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A regularized electromagnetic iterative inverse algorithm is formulated and im-
plemented to reconstruct the shape of 2D dielectric objects using the far-field
pattern of the scattered field data. To achieve this, an integral operator that
maps the unknown boundary of the object onto the far-field pattern of the
scattered field is defined and solved for the unknown boundary. The addressed
inverse problem has an ill-posed nature and inherits nonlinearity. To over-
come these, the proposed solution is linearized via Newton and regularized by
Tikhonov in the sense of least squares. Besides, the dominance of the shadow
region in the inverse-imaging process is exceeded by considering the superpo-
sition of multi-incoming plane waves, leading to less computational cost and a
very fast inversion process. Comprehensive numerical analyses are carried out
to ascertain the algorithm’s feasibility, revealing that it is very efficient and
promising.
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1. Introduction

Inverse electromagnetic (EM) imaging methods
that utilize scattered field data to reconstruct the
shape of an unknown scatterer precisely are in
significant demand across a wide variety of en-
gineering fields, such as non-destructive testing,
microwave imaging, and geophysical exploration,
and so on [1–8]. Apart from its diverse appli-
cations, recovering objects from scattered fields
poses an immense challenge due to its inherently
nonlinear and ill-posed nature [9]. Recently, deep
learning schemes and the corresponding applica-
tions have been of great interest among many
engineering fields [10–12]. In addition to these,
significant advancements in deep learning (DL)
have led to substantial research investments in
the field of inverse electromagnetic imaging prob-
lems [13–19]. In [14] and [15], the ill-posed prob-
lem is regularized considering Landweber itera-
tions that are implemented in the regularized DL
framework. [16] proposes two-step DL framework.

In the first step, the dielectric properties of the
inaccessible object are recovered. The object’s
shape is then reconstructed using the outcomes
of the first step. In the sense of rough surface
imaging, [18] recovers the statistical parameters
of the randomly formed rough surfaces. The
shape of random rough surfaces are directly re-
covered in [17] and [19] for different scattering
scenarios.

In addition to DL applications and with the no-
table exception of certain non-iterative inversion
techniques such as Fourier method [20], reverse
time migration (RTM)-based [21] approach, and
equivalent source model [22], the vast majority
of algorithms developed to address these issues
are based on recursive applications of regulariza-
tion and linearization techniques [23–30]. Gen-
erally, these are constructed with consideration
for multiple incident illuminations to enhance
the precision of reconstructions [24, 25, 29, 30].
Nevertheless, these undertakings incur additional
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computational expenses. Furthermore, many of
these solutions address the inverse problem asso-
ciated with perfectly electric conducting (PEC)
and sound-soft boundary conditions acoustically.
This is because conceptually and physically, the
recovery of a penetrable scatterer presents a more
difficult inverse problem than the inverse prob-
lems associated with impenetrable obstacles [31].
In this regard, [29] proposes a solution to recover
the 2D profile of an acoustically sound-soft scat-
terer by using the far-field pattern. The method
utilizes multi-incidence monochromatic incident
fields for illumination and applies multi-frequency
measurement for higher accuracy. It solves a lin-
earized system with a huge number of unknowns.
The same consequence is valid for the linearized
iterative methodologies presented in [24] and [25],
which offers multi-incidence illumination for rig-
orous reconstructions. The principal reason for
illumination is to reduce (or eliminate) the effect
of shadow regions. Namely, the information in
the far-field data becomes blurred for a limited
amount of illumination, so the lack of information
becomes dominant and yields unsuccessful recon-
structions as the problem is inherently ill-posed.
Alternatively, a recursive linearized method that
uses only single incident illumination is proposed
in [32]. The method is applied to recover unknown
non-penetrable acoustically sound-soft obstacles
using the far-field measured field pattern. Later,
it is expanded to reconstruct the shape of pen-
etrable objects in [26]. Within this context, for
penetrable and non-penetrable cases, the far-field
measured field pattern is represented by the sin-
gle layer potential form [9].

This paper proposes a regularized and linearized
recursive inverse algorithm to recover unknown
penetrable objects using the scattered field data
measured in the far-field region. Unlike other
multi-illuminated inversion algorithms, the pro-
posed algorithm applies the superposition of the
multi-incident illuminations. Thus, the unknown
2D scatterer is illuminated by multiple sources si-
multaneously, and the scattered field is collected
only once due to these simultaneous illumina-
tions. This allows a fast inverse algorithm to ob-
tain robust and successful reconstructions with a
reduced computational cost. The superposition of
incident fields is first considered for reconstructing
sound-soft obstacles in [33]. Furthermore, unlike
the open literature, the inverse algorithm uses a
combination of double and single-layer potentials
to represent the far-field measured scattered field
data.

The paper’s outline is provided as follows: Sec-
tion 2 presents the considered EM scattering sce-
nario, and the following Section 3 briefly sum-
marizes the direct problem. Section 4 presents
the regularized recursive inverse-imaging solu-
tion, which utilizes the far-field measurements
to recover the unknown surface profile in detail.
In Section 5, an extensive numerical study was
conducted using various scattering scenarios to il-
lustrate the algorithm’s efficiency and examine its
validation restrictions. Final remarks are given
in the Section 6.

2. Geometry of the Problem

Fig. 1 represents the considered 2D scattering ge-
ometry. The unknown dielectric body is denoted
as Ω embedded in infinite free space medium
with permittivity ε0 and permeability µ0. The
body is a simple non-magnetic lossy object de-
fined in terms of constitutive electromagnetic pa-
rameters, where its permittivity and conductiv-
ity are denoted with ε1 = ε0εr, and σ (S/m),
respectively. Accordingly, the body has a con-
stant complex wave number k1 with Re{k1} > 0
and Im{k1} ≥ 0, precisely its square equals to
k21 = ω2ε1µ0 + iωµ0σ, where ω is the radial op-
erating frequency. The cross-section of the body
constitutes the principle unknown of the problem,
which is denoted with ∂Ω and defined as:

∂Ω :=

{
(ρ, φ) | ρ = r(φ)

}
, (1)

Figure 1. Geometry of the problem.

where (ρ, φ) are the cylindrical polar coordinates,
such that ρ > 0 and φ ∈ (0, 2π). Within this
context, Ω has a star-like shape. As depicted,
the 2D region is illuminated by a superposition
of several monochromatic incident electric fields.
The incident fields are TE polarized (transverse
to wave propagation direction). The nth incident
is defined with a function uin

E⃗in = x̂3u
i
n, (2)
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where uin is the monochromatic plane wave, pre-
cisely equals

uin = uin(r(φ), φ
n
i ) := eik0r(φ) cos(φ−φ

n
i ). (3)

Here, k0 > 0 is the wavenumber of the free space.
The superposition of the incident fields enables to
consider the summation of incident illuminations
as a single unique field, i.e.,

ui =
N∑
n=1

uin(r(φ), φ
n
i ). (4)

Regarding the incident illumination, both within
the body and in the surrounding free space, the
electric field vectors are in the x̂3 direction. Con-
sequently, the entire problem may be simplified to
a scalar one. To do so, let u0 and u1 denote the
total fields in free space and the dielectric body,
respectively. Then, both of them satisfy the scalar
wave equation

(
∆+ k20

)
u0 =0 in R2 \ Ω,(

∆+ k21

)
u1 =0 in Ω. (5)

Denote the derivative r′(φ) = dr(φ)
dφ and the outer

normal vector of ∂Ω as ν̂, which precisely equals

ν̂ =
ρ̂r(φ)− φ̂r′(φ)√
r(φ) + r′2(φ)

. (6)

It follows that the fields and their derivatives
with respect to the outward surface normal ex-
hibit continuity on ∂Ω. Namely, the boundary
conditions imply the following:

u0 = u1, (7a)

ψ0 = ψ1, on ∂Ω. (7b)

Noting that the fields ψm = ν̂ · ∇um (m =
{1, 2}), where “∇” denotes the gradient operator.
Namely, ψ0 and ψ1 describe derivatives of u0 and
u1 with respect to ν, respectively. The scattered
field, in this regard, is defined as the difference

us = u0 − ui, (8)

which is an outgoing wave and fulfills the Som-
merfield radiation condition

lim
ρ→∞

√
ρ

(
∂us

∂ρ
− ik0u

s

)
= 0, r in R2 \ Ω (9)

in a uniform way in all directions. Furthermore, it
is straightforward to demonstrate that us exhibits
the subsequent asymptotic behavior:

us(ρ, φ) =
eikρ
√
ρ
u∞(φ)+O

(
1

ρ3/2

)
, ρ→ ∞. (10)

Here, u∞ represents the scattered field measured
far away from the source, namely the far-field pat-
tern. It is worth noting that the field also depends
on k0 and the incoming direction. However, the
assumption is made by taking these quantities
fixed so that u∞ has only φ dependence. The
fields defined in (7) represent the surface currents
on the cross-section ∂Ω. These are the unknowns
of the direct scattering problem for which ∂Ω and
the constitutive parameters are known. Once the
currents are obtained, one can take an opportu-
nity to obtain the fields scattered anywhere in
the first medium (in our particular case, in free
space). The whole procedure constitutes the “di-
rect EM scattering problem”. In the inverse prob-
lem, conversely, the inputs and the outputs are
reversed. That is, the main concern is to recover
the unknown cross-section, ∂Ω, utilizing the mea-
sured far-field pattern of the scattered field data,
i.e., u∞. To this aim, the integral representation
of the scattered field data, described in the fol-
lowing subsection, is taken as a mapping operator
into account, which maps ∂Ω onto u∞. Hence, the
problem turns into taking the inverse of the map-
ping operator. The following subsection describes
the direct EM scattering problem applied to ac-
quire the synthetic scattered field data utilized in
the inverse problem.

3. Direct EM Problem

As mentioned above, the forward scattering prob-
lem mainly considers obtaining the surface cur-
rents given in (7) within the knowledge of the 2D
cross-section ∂Ω. Using Green’s theorem both in
the free space and Ω, one can easily obtain the
integral representations of the surface currents u0
and ψ0 [34]

u0(r) = ui(r)+

ˆ
∂Ω
u0(r

′)K0(r; r
′) ds(φ′)

−
ˆ
∂Ω
ψ0(r

′)G0(r; r
′) ds(φ′)

u1(r) = −
ˆ
∂Ω
u1(r

′)K1(r; r
′) ds(φ′)

+

ˆ
∂Ω
ψ1(r

′)G1(r; r
′) ds(φ′)

(11)
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Here, Gm(r; r
′) (m = {0, 1}) is the fundamental

solution of the scalar wave equation in 2D, i.e.,

Gm(r; r
′) =

i

4
H

(1)
0 (km

∣∣r − r′
∣∣), (12)

where r = x̂1ρ cos(φ) + x̂2ρ sin(φ) and r′ =
x̂1r(φ) cos(φ

′) + x̂2r(φ) sin(φ
′) so that the argu-

ment of the Hankel-type function precisely

∣∣r − r′
∣∣ =√ρ2 + r2 − 2ρr cos(φ− φ′), (13)

and the integrand is also

ds(φ) =
√
r2 + r′2dφ. (14)

Noting that r := r(φ) and r′ := r′(φ). More-
over, Km = ∂Gm/∂ν. In regards to (8) and (11),
the scattered field has an integral representation
as a combination of single and double potential
integral operators [9] as:

us(r) =
´
∂Ω

(
u0(r

′)K0(r; r
′)− ψ0(r

′)G0(r; r
′)

)
ds(φ′).

(15)

Now, by substituting (7) into (11) and considering
the jump relations, the subsequent classical set of
the boundary integral equations are obtained [35]:

ui(r) =
1

2
u0(r)−−

ˆ
∂Ω
K0(r; r

′)u0(r
′) ds(φ′)

+

ˆ
∂Ω
G0(r; r

′)ψ0(r
′) ds(φ′)

0 = −1

2
u0(r)−−

ˆ
∂Ω
K1(r; r

′)u0(r
′) ds(φ′)

+

ˆ
∂Ω
G1(r; r

′)ψ0(r
′) ds(φ′).

(16)

Accordingly, one can find the unknown surface
currents by the numerical solution of the inte-
gral equations such as the method of moments
(MoM) [35] and then obtain the scattered field us-
ing the integral representation given in (15). It is
worth noting that the recursive inverse algorithm
described in Section 4 also needs to solve the di-
rect problem for the reconstructed shape at each
iteration step. Thus, an accurate solution for the
direct scattering case, for which a numerical MoM
solution is applied in this study, is essential. To
verify the numerical solution of the direct prob-
lem, the following subsection is designed by con-
sidering scattering from an infinite-length cylin-
der, which has an analytical expression in terms
of the Mie series.

3.1. Validation: Scattering by dielectric
cylinder

Consider an infinitely long cylinder with a cross-
section radius r = a located at the origin. Sup-
pose it is a non-magnetic lossy dielectric with
complex wavenumber k1 and embedded in free
space with the wavenumber k0. An incident plane
wave with the angle of incidence φi illuminates
the cylinder. The plane wave can be expressed
with the infinite Bessel series by Jacobi-Anger
identity [36]:

ui(r, φ) = eik0r cos(φ−φi)

=
n=+∞∑
n=−∞

inJn(k0r)e
−in(φ−φi)

(17)

The fields inside and outside the cylinder are de-
noted u0 and u1, respectively. They both satisfy
the scalar Helmholtz equation regarding (5) and
continuous on the boundary (r = a) as in (7). It
is worth reminding that ν̂ = ρ̂ for the circular
cylinder. They have series representations

u0(r, φ) =
n=+∞∑
n=−∞

(
BnJn(k0r) + CnH

(1)
n (k0r)

)
e−inφ,

u1(r, φ) =

n=+∞∑
n=−∞

AnJn(k1r)e
−inφ, (18)

where Bn = ineinφi according to (17). Substitut-
ing (18) into (7) yields

BnJn(k0a) + CnH
(1)
n (k0a) = AnJn(k1a)

BnJ
′
n(k0a) + CnH

′(1)
n (k0a) =

k1
k0
AnJ

′
n(k1a).

(19)

Leading with ς = k1/k0, the solution reads:

An = Bn
H

(1)
n (k0a)J

′
n(k0a)−H

′(1)
n (k0a)Jn(k0a)

ςH
(1)
n (k0a)J ′

n(k1a)−H
′(1)
n (k0a)Jn(k1a)

,

Cn = Bn
Jn(k1a)J

′
n(k0a)− ςJn(k0a)J

′
n(k1a)

ςH
(1)
n (k0a)J ′

n(k1a)−H
′(1)
n (k0a)Jn(k1a)

.

(20)

Accordingly, one can compute the total fields in-
side and outside the cylinder by substituting (20)
into (18). In the context of the numerical MoM-
point matching solution, the whole cylinder sam-
pled as follows: The circular cylinder with ra-
dius r(φ) = a has a circumference 2πa with

0 ≤ φ < 2πİt is divided into the number of N
equally spaced segments. nth segment is denoted
φn with its width is ∆φ, precisely
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φn = (n− 1)∆φ with ∆φ =
2π

N
. (21)

Here, n ∈ [1, N ] and the sample number is settled
as

N = 10

∣∣∣∣k1k0
∣∣∣∣2πa (22)

The unknown surface fields in (16) are expanded
as linear combinations of the pulse-basis subdo-
main functions with some unknown coefficients
positioned at each segment’s center. Namely,

{
u0
ψ0

}
≈

N∑
n=1

{
un
ψn

}
fn(φ), (23)

where the pulse basis function,

fn(φ) =

{
1 (φn −∆φ/2) ≤ φ ≤ (φn +∆φ/2)

0 elsewhere .

(24)

The length of each segment is sufficiently small
so that the integrand doesn’t vary significantly.
Regarding point matching, the whole equation is
weighted by Dirac-delta functions. Accordingly,
one can obtain the matrix equation system.

Zdie Idie = V die, (25)

where Idie and V die are vectors with size 2N × 1.
The elements of the vectors and the impedance
matrices are precisely given in the appendix. The
numerical comparison of the analytic and MoM
solutions for a dielectric cylinder is given in the
following subsection.

3.2. Numerical comparisons for a
dielectric cylinder

To validate MoM-point matching with the ana-
lytic Mie series solution, a dielectric lossy cylinder
with radius r = 2m is considered. Outside of the
cylinder is free space, and the dielectric parame-
ters are εr = 4 and σ = 5× 10−5. In (18), n = 64
and in (22), N = 252. Operating frequency is
300MHz, the angle of the incident plane wave il-
lumination φ = 60◦. The following figures 2 and 3
show the modulus and the phase of the surface
fields acquired by MoM and analytic series, re-
spectively.
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Figure 2. Modulus of the surface
fields on dielectric cylinder
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Figure 3. phase of the surface fields
on dielectric cylinder

To compare the results quantitatively, an ℓ2 norm-
based error is defined between the fields obtained
from analytic and MoM solutions:

e(%) =
∥uA − uMoM∥2

∥uA∥2
× 100. (26)

Here, uA and uMoM denote the surface fields ob-
tained by analytic and MoM solutions, respec-
tively. The obtained surface fields with MoM so-
lution in the figures 2 and 3 requires sampling
N = 252. High agreements were achieved be-
tween the MoM and analytical solutions. The nu-
merical errors obtained for this sampling number
are below 2% for both u0 and ψ0. As expected, in-
creasing the number of samples in MoM improves
the agreement between the two methods. Hence,
the quantitative error decreases for a higher sam-
pling number. The obtained errors for increased
N values are shown in Fig. 4
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Figure 4. Errors vs. the number of
samples in MoM

4. Inverse Problem

The inverse problem addressing involves deter-
mining the boundary ∂Ω of the scatterer Ω, given
the far-field pattern u∞ for the superposition of
the incident plane wave illuminations ui. To de-
fine the far-field pattern precisely, it is neces-
sary to consider the asymptotic behavior of the
Hankel type functions for large argument, which
equals [36]

H
(1)
0 (ω) =

√
2

πω
eiω−

π
4

(
1 +O

(
1

ω

))
, ω → ∞.

(27)

Within this context, assume that a point in the
far field is described as rs := rs(x̂1 cos(φs) +
x̂2 sin(φs)) and the cross-section is represented as
in (1). Then, in accordance with Huygens’ prin-
ciple [37], the standard approximation for the 2D
Green’s function given in (12) and (13) have the
phase term and the amplitude term as following

G̃(r; rs) = γeik0rse−ik0r(φ) cos(φs−φ), (28)

where the constant

γ =
i

4

√
2

πk0rs
e−i

π
4 . (29)

That is, the modulus term of G̃ is approximated
as |r − rs| ≈ rs and the phase term is |r − rs| ≈
rs − k0(rs · r). It is naturally a good approxima-
tion for Green’s functions and is conventionally
applied to represent a far-field pattern of the scat-
tered field. The reader may refer to [38] for the
Huygens’ principle in 3D and 2D scattering prob-
lems [39], for the details of the far-field expansion
of 2D Green’s function, and thus the far-field ex-
pansion of the Greens’ function [34, 37]. In this
context, one can easily define the derivative of

the function with respect to the surface normal ν̂
as

∂G̃(r; rs)

∂ν
= ν̂ · ∇G̃(r; rs) = −iG̃(r; rs)k̂s · ν̂.

(30)

Here, k̂s is the wavenumber vector in scattering
direction with the angle φs, particularly equals to

k̂s = k0

(
x̂1 cos(φs) + x̂2 sin(φs)

)
, (31)

which can be converted into polar coordinates:

k̂s = k0

(
ρ̂ cos(φs − φ) + φ̂ sin(φs − φ)

)
. (32)

Accordingly, the far-field scattered field has the
integral representation as

u∞(φ) =γ

ˆ
∂Ω

(
− ik̂s · ν̂u0(φ′) + ψ0(φ

′)

)
e−ik0r(φ

′) cos(φs−φ′) ds(φ′). (33)

Substituting (6) and (31) into (33) yields more
precise expression for u∞ as

u∞(φ) = −ik0γ
ˆ 2π

0

{(
r(φ′) cos

(
φs − φ′)

− r′(φ′) sin
(
φs − φ′))u0(φ′)

+ ψ0(φ
′)
√
r(φ′)2 + r′(φ′)2

}
e−ik0r(φ

′) cos(φs−φ′) dφ′. (34)

To have a much more compact form of (34), the
integral equation can be defined in an operator
form D. Thus, with the knowledge of the u∞ and
the surface fields, the inverse problem consists of
solving the nonlinear and ill-posed equation

D(r, u0, ψ0) = u∞, (35)

for the unknown boundary ∂Ω represented by
r := r(φ). To start with the inversion pro-
cess, first, the operator is linearized via Newton’s
type iterations and then regularized by Tikhonov.
Within the context of linearization, let r0 be the
initially guessed shape, for which one can solve
the direct problem to obtain the surface currents
(u10 , ψ10) of the guessed shape. Accordingly, the
linearization proceeds in the sense of Newton as
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D(r, u0, ψ0) ≈ D(r0, u00 , ψ00)+D′(r0;u00 , ψ00)δr0.
(36)

Here, D′(r0;u10 , ψ10)δr0 is the Frechet derivative
of the surface with respect to r, and δr0 is the up-
dated correlation function for which (36) has to be
solved. For the regularization procedure, let D′

0

stand for the Frechet derivative for a short nota-
tion, and its ad-joint be denoted by D′†

0 . Then,
by defining a regularization parameter 0 < τ < 1,
δr0 is the solution of

τδr0 +D′†
0 D

′
0 = D′†

0 ∆u∞, (37)

where ∆u∞ = u∞−D(r0, u10 , ψ10). Furthermore,
one may also consider a scaling (tuning) parame-
ter to have a much more robust δr0. In this sense,
the solution of (37) is written as

δr0 = α
[
τI+D′†

0 D
′
0

]−1D′†
0 ∆u∞. (38)

Here, I is the identity matrix, and 0 < α < 1 is the
scaling parameter. The reader may refer to [40]
for the details of α and τ . For a predetermined
threshold ξ, the procedure is repeated recursively
until the stopping criteria ∥δrN∥2 ≤ ξ. Accord-

ingly, nth approximated boundary is updated by
setting

rn+1 = rn + δrn. (39)

Moreover, to have a more robust reconstruction,
the solution is obtained via the least squares [41].
To this aim, the update correlation is expanded
by the linear combination of some basis functions
Φq(φ), q = 1, · · · , Q as

δr(φ) =

Q∑
q=1

aqΦq(φ). (40)

Hence, the problem turns into finding unknown
coefficients of (40). For a set of grid points
φ1, · · · , φP , the unknown coefficients are deter-
mined by minimizing the sum of squares at nth

iteration, i.e.,

P∑
p=1

∣∣∣∣∣∣D′(rn, u0n , ψ0n)

Q∑
q=1

aqΦq(φ
p)−∆u∞

∣∣∣∣∣∣
2

.

(41)

The whole procedure is summarized as follows:

(i). Choose a closed curve for the initial guess
ρ = r0(φ)

(ii). Obtain the surface currents of the closed
curve and thus the far-field pattern us-
ing (16) and (34), respectively.

(iii). Solve (36) and (38) in the sense of least
squares (40)-(41) for the updated correla-
tion function δr0

(iv). Obtain the new surface profile via (39)
(v). Repeat (ii)-(iv) for n times (n > 1) such

that rn+1 = rn + δrn.
(vi). Break the loop, if ∥δrn∥ ≤ ξ

Here, the crucial part of the whole framework is
the Frechet derivative part, which is for a map-
ping from a domain of functions [42]. For the sake
of simplicity, one may consider the Frechet deriva-
tive D′(r0;u10 , ψ10)δr0 := D′

0 as the superposition
of two operators

D′
0 = F ′

D(r0;ψ10)δr0 + F ′
N (r0;u10)δr0 (42)

where the Frechet operators are:

F ′
D(r0;ψ10)δr0 =− γ

ˆ 2π

0
ik cos

(
φs − φ′)

e−ikr0(φ
′) cos(φs−φ′)ψ10(φ

′)√
r(φ′)2 + r′(φ′)2 δr0dφ

′, (43)

F ′
N (r0;u10)δr0 =− γ

ˆ 2π

0

(
ik cos

(
φs − φ′)

κ(r0, φ
′, φs)u10(φ

′)

+
∂κ(r0, φ

′, φs)

∂r0
u10(φ

′)

)
e−ikr0(φ

′) cos(φs−φ′) δr0dφ
′, (44)

and κ function

κ(r0, φ, φs) = r0 cos(φs − φ)− r′0 sin(φs − φ)
(45)

is basically the result of k̂s · ν̂.

5. Numerical results and discussion

The section is reserved to demonstrate the feasi-
bility of the proposed inverse framework. For all
considered scattering scenarios, the operating fre-
quency is 300MHz so that the wavelength in free-
space λ0 = 1m. For all numerical examples, the
predetermined threshold is ξ = 0.07. Except for
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one example, the far-field pattern is assumed to be
known at 64 points equally distributed around the
unit circle. For the expansion of the unknown up-
dated correlation function with some basis func-
tions, Φq(φ) = e−iqφ, q = 0,±1, · · ·±Q. To verify
the success of the reconstructions quantitatively,
an ℓ2-norm based error is defined precisely

err(%) =
∥r(φ)− rn(φ)∥

∥r(φ)∥
× 100, (46)

where r(φ) and rn(φ) represent the actual and
the reconstructed surfaces, respectively.

The first example aimed to put forth the effect of
the penetrability of the object on the inverse algo-
rithm. To this aim, a kite-like object is considered
for reconstruction, considering both PEC and di-
electric cases. The unknown kite-like surface is a
radial function

r(φ) = 1.5
(
1 + 0.15 cos(3φ)

)
. (47)

For the dielectric case, the constitutive EM pa-
rameters are ε1 = 4ε0 and σ = 10−5 (S/m). For
both PEC and dielectric cases, the region is il-
luminated by 7 incident illuminations simultane-
ously, for which the angles of incidence are se-
lected in the range: 0◦ : ∆φi : 330◦ with the
∆φi = 55◦ angular increments. The reconstruc-
tions and the actual surface for PEC and Dielec-
tric scenarios are shown in Fig. 5 and Fig. 6, re-
spectively.
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Figure 5. Reconstruction of the surface defined
in (47) for PEC case.
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Figure 6. Reconstruction of the surface defined
in (47) for Dielectric (penetrable) case.

It is worth noting that for the PEC case, the far-
field pattern of the scattered field is represented
with a single layer potential as shown in [32] in
detail. Accordingly, for the Frechet derivative of
the PEC case, (43) should be taken into con-
sideration. As illustrated in the figure, a cross-
section of an infinitely long cylinder with a radius
1.5λ1 is considered as the initial guess for both
cases. Moreover, both cases’ stopping criteria are
∥δr∥ ≤ ξ = 0.07. Accordingly, the needed 16 iter-
ation is for the PEC case, and the 28 iteration is
for the dielectric case. To visualize the expected
decreasing tendency of the ∥δr∥ for each new it-
eration, Fig. 7 shows ∥δr∥ versus the number of
iterations for the dielectric case.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7. ∥δrn∥ vs. iterations.

In addition, the reconstruction of PEC is better
than the dielectric case qualitatively and quanti-
tatively. This is mostly because the PEC case has
no penetrated field to the second region. Hence,
a more powerful scattered field contains more
information for the scatterer, leading to better
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reconstructions. The quantitative errors for both
cases are err(%) = 0.31% and err(%) = 1.37%,
respectively, for PEC and dielectric cases.

The next analysis covers the algorithm’s sensitiv-
ity to the constitutive parameters of the dielectric
object, i.e., εr and σ. Accordingly, the response
of the algorithm is tested for higher and lower
dielectric permittivity and conductivity values.
In this regard, “4− leaf” shape boundary curve is
assumed to be unknown, and it is reconstructed
for different εr and σ values. The considered
“leaf-shaped” radial function is defined as

r(φ) = 1.3
(
1 + 0.15 cos(4φ)

)
(48)

First, the objective is to observe the dielectric de-
pendency of the iterative inverse reconstruction
algorithm. In order to notice the sensitivity to
the dielectric permittivity, the algorithm is run
for different εr values for a fixed conductivity
σ = 10−5 (S/m). Within this context, the di-
electric permittivity range is taken into account
εr ∈ [2, 10]. Hence, the dielectric permittivities
are defined in a wide range, from very penetra-
ble cases to high levels. For all reconstructions,
run for different εr, the circle with radius 1.5λ1
is considered for the initial guess. The obtained
quantitative errors of the reconstructions for dif-
ferent dielectric permittivity values are shown in
Fig. 8.
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Figure 8. Error: err(%) vs. dielectric constant: εr

As shown, the bigger contrast between free space
and the dielectric object yields better reconstruc-
tions quantitatively. It is worth noting that if
εr < 2, it becomes impossible to obtain accu-
rate reconstructions. Furthermore, εr > 10 yields

higher computational cost as the inversion algo-
rithm needs a direct solver whose unknown is di-
rectly related to the dielectric permittivity εr. A
similar analysis was also carried out to observe
the conductivity sensitivity. To this aim, εr = 2
is fixed and the conductivity varies in the range
σ ∈ [5 × 10−7, 10−2] (S/m). The algorithm’s er-
rors for different conductivity values are shown in
Fig. 9
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Figure 9. Error: err(%) vs. conductivity σ (S/m)

Accordingly, the higher conductivity yields better
reconstructions such that for σ = 10−2, the error
err < 0.4%. However, such a high conductivity
yields a huge loss, so the unknown object can al-
most turn into PEC rather than a penetrable ob-
ject. Fig. 10 shows the worst and the best cases
together to demonstrate reconstructions visually.
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Figure 10. Reconstructions for the highest and the
lowest conductivity values

Noting that the region is illuminated for 12 inci-
dent plane waves simultaneously where the angles
of incidence are defined as 0◦ : ∆φi : 330

◦ with
the ∆φi = 30◦ angular increments. Again, the
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circle with the radius 1.5λ1 is considered the ini-
tial guess. For all analyses conducted to obtain
the sensitivity to the constitutive parameters, 19
exponential-type basis functions are applied in
the sense of least squares.

The next analysis covers the algorithm’s sen-
sitivity against noise. For this purpose, a
synthetic noise is added to the far-field pat-
tern. The noisy scattered field is defined as
ũ∞ = u∞ + nℓ|u∞|ei2πrd , where nℓ is the noise-
level and rd is the random number in the interval
0 < rd < 1. The bean-shaped object is considered
for the noise analyses. It is defined as

r(φ) = 0.8
1 + 0.85 cos

(
φ+ π

4

)
+ 0.05 sin

(
2φ+ π

4

)
1 + 0.5 cos

(
φ+ π

4

) .

(49)

In regards to the scattering scenario, εr = 4 and
σ = 10−5 (S/m), and the number of 6 incident
illuminations is applied simultaneously, where
φni = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. Fig. 11
shows the obtained quantitative errors for differ-
ent noise levels.
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Figure 11. Error: err(%) vs. noise level: nℓ(%)

Accordingly, the algorithm is sensitive to the noise
such that nℓ(%) ≤ 10% for satisfactory recon-
structions. The reconstructions for the noise-free
case and with the highest noise level are shown in
Fig. 12
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Figure 12. Reconstruction of the bean-shaped object
for the noise-free and the highest noise level

The following example investigates the sensitiv-
ity of the reconstructions to the amount of scat-
tered field data. Let #MP denote the number
of measurement points. It is worth to remind
that, up to this example, #MP = 64. To this
aim, a 5-leaf shape is reconstructed for different
numbers of scattered field data. The inaccessible
5-leaf shape is defined as

r(φ) = 1.3
(
1 + 0.15 cos(5φ)

)
(50)

For the sensitivity analysis to the number of scat-
tered field data, the remaining parameters are
kept constant such as the number of incident fields
is 11, precisely defined in the range φi = 0◦ :
30◦ : 300◦, the penetrable medium parameters are
εr = 4, σ = 10−5 S/m and the number of applied
exponential basis functions are 27. The obtained
error vs the amount of the measured field data is
given in Fig. 13
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Figure 13. Error: err(%) vs. the number of mea-
surement points: #MP

Accordingly, insufficient reconstructions observed
for#MP < 25. For an accurate result, #MP ≥
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25. As shown in Fig. 13, the error remains around
5% such that the differences between the recon-
structions cannot be distinguished with the naked
eye. To visualize this, the unsuccessful recon-
structions obtained for #MP = 8, #MP = 16 and
the satisfactory result of #MP = 32 are shown in
Fig. 14
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Figure 14. Reconstructions for different #MP values

The next analysis is carried out to emphasize the
significance of multi-illumination. For this pur-
pose, a potato-shaped curved object is considered.
It is defined as a radial function

r(φ) = 4

√(
1
4 + 3

40 cos(2φ)
)2

+
(
1
4 + 3

100 cos(3φ)
)2
.

(51)

In the first case, the object is illuminated with a
single incident plane wave with the angle of inci-
dence φi = 0◦. The result is shown in Fig. 15
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Figure 15. Reconstruction of the potato-shaped ob-
ject with a single incident illumination

As illustrated, the reconstruction is unsatisfac-
tory as the shadow region predominates inver-
sion [24,33,43]. To overcome this, the same object
is recovered for the superposition of 4 incident
plane waves. The angles of incidence are φni =
{−30, 30, 150, 210}, for n = {1, 2, 3, 4}. The
satisfactory reconstruction for the multi-incidence
is illustrated in Fig. 16
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Figure 16. Reconstruction of the potato-shaped ob-
ject with superposition of multi-incident illumination

Noting that, for both multi and single-
illumination cases of potato shape objects, εr = 4
and σ = 10−5 (S/m) and there are 13 exponential
basis functions were utilized. Actually, the super-
position of multi-incidence illumination is one of
the essential factors for satisfactory reconstruc-
tions. To underline this, all 2D shapes recon-
structed so far have been reconstructed again by
considering different numbers of incident illumi-
nation in the following analysis. The error for
different number of illuminations are shown in
Fig. 17
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Figure 17. Error: err(%) vs. number of multi-
incidence illumination: N
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Table 1. Parameters for the superposition of the
multi-incident illumination

r(φ)
Angels of incidence:
φ1
i : ∆φ : φNi

increments: ∆φ (Deg.)
number of incident field in su-
perposition: N

3-leaf 0◦ : ∆φ : 330◦ {22, 30, 55, 110, 165, 330} {2, 3, 4, 7, 12, 16}
4-leaf 0◦ : ∆φ : 360◦ {30, 45, 60, 72, 90, 180, 360} {2, 3, 5, 6, 7, 9, 13}
5-leaf 0◦ : ∆φ : 300◦ {20, 30, 45, 60, 75, 90, 150, 300} {2, 3, 4, 5, 6, 7, 11, 16}

potato −30◦ : ∆φ : 210◦ {30, 60, 80, 120, 240, } {1, 2, 3, 4, 5, 9} (Single illumi-
nation at 0◦)

As shown in Fig. 17, there are no satisfactory
reconstructions for a single or double illumina-
tion. As expected, the error starts to decrease for
increasing the number of illuminations, and after
a specific number, it remains almost constant for
each specific reconstruction. There is no certain
value because it differs for every shapes. How-
ever, one can conclude that at least 2 incidence
illumination should be considered even for a sim-
ple object (like the potato). The details of the
analysis are given in Table 1. The table states
the incident fields angles, given in (4), by defining
φ1
i : ∆φ : φNi . Here, φ1

i and φNi are the initial
and the final angles of the illumination, and ∆φ
denotes the increments.

The next example shows the reconstruction of
a peanut-shaped object for the same constitutive
EM parameters with different initial guessed sur-
faces. The object is defined with a radial function

r(φ) = 0.7

√(
0.2 cos2(φ) + sin2(φ)

)
. (52)

Two incident illuminations were utilized with
φi = {90◦, 270◦}. In this example, the recon-
struction carried out for considering both a cir-
cular cylinder with a radius 0.6λ1 and an ellipse
defined as:

r0(φ) =
ab√(

a cos2(φ) + b sin2(φ)

) , (53)

where a = 0.6λ1 and b = 0.4λ1. Since the el-
liptical initial guess is more similar to the actual
peanut-shaped object, one may consider that us-
ing an elliptical cylinder as the initial guess would
lead to a better reconstruction. However, both
qualitatively and quantitatively, the difference be-
tween reconstructions is almost negligible. It is
obtained err = 3.73% with the circular cylin-
der initial guess and err = 3.61% for the case
of the elliptical cylinder. The only difference is
that it requires 7 iterations for the elliptical case,

whereas it costs 11 for the circular initial guess.
Thus, the method is stable and robust. Fig. 18
demonstrates the reconstruction, the elliptical ini-
tial guess, and the actual surface.
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Figure 18. Reconstruction of the peanut-shaped ob-
ject with the initial guess

For the peanut reconstruction cases, nℓ = 2%
noise is applied for all the simulations, and 13 ex-
ponential functions are applied in the least square
sense.

6. Conclusion

A regularized and linearized iterative framework
is presented to recover the shape of inaccessible
2-dimensional dielectric objects. The proposed
framework utilizes the far-field pattern of the
scattered field data for this aim. The inversion
is done in accordance with the boundary integral
representation of the far-field pattern considering
the combination of the double and single-layer po-
tentials. The problem is inherently ill-posed and
nonlinear. Within this context, the Newton-type
iterative linearization technique is applied, and
it is regularized via Tikhonov in the sense of the
least squares approach. To overcome the adverse
effect of the shadow region on the imaging pro-
cess, the superposition of the multi-incident wave
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is taken into account. Accordingly, robust and
fast inversion is achieved with a very low com-
putational cost. The feasibility of the proposed
framework and its validation limits are asserted
via various scattering scenarios.

The algorithm may be extended for three-
dimensional imaging problems in the acoustic
case, as it still requires a scalar solution to the
wave equations. However, the EM case must be
reformulated, as the scattering problem needs a
vectorial solution. The validation limits can be
enlarged with hybrid approaches generated with
deep learning techniques. All these issues are left
as future works.

Appendix

Idie and V die are vectors with size 2N × 1 whose
elements are precisely

Idie =

[
u0 u1 · · ·uN ψ0 ψ1 · · ·ψN

]T
, (A.1)

and tested incident fields with Dirac-delta func-
tion yields:

V die =

[
ui (φ1) u

i (φ2) · · ·ui (φN ) ︸ ︷︷ ︸
N

0 0 · · · 0
]T
.

(A.2)
Finally, the impedance matrix has a size of 2N ×
2N , which is composed of 4 sub-matrices, each of
which has a size N ×N :

Zdie =

[
Z1u Z1ψ

Z2u Z2ψ

]
. (A.3)

The elements of Zjψ (j = {1, 2}) are N ×N are
given as

Zjψmn = ∆φn


Gj (rm; rn) m ̸= n

i
4

[
1 + i 2π ln

(
γk0
4e ∆φn

)]
m = n.

(A.4)

Here, γ = 1.78107. The sub-matrix Z1u has the
elements

Z1u
mn = ∆φn

{
−K0 (rm; rn) for m ̸= n
1
2 for m = n.

(A.5)

Z2u has the same format with (A.5) taking the
wavenumber k1 instead of k0 into account. More-
over, the diagonal elements of Z2u = −1/2 in ac-
cordance with the (16).
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