
       Corresponding Author. Email: bhatia.meetu@gmail.com 

 

 11 

An International Journal of Optimization  

and Control: Theories & Applications 

Vol.4, No.1, pp.11-20 (2014) © IJOCTA 

ISSN: 2146-0957   eISSN: 2146-5703 

DOI: 10.11121/ijocta.01.2014.00162  

http://www.ijocta.com 

 

 

 
 
 

 

 

Vector optimization with cone semilocally preinvex functions 
 

Surjeet Kaur Suneja and Meetu Bhatia 
 

Department of Mathematics, Miranda House, University of Delhi, Delhi 110007, India 

Email: surjeetsuneja@gmail.com 

Email: bhatia.meetu@gmail.com  

 

(Received March 11, 2013; in final form December 10, 2013) 

 

Abstract. In this paper we introduce cone semilocally preinvex, cone semilocally quasi preinvex 

and cone semilocally pseudo preinvex functions and study their properties. These functions are 

further used to establish necessary and sufficient optimality conditions for a vector minimization 

problem over cones. A Mond-Weir type dual is formulated for the vector optimization problem and 

various duality theorems are proved. 

 

Keywords: Vector optimization, semilocally preinvex functions, cones, optimality, duality. 

AMS Classification: 90C30; 90C25, 90C46 

 

1. Introduction 

The concept of semilocally convex functions 

was introduced by Ewing [1] who applied the 

notion to provide sufficient optimality 

conditions in variational and control problems. 

These functions have some important properties 

such as local minimum of a semilocally convex 

function defined on a locally star shaped set is a 

global minimum and non-negative linear 

combination of semilocally convex functions is 

also semilocally convex. Kaul and Kaur [3] 

defined semilocally quasi convex and 

semilocally pseudo convex functions. Suneja 

and Gupta [14] defined the (strict) semilocally 

pseudo convexity at a point with respect to a 

set. 

By using these concepts Kaul and Kaur [4, 

5] Kaur [7] and Suneja and Gupta [14] obtained 

optimality conditions and duality results for a 

class of non-linear programming problems. 

Gupta and Vartak [8] defined -semilocally 

convex and related functions and studied 

sufficient optimality conditions for a non-linear 

program involving these functions. Mukherjee 

and Mishra [9] and Preda [10] discussed 

optimality results for a multiobjective 

programming problem using semilocally 

convex functions. Weir [16] introduced cone-

semilocally convex functions and studied 

optimality conditions and duality theorems for 

vector optimization problems over cones.  

Preda and Stancu-Minasian [12] discussed 

the Fritz-John and Karush-Kuhn-Tucker type 

optimality conditions for weak vector minima 

using semilocally preinvex functions. Stancu-

Minasian [13] established optimality and 

duality results for a non-linear fractional 

programming problem where the functions 

involved were semilocally preinvex, 

semilocally quasi preinvex and semilocally 

pseudo preinvex. Preda [11] studied optimality 

and duality for a multiobjective fractional 

programming problem involving semilocally 

preinvex functions. Suneja et al. [15] 

introduced -semilocally preinvex, -

semilocally quasi preinvex and -semilocally 

pseudo preinvex functions and proved 

optimality conditions and duality results for a 

multiobjective non-linear programming 

problem using the above defined functions.  

In this paper we introduce K-semilocally 

preinvex, K-semilocally naturally quasi 

preinvex, K-semilocally quasi preinvex and K-
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semilocally pseudo preinvex functions where K 

is a closed convex cone with nonempty interior. 

Their properties and interrelations are 

established. Necessary and sufficient optimality 

conditions are obtained for a vector 

optimization problem over cones by using the 

above defined functions. A Mond-Weir type 

dual is associated with the optimization 

problem and duality results are studied.        

 

2. Preliminaries and Definitions  

Let 
n

S R  be a nonempty set and   

:
n

S S R    be a vector valued function.  

 

Definition 2.1 [11] The set S is said to be          

-locally star shaped at x S  if for each x S , 

there exists a positive number ( , ) 1a x x


  such 

that ( , ) ,x x x S   for 0 ( , )a x x


  .  

If ( , )x x x x    then -locally starshaped set 

reduces to locally star shaped set [1]. 

Let 
n

S R  be an -locally star shaped at 

x S , 
m

K R  be a closed convex cone with 

nonempty interior and let :
m

f S R  be a 

vector valued function. 

 

Definition 2.2. The function f is said to be                    

K-semilocally preinvex (K-slpi) at x S  with 

respect to  if corresponding to each x S , 

there exists a positive number 

( , ) ( , )d x a x x
 

x  such that  

( ) (1 ) ( ) ( ( , )) ,

for 0 ( , ).

tf x t f x f x t x x K

t d x x

    

 
 

f  is said to be K-slpi on  S  if it is  K-slpi at each 

x S . 

The following theorem gives a characterization 

of cone semilocally preinvex functions. 

 

Theorem 2.1. The function f is K-semilocally 

preinvex with respect to  if and only if its 

epigraph 

Epi(  ) {( ,  ) : ,   ( ) }f x y x S y f x K   
 

n m
R R   is -locally star shaped in the first 

component and locally star shaped in the 

second component.  

 

Proof.  First suppose that f  is K-slpi on S, with 

respect to .  

Let 
1 1

( , )x y  and 
2 2

( , )x y   Epi( ),f  then  

   
1 2 1 1
, , ( )x x S y f x K    and 

2 2
( ) ,y f x K    

which implies that  
1 1 1

( )y f x k   and  

y2 = f (x2) + k2 where k1, k2  K. 

Since f is K-slpi on S, there exists a positive 

number 
1 2

( , ) 1a x x


  such that  

2 1 2
+ ( , )  x t x x S  for 0 < t < a 1 2

( , )x x  and 

there exists a positive number 
1 2

( , )d x x


  

1 2
( , )a x x


 such that  

  
1 2 2 1 2

1 2

( ) (1 ) ( ) ( ( , )) ,

for 0 ( , )

tf x t f x f x t x x K

t d x x


    

 
 

1 1 2 2

2 1 2

( ) (1 )( )

( ( , ))

t y k t y k

f x t x x K

    

  
  

1 2 2 1 2

1 2

(1 ) ( ( , ))

( (1 ) )

ty t y f x t x x

K tk t k K

    

    
 

1 2 2 1 2
(1 ) ( ( , ))ty t y f x t x x K       

 2 1 2 1 2
( , ), (1 ) Epi( )x t x x ty t y f    

,     

                                          for 0 < t < d 1 2
( , )x x  

   Epi( f ) is -locally star shaped in first 

component and locally star shaped in 

second component. 

Conversely, let Epi( f ) be -locally star shaped 

in the first component and locally star shaped in 

the second component. Let 
1 2
,x x   S, then  

1 1 2 2
( , ( )), ( , ( )) Epi ( ).x f x x f x f         

Thus there exists a positive number 

1 2
( , ) 1a x x


  such that  

2 1 2 1 2

1 2

( ( , ), ( ) (1 ) ( )) Epi ( ),

for 0 ( , )

x t x x tf x t f x f

t a x x


   

 

1 2

2 1 2

( ) (1 ) ( )

( ( , ))

tf x t f x

f x t x x K

  

  
 

1 2 2 1 2
( ) (1 ) ( ) ( ( , )) ,tf x t f x f x t x x K     

                                        for 0 < t < a
1 2

( , )x x . 

Hence f is K-slpi on S.                                         

 

 

Remark 2.1. If m = n and 
n

K R


  then                         

K-semilocally preinvex functions reduce to 

semilocally preinvex functions defined by 

Preda [11]. We now give an example of a 

function which is K-slpi but fails to be slpi.  

 

Example 2.1. Consider the set \S R E  where 

1 1
 , {2}

2 2
E

 
 
 
 

. Thus the set S is -locally 

starshaped, where 
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1
, , , 2, 2

2

1
or ,  

2
( , )

1 1
, , 2,

2 2

1 1
or , 2

2 2

x x x x x x

x x

x x

x x x x x

x x x




   





  


 

     




    


 

and 

1
if 2, 2   

2 2
,

1 1
or 2,

( , ) 2 2

2 1
, if 2 , 2

2

1, elsew here

x x
x

x x
x x

a x x

x
x x

x x




  

 



   

 

 
  





 

Consider the function 
2

:f S R  defined by 

1
( , 0), , 2

2
( )

1
(0, ),

2

x x x

f x

x x


 


 

   


 

Let K = {(x, y): y  0,  y   x} 

 

 
Figure 1 

 

Thus, f is K-slpi at 1x    because  

( ) (1 ) ( ) ( ( , ))tf x t f x f x t x x      K, 

                for 0 < t < d ( , ) ( , )x x a x x


 . 

The function f  fails to be slpi at 1x    

because for x = 1, there does not exist any 

positive number ( , ) ( , )d x x a x x
 

  such that 

 ( ) (1 ) ( ) ( ( , ))tf x t f x f x t x x      

0    for  0 ( , )t d x x


  .   

                                          

Remark 2.2 If ( , )x x x x    then K-

semilocally preinvex functions reduce to K-

semilocally convex functions defined by Weir 

[16].  

 

We now give an example of a K-slpi function 

which fails to be K-semilocally convex.  

Example 2.2 The function f considered in 

Example 2.1 is K-slpi at 1x    but it fails to 

be K-semilocally convex at 1x    because for                    

x = 1, there does not exist any positive real 

number 1d   such that 

( ) (1 ) ( ) ( (1 ) )tf x t f x f tx t x        K 

for 0 t d  . 

 

Theorem 2.2 Let :
m

f S R  be K-slpi on an                  

-locally star shaped set 
n

S R . Then the set 

( )Z f S K   is locally star shaped.  

 

Proof.  Let , ,z z Z  then there exist 

, , ,x x S k k K   such that  

( ) ,  ( )z f x k z f x k    .            (2.1) 

 

Since S is an  -locally star shaped set and 

,x x S , therefore there exists a maximum 

positive number a( ,x x )  1 such that  

        ( , )x t x x S   for  0 < t < a( ,x x ). 

As f is K-slpi on S, there exists a positive 

number ( , ) ( , )d x x a x x
 

  such that  

          
( ) (1 ) ( ) ( ( , )) ,

for 0 ( , )

tf x t f x f x t x x K

t d x x


    

 
 

( ) (1 ) ( )

( ( , ))

tf x t f x

f x t x x K

  

  
. 

On using (2.1) we have,  

 ( ) (1 )( ) ( )t z k t z k f S K       

(1 ) ( ) (1 )tz t z f S tk t k K           

(1 ) ( )tz t z f S K         

                                           for 0 < t < d( ,x x ), 

as K is a convex cone. 

Hence Z is locally star shaped.     

                        

 

Theorem 2.3. Let f be K-slpi on S with respect 

to  then for each ,
m

y R  the set 

 ( ) : ( )
f

S y x S y f x K     is -locally star 

shaped. 
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Proof.  Let x, ( ), ,
m

f
x S y y R   then x, x S  

such that 

 ( )y f x K   and ( ) ,y f x K    

Thus there exist ,k k K  such that  

( )   and  ( )y f x k y f x k    .        (2.2) 

 

Since f is K-slpi with respect to  therefore there 

exists a positive number ( , )d x x


  ( , )a x x


 

where :
n

S S R    such that  

( ) (1 ) ( ) ( ( , )) ,

0 ( , )

tf x t f x f x t x x K

t d x x


    

 

On using (2.2) we get  

       

( ) (1 )( ) ( ( , )) ,

0 ( , )

t y k t y k f x t x x K

t d x x


      

 
 

( (1 ) ) ( ( , ))y tk t k f x t x x K        

( ( , )) ,

for 0 ( , )

y f x t x x K

t d x x


   

 
 

( , ) ( ),

for 0 ( , )

f
x t x x S y

t d x x


  

 
  

Hence Sf(y) is -locally star shaped.  

                  

We now give the definition of -semi 

differentiable function.  

 

Definition 2.3. The function f : S m
R  is said 

to be -semi differentiable at x S  if  

 
0

1
( ) ( , ( , )) lim ( ( , )) ( )

t

df x x x f x t x x f x
t

 






  

 exists for each x  S. 

 

Remark 2.3. 

(1) If ( , )x x x x    then -semi 

differentiability of f reduces to (one sided) 

directional differentiability of  f  at x  in 

the direction x  x , as considered by Weir 

[16]. 

(2) If m = 1 and ( , )x x x x   , then -semi 

differentiability reduces to semi 

differentiability [6].  

Let f  : S  R
m
 be -semi differentiable at 

x S . 

In the following result we give another property 

of K-slpi functions.  

 

Theorem 2.4. If f is K-slpi at x  then 

( ) ( ) ( ) ( , ( , ))f x f x df x x x K


    x S  .  

Proof. Since the function f is K-slpi at x  with 

respect to , therefore corresponding to each 

x S  there exists a positive number 

( , ) ( , )d x x a x x
 

  such that  

      
( ) (1 ) ( ) ( ( , )) ,

for 0 ( , )

tf x t f x f x t x x K

t d x x


    

 
 

which implies  

 
1

( ) ( ) ( ( , )) ( ) ,

0 ( , )

f x f x f x t x x f x K
t

t d x x


    

 

 

Since K is a closed cone, therefore taking limit 

as 0t


 , we get  

( ) ( ) ( ) ( , ( , ))f x f x df x x x K


   , x S  . 

 
 

We now introduce semilocally naturally quasi 

preinvex functions over cones.  

 

Definition 2.4. The function f is said to be                   

K-semilocally naturally quasi preinvex (K-

slnqpi) at ,x  with respect to   if  

 
( ( ) ( ))

( ) ( , ( , )) .

f x f x K

df x x x K


  

  
 

 

Remark 2.4. If m = n and cone K = ,
n

R


 K-

slnqpi functions reduce to slqpi functions 

defined by Preda [11]. 

 

Theorem 2.5. If the set 

 ( ) : ( )
f

S y x S y f x K     is -locally star 

shaped for each y  R
m
, then  f  is K-semilocally 

naturally quasi preinvex on S with respect to 

same .  

 

Proof.  Let Sf (y)  be -locally star shaped for 

each y  R
m
. 

Let x, x  S such that    ( f(x) – f( x ))  K.  

Denoting ( ),y f x  we get    ( f(x) y)  K. 

( ) ,y f x K    

( )
f

x S y    

Also ( )
f

x S y  as 0  K.  

Since Sf (y) is -locally star shaped, therefore 

there exists a maximum positive number 

( , )a x x


  1 such that  

       ( , ) ( ),
f

x t x x S y   for 0 < t < a (x, x )  

which implies, 

     ( ( , ))y f x t x x K    for 0 < t < a (x, x ). 
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Thus,  

  
( ) ( ( , )) ,

for  0 ( , )

f x f x t x x K

t a x x

  

 
 

( ( ( , )) ( )) ,f x t x x f x K               

  for 0 ( , ).t d x x


   

1
( ( ( , )) ( )) ,

0 ( , )

f x t x x f x K
t

t d x x





   

 

 

Since K is a closed cone, therefore taking limit 

as 0t


 , we get  

 ( ) ( , ( , ))df x x x K


   

Thus  ( ( ) ( ))f x f x K  

( ) ( , ( , ))df x x x K


   . 

Hence f  is K-slnqpi on S.    

                                 

Theorem 2.6. If f is K-slpi at x S  with 

respect to  then f is K-slnqpi at ,x with respect 

to same  . 

 

Proof. Let f be K-slpi at x , then there exists a 

positive number ( , ) ( , )d x x a x x
 

  such that  

 

( ) (1 ) ( ) ( ( , )) ,tf x t f x f x t x x K         

                  for 0 ( , )t d x x


  .        

(2.3) 

Suppose that,   

 ( ( ) ( ))f x f x K    

then,  

 ( ( ) ( )) , for 0t f x f x K t    .      

  (2.4) 

Adding (2.3) and (2.4) we have  

 ( ( , )) ( )) ,

for 0 ( , )

f x t x x f x K

t d x x


   

 
.  

1
( ( ( , )) ( )) ,

0 ( , ).

f x t x x f x K
t

t d x x





   

 

 

Since K is a closed cone, therefore taking limit 

as 0t


 , we get  

 ( ) ( , ( , ))df x x x K


  . 

Thus  

 ( ( ) ( ))f x f x K     

( ) ( , ( , ))df x x x K


   . 

Hence f is K-slnqpi at x  with respect to same 

.  
 

The converse of the above theorem may not 

hold as can be seen from the following 

example. 

 

Example 2.3. Consider the set \S R E , 

where 
1 1

, {2}
2 2

E
 

  
 
 

. Then as discussed in 

Example 2.1, S is -locally starshaped.  

Consider the function 
2

:f S R  defined by 

2 1
( , 0),

2
( )

1
(0, ), , 2.

2

x x

f x

x x x


  


 

   


 

and {( , ) : 0, }K x y y y x    

 
Figure 2 

 

The function f is K-slnqpi at 2x   because 

 ( ( ) ( ))f x f x K    

  
1

2
2

x     

  ( ) ( , ( , )) ( 4( 2), 0)df x x x x K


     . 

The function  f  fails to be K-slpi at 2x    by 

Theorem 2.4, because for 1x   

   ( ) ( ) ( ) ( , ( , )) (16, 1)f x f x df x x x K


     . 

 

Definition 2.5. The function :
m

f S R  is said 

to be K-semilocally quasi preinvex (K-slqpi) at 

x  with respect to , if  

 
( ( ) ( )) int

( ) ( , ( , )) .

f x f x K

df x x x K


 

  
 

 

Theorem 2.7. If K is a pointed cone and f is K-

slqpi at x  then f is  K-slnqpi at x  with respect 

to same .  

 

Proof. Let K be a pointed cone and f be K-slqpi 

at x  with respect to , then,  
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          ( ( ) ( )) intf x f x K   

( ) ( , ( , )) .df x x x K


             

    (2.5) 

Suppose that  

 ( ( ) ( ))f x f x K   .       

                   (2.6) 

Since K is pointed, ( ) {0}K K    

  int K ( )K      

    K \ int
m

R K . 

In view of (2.5) we get  ( ) ( ) int .f x f x K   

Thus by (2.6) we have ( ) ( , ( , ))df x x x K


  . 

Hence f is K-slnqpi.  

                                            
The converse of the above theorem may not 

hold, as can be seen by the following example. 

 

Example 2.4. The function f  considered in 

Example 2.3 is K-slnqpi at 2x   . But f  fails 

to be K-slqpi at 2x    because for 1x   

 ( ) ( ) (4, 1) intf x f x K     

whereas ( ) ( , ( , )) (12, 0)df x x x K


   . 

 

 
Figure 3 

 

Remark 2.5. The following diagram illustrates 

the relation between K-slpi, K-slnqpi and K-

slqpi functions. 

 

K-slpi      K-slnqpi 

 

  

 

 

                 K-slqpi  

 

                  Figure 4 

 

 

It can be seen from Example 2.1 that f  fails to 

be K-slqpi because for 1, 2x x    , 

( ) ( ) (0,1) intf x f x K    however 

( ) ( , ( , )) (0,1)df x x x K    . 

 

We now give an example to show that a K-slqpi 

function need not be K-slpi. 

 

Example 2.5. Consider the set \S R E , 

where 
1 1

, {2}
2 2

E
 

  
 
 

. Then as discussed in 

Example 2.1, S is -locally starshaped.  

Consider the function 
2

:f S R  defined by 

2 1
( , 0),

2
( )

1
(0, ), , 2.

2

x x

f x

x x x


  


 

   


 

and {( , ) : , 0}K x y y x x   . 

The function f is K-slqpi at 2x   because 

 ( ( ) ( )) intf x f x K   

  2x    

  ( ) ( , ( , )) ( 4( 2), 0)df x x x x K


     . 

The function  f  fails to be K-slpi at 2x    by 

Theorem 2.4, because for 3x    

( ) ( ) ( ) ( , ( , )) ( 1, 0)f x f x df x x x K


     . 

 

 
Figure 5 

 

The next definition introduces cone semilocally 

pseudo preinvex functions. 

 

Definition 2.6. The function :
m

f S R  is said 

to be K-semilocally pseudo preinvex (K-slppi) 

at ,x  with respect to   if  

 ( ) ( , ( , )) intdf x x x K


    

  ( ( ) ( ))f x f x    int K 
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3. Optimality Conditions  

We consider the vector optimization problem  

(VOP) K-minimize f (x)     

                subject to  ( )g x Q   

                   h(x)  O 

where :
m

f S R , :
p

g S R  and :
k

h S R  

are -semi differentiable functions with respect 

to same  and 
n

S R  is a nonempty -locally 

star shaped set and {0 }k
R

O  . 

Let 
m

K R  and 
p

Q R  be closed convex 

cones having nonempty interior and let 

 0
: ( ) , ( )X x S g x Q h x O      be the set of 

all feasible solutions of (VOP).  

Let 
0
: (  , , ) : F f g h S S  where

n
S R   is a 

nonempty set and 
m p k

S R R R   
 

and 

0
( )K K Q O   . If 

0
F   is 

0
K -slpi on S , that 

is f  is K-slpi, g is Q-slpi and h is O-slpi with 

respect to same   then by Theorem 2.2, 

0 0
( )F S K  is locally starshaped. If we assume, 

0 0
( )F S K  to be a closed set, then, 

0 0
( )F S K  

becomes convex and the following alternative 

theorem follows on the lines of Illés and Kassay 

[2]. 

 

Theorem 3.1 (Theorem of Alternative). Let 

0
F  be 

0
K -slpi on S such that 

0 0
( )F S K  is 

closed with nonempty interior then exactly one 

of the following holds  

(i) there exists x  S such that  f(x)  int K,  

 g(x)  int Q and  h(x)  O 

(ii) there exists K


 , Q


 and k
R 

such that ( ) ( ) ( ) 0,
T T T

f x g x h x      

( , , ) (0, 0, 0)     for all x S .  

 

We shall be using the following constraint 

qualification to prove the necessary optimality 

conditions for (VOP). 

 

Definition 3.1. The constraint pair ( , )g h  is 

said to satisfy generalized Slater type 

constraint qualification at x  if there exists 
*

x S  such that  
*

( ) intg x Q   and 
*

( )h x O . 

We now establish the necessary optimality 

conditions for (VOP).  

 

 

 

Theorem 3.2 (Necessary Optimality 

Conditions). 

Let 
1
( ) ( ( ) ( ), ( ), ( ))F x f x f x g x h x   x S   

and 
1
( ) ( )F S K Q O    be closed with 

nonempty interior. Let 
0

x X  be a weak 

minimum of (VOP), f  be K-slpi, g be  Q-slpi 

and h be O-slpi with respect to same . Suppose 

that the pair ( , )g h  satisfies generalized Slater 

type constraint qualification and ( , ) 0x x  , 

then there exist 0 K


  , Q


  and 

O


  such that  

       ( ) ( , ( , )) ( ) ( , ( , ))
T T

df x x x dg x x x   
 


 

 ( ) ( , ( , )) 0
T

dh x x x 


  ,  

                              for all x S                    (3.1) 

and ( ) 0
T

g x  .                               (3.2) 

 

Proof. Since x  is a weak minimum of (VOP), 

therefore there does not exist any x S  such 

that   

 
1
( ) int( )F x K Q O    

that is, 

 ( ( ) ( )), ( ), ( ) int( )f x f x g x h x K Q O     .  

By Theorem 3.1, there exist K


 , Q


 , 

O


 , ( , , ) 0     such that  

( ( ) ( )) ( ) ( ) 0,

for all

T T T
f x f x g x h x

x S

     


  

( ) ( ) ( ) ( )

for all

T T T T
f x g x h x f x

x S

      


 

(3.3)  

Now, Q


 , and ( )g x Q  , ( ) 0
T

g x  . 

By taking x x  in (3.3) and using ( ) 0h x  , 

we get ( ) 0
T

g x  . 

Thus  

 ( ) 0
T

g x  .                                   (3.4)   (3.4) 

From (3.2), (3.3) and ( ) 0h x  ,  we have  

  ( )
T T T

f g h x     

( )( ) 0
T T T

f g h x       for all x S  

As ( , ) ,x t x x S    for 0 ( , )t a x x


   we 

have  

   ( , )

( )( ) 0

T T T

T T T

f g v h x t x x

f g h x

  

  

  

   

 

which can be rewritten as,  

 
( ( ( , )) ( ))

( ( ( , )) ( ))

T

T

f x t x x f x

g x t x x g x
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      ( ( ( , )) ( )) 0
T

h x t x x h x       

Dividing by  0t   and taking limit as  0t


   

we get  

       

( ) ( , ( , )) ( ) ( , ( , ))

( ) ( , ( , )) 0,

T T

T

df x x x dg x x x

dh x x x

   

 

 





 
 

         for all x  S.               (3.5) 

Next, let if possible 0  , then (3.5) reduces 

to,  

( ) ( , ( , )) ( ) ( , ( , )) 0
T T

dg x x x dh x x x   
 

     

for all x  S.  (3.6) 

Since (g, h) is ( )Q O -slpi at x , therefore we 

have for every  x  S,  

 ( ) ( ) ( ) ( , ( , ))g x g x dg x x x Q


     

and  

 ( ) ( ) ( ) ( , ( , ))h x h x dh x x x O


     

( ) ( ) ( ) ( , ( , )) 0
T T T

g x g x dg x x x   


   

         (3.7) 

and 

( ) ( ) ( ) ( , ( , )) 0
T T T

h x h x dh x x x   


   .        

                                                         (3.8) 

Adding (3.7), (3.8) and using (3.4) and h

( ) 0
k

x  , we get  

 ( ) ( ) ( ) ( , ( , ))
T T T

g x h x dg x x x   


      

     ( ) ( , ( , )) 0,
T

dh x x x 


      

              for all  x  S.          (3.9)  

On using (3.6) we obtain,  

       ( ) ( ) 0,
T T

g x h x    for all  x  S.  

     (3.10)  

Again by generalized Slater type constraint 

qualification, there exists *
x S  such that,  

 
*

( )g x   int Q    and     h(x
*
)  O 

which implies 
*

( ) 0
T

g x   and 
*

( ) 0
T

h x  . 

Adding the above we have   

 
* *

( ) ( ) 0
T T

g x h x           

which is a contradiction to (3.10).  

Hence 0  .  

                                                   
The following theorem establishes sufficiency 

result for (VOP). 

 

Theorem 3.3 (Sufficient Optimality 

Conditions). Let 
0

x X  and f be K-slppi, g be 

Q-slqpi and h be O-slnqpi at x  with respect to 

same  . If there exist 0 K


  , Q


  and 

O


 such that (3.1) and (3.2) hold  x  X0   

then x  is a weak minimum of (VOP).   

 

Proof.  Let x be feasible for (VOP) then 

( )g x   Q.  

On using ,Q


  we get  

 ( ) 0.
T

g x                     (3.11) 

In view of (3.2), (3.11) can be written as  

 ( ( ) ( )) 0
T

g x g x                    (3.12) 

If 0  , then from (3.12), ( ) ( ) intg x g x Q  . 

Since g is Q-slqpi at x , we get   

 ( ) ( , ( , ))dg x x x Q


    

which gives,  

 ( ) ( , ( , )) 0
T

dg x x x 


 .       

         (3.13) 

If 0   then (3.13) holds trivially.  

Again for 
0

x X , ( ) {0 }k
R

h x O  , therefore  

 ( ( ) ( ))h x h x O     

Since h is O-slnqpi at x  we have 

 ( ) ( , ( , ))dh x x x O


  .  

Therefore  

 ( ) ( , ( , )) 0
T

dh x x x 


                 (3.14) 

Adding (3.13) and (3.14) and using (3.1) we get 

( ) ( , ( , )) 0
T

df x x x 


 . 

Since 0  , we obtain  

 ( ) ( , ( , )) intdf x x x K


  .  

As f  is K-slppi we get   

 ( ( ) ( )) intf x f x K   ,  

that is  

 ( ) ( ) intf x f x K  . 

Since x  X0 is arbitrarily chosen, therefore x  

is a weak minimum of (VOP).       
                          

4. Duality  
 

The following Mond-Weir type dual is associated 

with the primal problem (VOP).  

(VOD)     K-maximize f (u)    

     subject to 

  

( ) ( , ( , )) ( ) ( , ( , ))
T T

df u x u dg u x u   
 

          

                
0

( ) ( , ( , )) 0,
T

dh u x u x X 


      

                                                              (4.1) 

 ( ) 0
T

g u                                       (4.2)  

( ) 0 k
R

h u                                         (4.3) 

0 K


  , Q


   and    R
k
 , u  S 

 

Theorem 4.1 (Weak Duality). Let x  be 

feasible for (VOP) and ( , , , )u     be feasible 
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for (VOD). Let f be K-slppi, g be Q-slqpi and h 

be O-slnqpi at u, with respect to same . Then  

f (u)  f (x)  int K.  

 

Proof. Since x  is feasible for (VOP) and 

( , , , )u     feasible for (VOD), therefore we 

have,  

 ( ) 0
T

g x   and ( ) 0
T

g u    

which implies   

 ( ( ) ( )) 0
T

g x g u   . 

If 0  , then the above inequality results in 

( ) ( ) intg x g u Q  .  

Since g is Q-slqpi we have,   

 ( ) ( , ( , ))dg u x u Q


    

That is,   

 ( ) ( , ( , )) 0
T

dg u x u 


 .                 (4.4)  

also holds if 0  . 

Again using feasibility of x  and u, we have  

 ( ( ) ( ))h x h u O   .  

As h is O-slnqpi at u, we get  

 ( ) ( , ( , ))dh u x u O


    

therefore,   

 ( ) ( , ( , )) 0
T

dh u x u 


 .                   (4.5) 

Using (4.4) and (4.5) in (4.1) we obtain   

 ( ) ( , ( , )) 0
T

df u x u 


  . 

As, 0 K


   we have    

 ( ) ( , ( , ))df u x u


   int K, 

Because f is K-slppi at u, we get 

 ( ( ) ( )) intf x f u K      

which gives                        

 ( ( ) ( )) intf u f x K   .   

                        

 

Theorem 4.2 (Strong Duality). Let f be K-slpi, 

g be Q-slpi and h be O-slpi with respect to same 

. Let F1(S) + (K  Q  O) be closed with 

nonempty interior. Suppose that the pair (g, h) 

satisfies generalized Slater type constraint 

qualification. If x  is a weak minimum of 

(VOP) and ( , ) 0x x  , then there exist 
*

0 K


  , 
*

Q


  and 
*

O


  such that 
* * *

( , , , )x     is a feasible  solution of (VOD).  

Moreover if the conditions of Weak Duality 

Theorem 4.1 are satisfied for all feasible 

solutions of (VOP) and (VOD) then 
* * *

( , , , )x     is a weak maximum of (VOD). 

 

Proof. Since x  is a weak minimum of (VOP), 

therefore by Theorem 3.2, there exist 
*

0 K


  , 
*

Q


 , *
O


  such that    

       
* *

( ) ( , ( , )) ( ) ( , ( , ))
T T

df x x x dg x x x   
 


 

             
*

( ) ( , ( , )) 0
T

dh x x x 


  ,    x S    

and    

 
*

( ) 0
T

g x  . 

Thus 
* * *

( , , , )x     is feasible for (VOD). Let 

if possible, 
* * *

( , , , )x     be not a weak 

maximum of (VOD). Then there exists 

( , , , )u    feasible for (VOD) such that 

f (u)  f ( x )  int K which contradicts Weak 

Duality Theorem (Theorem 4.1) as x  is 

feasible for (VOP).        
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