,β

t

(
F F M
t0 Jα,β

t (h(t)Φ(t))
)

= h(t)Φ(t),
(94)

which produces

F F M
t0 Dα,β

t Ω(t) ≤ h(t)Ω(t). (95)
Then, we obtain Ω(t) as

Ω(t) ≤ (1 − α)βtβ−1h(t)Ω(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ,

≤ (1 − α)β (t0)β−1
h(t1)Ω(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ,

Ω(t) ≤ αβ

Γ (α) (1 − zh(t1))

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

(96)
We put

∆ = αβ

Γ (α) (1 − zh(t1)) . (97)

By the Gronwall inequality

Ω(t) ≤ o exp

∆
t∫

t0

τβ−1 (t − τ)α−1 h(τ)dτ

 ,

(98)

= o exp
(

α

(1 − zh(t1))
F F M
t0 Jα,β

t h(t)
)

,

= 0.

z = (1−α)β (t0)β−1, which is contraction. There-
fore

Ω(t) = 0 ⇒ Φ(t) = 0, (99)
in [t0, a]. □

Lemma 5. Let Φ(t), h(t) and H(t) be the same
like before and Φ(t0) = 0.

i) Φ(t) = o
(
exp

(
tβH(t)

))
as t → t+

0 then

Φ(t) = 0, ∀t ∈ [t0, a]. (100)

Proof. Let Φ(t) and h(t) satisfy the condition
above, then

Ω(t) = (1 − α)βtβ−1h(t)Φ(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,
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exists

F F M
t0 Dα,β

t Ω(t) ≤ h(t)Ω(t). (101)

F F M
t0 Dα,β

t (Ω(t) exp (−H(t)))

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω(τ) exp (−H(τ)) dτ.

(102)

Since Φ (t0) = 0, we will have Ω (t0) therefore,

F F M
t0 Dα,β

t (Ω(t) exp (−H(t)))

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω(τ) exp (−H(τ)) dτ,

= t1−β

(1 − α)β

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)[
Ω′(τ) exp (−H(τ))

−h(τ)Ω(τ) exp (−H(τ))

]
dτ,

= t1−β

(1 − α)β

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
exp (−H(τ))

[
Ω′(τ)

−h(τ)Ω(τ)

]
dτ,

(103)

whereas from [9], we have that

Ω(τ) − h(τ)Ω(τ) ≤ 0. (104)

Therefore since Eα

(
− α

1−α (t − τ)α
)

> 0, we con-
cluded that

F F M
t0 Dα,β

t (Ω(t) exp (−H(t))) < 0. (105)
exp

(
−tβH(t)

)
Ω(t)

= exp
(
−tβH(t)

)
(1 − α)βtβ−1h(t)Φ(t)

+ αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ

 ,

= exp
(
−tβH(t)

)
(1 − α)βtβ−1h(t)Φ(t)

+
αβ exp

(
−tβH(t)

)
Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp
(
−tβH(t)

)
(1 − α)βtβh(t)Φ(t)

+
αβ exp

(
−tβH(t)

)
Γ (α)

t∫
t0

τβ (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp
(
−tβH(t)

)
(1 − α)βtβh(t)Φ(t)

+
exp

(
−tβH(t)

)
αβε

Γ (α)

t∫
t0

(t − τ)α−1
[

βτβ−1H(τ)
+τβh(τ)

]

× exp
(
−τβH(τ)

)
dτ.

(106)

In the view (i)

≤ exp
(
−tβH(t)

)
(1 − α)ε′βtβh(t) exp

(
tβH(t)

)
+ αβε′aα

Γ (α) exp
(
tβH(t)

)
exp

(
−tβH(t)

)
,

≤ ε′
(

(1 − α)βaαh (t1)
+αβaα

Γ(α)

)
,

≤ ε(
(1 − α)βaαh (t1) + αβaα

Γ(α)

) ( (1 − α)βaαh (t1)
+αβaα

Γ(α)

)
,

≤ ε.

(107)
Therefore

lim
t→t+

0

exp
(
−tβH(t)

)
Ω(t) = 0. (108)

Thus

exp
(
−tβH(t)

)
Ω(t) ≤ 0 for t > t0, (109)

which implies

(1 − α)βtβ−1h(t)Φ(t) (110)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ 0.

contradiction, thus
Φ(t) = 0. (111)

□

Theorem 7. Let f(t, y(t)) be as presented before
and exp

(
tβH(t)

)
as t → t+

0 uniformly with re-
spect to y, y ∈ [−δ, δ], δ > 0 arbitrary h(t) and
H(t) are the same as previously. Then equation
(92) has a unique solution.

Proof. Let y(t) and y(t) be solutions of equation
(92).
|y(t) − y(t)| ≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 |f (τ, y(τ)) − f (τ, y(τ))| dτ,

≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h (τ) |y − y| dτ,

≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α h (τ) |y − y| dτ.

(112)
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In the view of (i), we get

|y(t) − y(t)| ≤ (1 − α)βtβ−1h(t) |y(t) − y(t)|

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ) |y(τ) − y(τ)| dτ,

≤ (1 − α)βtβ−1h(t) |y(t) − y(t)|

+ αβ

Γ (α)

t∫
t0

τβ (t − τ)α h(τ) |y(τ) − y(τ)| dτ,

≤ (1 − α)βε′h(t)tβ exp
(
tβH(t)

)
+ αβε′

Γ (α)

t∫
t0

aατβh(τ) exp
(
τβH(τ)

)
dτ.

(113)
|y(t) − y(t)| ≤ (1 − α)βε′h(t)aβ exp

(
tβH(t)

)
+ αβε′aα

Γ (α)

t∫
t0

(
τβh(τ) + βτβ−1H(τ)

)
exp

(
τβH(τ)

)
dτ,

≤
(

(1 − α)βε′h(t)aβ + αβε′aα

Γ (α)

)
exp

(
tβH(t)

)
,

≤
(

(1 − α)βε′h(t1)aβ + αβε′aα

Γ (α)

)
exp

(
tβH(t)

)
,

≤
ε
(
(1 − α)βh(t1)aβ + αβaα

Γ(α)

)
(
(1 − α)βh(t1)aβ + αβaα

Γ(α)

) exp
(
tβH(t)

)
,

≤ ε exp
(
tβH(t)

)
.

(114)

From the above Lemma

y(t) − y(t) = 0. (115)
□

Corollary 2. Let the condition in above theorem
hold, then

i) (f(t, y) − f(t, y)) (y − y) ≤ h(t) (y − y)β,
∀(t, y), (t, y) ∈ S+, β ∈ (1, 2].

ii) h (t1) = max
t∈(t0,a)

h(t),

1 − β(1 − α)β (t0)β−1 Λ > 0,

iii) F F M
t0 Jα,β

t h(t) exists.

Proof. Let y(t) and y(t) be two solutions of equa-
tion (92) then, let set Ω (t0) = 0 then we get

F F M
t0 Dα,β

t Ω(t) = 1
βtβ−1

ABC
t0 Dα

t Ω(t),

= 1
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω′

dτ,

= 1
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)

×
[
β (y − y)β (y − y)′

]
dτ.

(116)

Let m = min
t∈[t0,t]

|y − y|β−1, M =

max
t∈[t0,t]

|y(t) − y(t)| . We define

Λ =
{

m, if y′ − y′ < 0,
M, if y′ − y′ > 0.

(117)

Therefore

F F M
t0 Dα,β

t Ω(t) ≤ βΛ
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
(y − y)′ dτ,

≤ βΛ
(

F F M
t0 Dα,β

t y(t) −F F M
t0 Dα,β

t y(t)
)

,

≤ βΛ (f(t, y) − f(t, y)) ,

≤ βΛh(t) (y − y)β .

(118)

RL
t0 Dα

t Ω(t) = βΛβtβ−1, (119)
≤ βΛh(t)Ω(t),

ABR
t0 Dα

t Ω(t) ≤ βtβ−1Λh(t)Ω(t)β.

Ω(t) ≤ β(1 − α)βtβ−1Λh(t)Ω(t) (120)

+ αββ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 Λh(τ)Ω(τ)dτ,

≤ β(1 − α)β (t0)β−1 Λh(t1)Ω(t)

+ Λαββ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

If we take as

A = Λβ

1 − β(1 − α)β (t0)β−1 Λ
, (121)

Ω(t) ≤ Aαβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

(122)

By the Gronwall inequality we set
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Ω(t) ≤ o exp
(
AF F P

t0 Jα,β
t h(t)

)
, (123)

Ω(t) ≤ 0.

Therefore we have Ω(t) ≤ 0 which is a contraction
therefore

Ω(t) = 0 ⇒ y(t) = y(t), ∀t ∈ [t0, a] . (124)
□

7. Conclusion

Witte provided a set of conditions under which
a given nonlinear ordinary differential equation
admits unique solutions. This was established
when the differential operator was in integer or-
der. Based on the framework of Witte, we have
presented a detailed analysis of the uniqueness
of nonlinear ordinary differential equations with
fractal-fractional derivatives.
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