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The dissemination of a disease within a homogeneous population can typi-
cally be modeled and managed in a uniform fashion. Conversely, in non-
homogeneous populations, it is essential to account for variations among sub-
populations to achieve more precise predictive modeling and efficacious inter-
vention strategies. In this study, we introduce and examine the comprehensive
behavior of a deterministic two-patch epidemic model alongside its stochastic
counterpart to assess disease dynamics between two heterogeneous populations
inhabiting distinct regions. First, utilizing a specific Lyapunov function, we
demonstrate that the disease-free equilibrium of the deterministic model is
globally asymptotically stable. For the stochastic model, we establish that it
is well-posed, meaning it possesses a unique positive solution with probability
one. Subsequently, we ascertain the conditions necessary to ensure the total
extinction of the disease across both regions. Furthermore, we explicitly de-
termine a threshold condition under which the disease persists in both areas.
Additionally, we discuss a scenario wherein the disease persists in one region
while simultaneously becoming extinct in the other. The article concludes with
a series of numerical simulations that corroborate the theoretical findings.
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1. Introduction

Infectious diseases are defined as illnesses caused
by pathogenic agents, transmitted from an in-
fected person, animal, or contaminated inanimate
object to a susceptible host [1]. They are the
main cause death worldwide killing more people
than all wars and natural disasters combined [2,3].
For instance, during the past three years, the
world has been under enormous threat from the
highly contagious coronavirus which first emerged
in China and has spread rapidly to cover almost
the entire globe leading to the death of more than
six million people, according to the statistics of
the World Health Organization [4]. In addition
to the human casualties from the coronavirus,

the economic and social disruption caused by this
pandemic is devastating. Millions of people at risk
of crossing the poverty line, thousands of compa-
nies face an existential threat and almost 50% of
the global workforce, comprising 3.3 billion indi-
viduals, faces the threat of unemployment [5].

To understand how infectious diseases spread, the
mathematical models are useful tools to describe
and simulate concrete situations for anticipating
their future behaviour. Most models for the trans-
mission of infectious diseases descend from the
classical SIR model of Kermack and McKendrick
established in 1927 [6]. Such model is called a
compartmental model where the population is di-
vided into compartments of susceptible, infected,
and recovered. A non-linear ordinary differential
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equations are used to model the dynamics be-
tween these compartments.

A major criticism for this model and the models
that followed (for example [7–15]), is that the to-
tal population is assumed to be entirely homoge-
nous and all individuals behave the same. There-
fore, the model may not represent complex mo-
bility and contact patterns for many real-world
diseases. To overcome this inconvenience, Calvo
et al. [16] have incorporated population hetero-
geneity to examine interactions between urban
and rural populations on the dynamics of disease
spreading by using a compartmental framework
of susceptible–infected–susceptible dynamics with
some level of immunity. The proposed model is
as follows:

dS1

dt
=µ1N1 + β1

I1
N1

S1 − µ1S1 + δ21S2 − δ12S1,

dI1
dt

=β1
I1
N1

S1 − (µ1 + γ1)I1 + ρ1
I1
N1

R1 + δ21I2 − δ12I1,

dR1

dt
=γ1I1 − ρ1

I1
N1

R1 − µ1R1 + δ21R2 − δ12R1,

dS2

dt
=µ2N2 + β2

I2
N2

S2 − µ2S2 + δ12S1 − δ21S2,

dI2
dt

=β2
I2
N2

S2 − (µ2 + γ2)I2 + ρ2
I2
N2

R2 + δ12I1 − δ21I2,

dR2

dt
=γ2I2 − ρ2

I2
N2

R2 − µ2R2 + δ12R1 − δ21R2.

(1)

The subscript 1 is used to denote the urban pa-
rameters and variables, and the subscript 2 for
the rural parameters and variables. For i ∈ {1, 2},
Si, Ii, Ri andNi denote the numbers of suscepti-
ble, infected, post-recovery susceptible individu-
als and the total population, respectively. The
parameter µi is the rate of birth and death. βi
is the infection transmission coefficient between
susceptible and infected individuals. The post-
recovery susceptible individuals are infected at
rate ρi, while infected individuals become post-
recovery susceptibles at rate γi. The motion be-
tween urban and rural populations is modeled by
the function δij(t) which denotes the fraction of
individuals who travel from patch i ∈ {1, 2} to
patch j ∈ {1, 2} (with i ̸= j) at time t. To study
the dynamics of system (1), the authors of [16]
compute steady states, showing the local stabil-
ity of the disease-free steady state, and identify
conditions for the existence of the endemic steady
states.

In the model above, infectious diseases can spread
through interactions between the urban and ru-
ral populations. Therefore, infected individuals in

urban area can infect rural population and the ru-
ral infected can transmit the disease to the urban
dwellers. In this paper, we assume that there is no
immunity. From this perspective, we propose an-
other version of model (1) by introducing four in-
fection transmission coefficients βi (i = 1, 2, 3, 4),
presented as follows:


dx1 = (A1 − β1x1y1 − β3x1y2 − µ1x1)dt,

dy1 = (β1x1y1 + β4x2y1 − µ1y1)dt,

dx2 = (A2 − β2x2y2 − β4x2y1 − µ2x2)dt,

dy2 = (β2x2y2 + β3x1y2 − µ2y2)dt.

(2)

For the variables xi and yi (i = 1, 2), we use the
subscript 1 to denote the urban variable and the
subscript 2 for the rural one. All the other pa-
rameters appearing in model (2) are assumed to
be constant positives. The symbols involved in
the model are described in Table 1.

On the other hand, the spread of diseases is char-
acterized by randomness due to the unpredictabil-
ity of the natural behavior [17]. A lot of scholars
have introduced the white noise into the deter-
ministic models to reveal the effect of the evi-
ronmental fluctuations on the spread of diseases.
For example, Cao et al. [18] considered a stochas-
tic SEI epidemic model with saturation incidence
and logistic growth. By constructing a suitable
Lyapunov function, they established sufficient
conditions for the existence and uniqueness of an
ergodic stationary distribution of the solutions to
the model. They also established sufficient con-
ditions for the extinction of the disease. In [19],
Pang et al. discussed the dynamics of a stochas-
tic SIQS epidemic model and investigated the
boundedness, extinction and the persistence of
the stochastic system. Khan et al. [20] proposed
a stochastic model to analyze the dynamics of
the novel coronavirus disease. They studied the
extinction and the persistence of the disease. For
more details on the impact of environmental fluc-
tuations on the spread of diseases and population
dynamics, we refer the readers to [21–39].

Based on the aforementioned facts, we substitute
βidt in model (2) by βidt+ σidBi(t), where Bi(t)
are mutually independent standard Brownian mo-
tions and σi > 0 are the intensities of their cor-
responding white noises, i = 1, 2, 3, 4. All these
Brownian Motions are defined on a filtered prob-
ability space

(
Ω,FΩ, (F{t})t≥0,P

)
endowed with a

filtration that meets the usual criteria. Thus, we
get a stochastic version of the deterministic model
(2), defined as follows:
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dx1(t) =(A1 − β1x1(t)y1(t)− β3x1(t)y2(t)− µ1x1(t))dt− σ1x1(t)y1(t)dB1(t)− σ3x1(t)y2(t)dB3(t),

dy1(t) =(β1x1(t)y1(t) + β4x2(t)y1(t)− µ1y1(t))dt+ σ1x1(t)y1(t)dB1(t) + σ4x2(t)y1(t)dB4(t),

dx2(t) =(A2 − β2x2(t)y2(t)− β4x2(t)y1(t)− µ2x2(t))dt− σ2x2(t)y2(t)dB2(t)− σ4x2(t)y1(t)dB4(t),

dy2(t) =(β2x2(t)y2(t) + β3x1(t)y2(t)− µ2y2(t))dt+ σ2x2(t)y2(t)dB2(t) + σ3x1(t)y2(t)dB3(t).

(3)

Here, we assume that the urban susceptibles con-
tamined by the rural infected individuals stay in
the rural infectd compartment and rural suscep-
tibles contamined by urban infected people stay
in the urban infected class.

For convenience, the abbreviation ”a.s.” means

”almost surely”, while ⟨f(t)⟩ = t−1
∫ t
0 f(r)dr is

the time average of a continuous function f. For
two numbers a and b, the symbols a∧ b and a∨ b
stand for the minimum and the maximum of a
and b, respectively.

The rest of the paper proceeds as follows. In the
next section, we study the stability of the equi-
librium state E = (A1

µ1
, 0, A2

µ2
, 0) for the determin-

istic model (2). Section 3 is devoted to verify
if the stochastic model (3) has a unique positive
solution with probability one. In section 4, the
conditions ensuring the exponential extinction of
the disease in both patches are established. Af-
terwards, we will carry out an analysis leading
to defining a threshold for the disease to persist
completely. There remains a case where the dis-
ease persists in one patch, and disappears in the
other, which is the main theme of the section 6.
The paper ends with the realization of numerical
simulations using the software Matlab 2015b.

2. Stability of the deterministic model

The aim of mathematical modeling of the spread
of epidemics is to know the conditions under
which the epidemic dies out. The determinis-
tic model (2) has one free-disease equilibrium

E = (A1
µ1

, 0, A2
µ2

, 0).

The following theorem gives sufficient conditions
for local and global asymptotic stability of the
free-disease equilibrium E.

Theorem 1. If
((

β1
A1
µ1

+ β4
A2
µ2

− µ1

)
∨
(
β3

A1
µ1

+

β2
A2
µ2

−µ2

))
< 0, then the equilibrium E is locally

asymptotically stable.

Proof. The Jacobian matrix related to model (2)
at the equilibrium E is

J(E) =


−µ1 −β1

A1
µ1

0 −β3
A1
µ1

0 β1
A1
µ1

− µ1 + β4
A2
µ2

0 0

0 −β4
A2
µ2

−µ2 −β2
A2
µ2

0 0 0 β2
A2
µ2

− µ2 + β3
A1
µ1

 .

According to the Hurwitz criterion, if
((

β1
A1
µ1

+

β4
A2
µ2

− µ1

)
∨
(
β3

A1
µ1

+ β2
A2
µ2

− µ2

))
< 0, then the

eigenvalues of matrix J(E) are all negatives.

Thus, the equilibrium state E is locally asymp-
totically stable. □

Theorem 2. If
((

(β1 + β4)
A1+A2
µ1∧µ2

− µ1

)
∨
(
(β2 +

β3)
A1+A2
µ1∧µ2

− µ2

))
< 0, then the equilibrium E is

globally asymptotically stable.

Proof. Consider the Lyapunov function V de-
fined by

V(x1(t), y1(t), x2(t), y2(t)) =
1

2
(y21 + y22).

The derivative of V along the trajectories of solu-
tion of model (2) is as follows

dV(x1(t), y1(t), x2(t), y2(t))
dt

= y1(t)(β1x1(t)y1(t) + β4x2(t)y1(t)− µ1y1(t))

+ y2(t)(β2x2(t)y2(t) + β3x1(t)y2(t)

− µ2y2(t))

= y21(t)(β1x1(t) + β4x2(t)− µ1)

+ y22(t)(β2x2(t) + β3x1(t)− µ2)

≤ y21(t)
(
(β1 + β4)

A1 +A2

µ1 ∧ µ2
− µ1

)
+ y22(t)

(
(β2 + β3)

A1 +A2

µ1 ∧ µ2
− µ2

)
.

Assuming that
((

(β1 + β4)
A1+A2
µ1∧µ2

− µ1

)
∨
(
(β2 +

β3)
A1+A2
µ1∧µ2

− µ2

))
< 0, we get

dV(x1(t), y1(t), x2(t), y2(t))
dt

< 0 for any t ≥ 0,

which means that E is globally asymptotically
stable. □
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Table 1. Description of symbols in model (2).

Parameter Meaning
xi The number of susceptible individuals to the disease, where i =

1, 2.
yi The number of infective members.
Ai A constant input of new members into the population i per unit

time.
µi Natural death rate of xi and yi.
β1 Transmission coefficient between x1 and y1.
β2 Transmission coefficient between x2 and y2.
β3 Transmission coefficient between x1 and y2.
β4 Transmission coefficient between x2 and y1.

3. Well-posedeness of the stochastic
model

Lemma 1. The set Γ =
{
(x1(t), y1(t), x2(t), y2(t)) ∈

R4
+ : N(t) = x1(t)+y1(t)+x2(t)+y2(t) ≤ A1+A2

µ1∧µ2

}
is positively invariant for the stochastic model (3).

Proof. From system (3), we have

dN(t) =
(
A1 +A2 − µ1(x1(t) + y1(t))

− µ2(x2(t) + y2(t))
)
dt (4)

≤(A1 +A2 − (µ1 ∧ µ2)N(t))dt.

Thus

N(t) ≤ A1 +A2

µ1 ∧ µ2
+
(
N(0)− A1 +A2

µ1 ∧ µ2

)
e−(µ1∧µ2)t.

If N(0) ≤ A1+A2
µ1∧µ2

, then N(t) ≤ A1+A2
µ1∧µ2

for all t >

0. □

Theorem 3. For any (x1(0), y1(0), x2(0), y2(0)) ∈
Γ, the stochastic system (3) is mathematically
well-posed in the sense that it has a unique solu-
tion (x1(t), y1(t), x2(t), y2(t)) ∈ Γ with probability
one.

Proof. The coefficients of system (3) are lo-
cally Lipschitz continuous, for any given initial
value (x1(0), y1(0), x2(0), y2(0)), then there is a
unique local solution (x1(t), y1(t), x2(t), y2(t)) on
t ∈ [0, τe), where τe is the explosion time.

Let k0 > 0 such that x1(0), y1(0), x2(0), y2(0) >
k0. For k ≤ k0, we consider the stopping times

τk = inf
{
t ∈ [0, τe) : x1(t) ≤ k or y1(t) ≤ k

or x2(t) ≤ k or y2(t) ≤ k
}
,

τ =lim
k→0

τk = inf
{
t ∈ [0, τe) : x1(t) ≤ 0 or y1(t) ≤ 0

or x2(t) ≤ 0 or y2(t) ≤ 0
}
.

Let

V (X(t)) = V ((x1(t), y1(t), x2(t), y2(t)))

= 4 ln
A1 +A2

µ1 ∧ µ2
− ln(x1(t)y1(t)x2(t)y2(t)).

Applying Itô formula on V , we obtain

dV =− dx1
x1

− dx2
x2

− dy1
y1

− dy2
y2

+
(1
2
σ2
1y

2
1 +

1

2
σ2
3y

2
2

+
1

2
σ2
2y

2
2 +

1

2
σ2
4y

2
1 +

1

2
σ2
1x

2
1 +

1

2
σ2
4x

2
2 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
1

)
dt

≤
[
− A1

x1
+ β1y1 + β3y2 + µ1 − β1x1 − β4x2 + µ1 −

A2

x2

+ β2y2 + β4y1 + µ2 − β2x2 − β3x1 + µ2 +
(
σ2
1 + σ2

2 + σ2
3

+ σ2
4

)(A1 +A2

µ1 ∧ µ2

)2]
dt+ σ1(y1 − x1)dB1 + σ2(y2 − x2)dB2

+ σ3(y2 − x1)dB3 + σ4(y1 − x2)dB4

≤
[
2µ1 + 2µ2 +

(
β1 + β2 + β3 + β4

)A1 +A2

µ1 ∧ µ2
+
(
σ2
1 + σ2

2

+ σ2
3 + σ2

4

)(A1 +A2

µ1 ∧ µ2

)2]
dt+ σ1(y1 − x1)dB1

+ σ2(y2 − x2)dB2 + σ3(y2 − x1)dB3 + σ4(y1 − x2)dB4.

Integrating the both sides of the inequality above
and then taking the expectation give

E[V (X(t))] ≤ λt+ V (X(0)), (5)

where

λ = 2µ1 + 2µ2 +
(
β1 + β2 + β3 + β4

)A1 +A2

µ1 ∧ µ2

+
(
σ2
1 + σ2

2 + σ2
3 + σ2

4

)(A1 +A2

µ1 ∧ µ2

)2
.

Using the stopping time τk, one has
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E[V (X(t ∧ τk))] =E[V (X(t ∧ τk)) I(τk≤t)]

+ E[V (X(t ∧ τk)) I(τk>t)]

≥E[V (X(τk)) I(τk≤t)],

where IA is the characteristic function of A.

Notice that there is some component of X(τk)
equals to k. Therefore

V (X(τk)) ≥ ln

(
A1 +A2

µ1 ∧ µ2

1

k

)
.

As a result, we have

E[V (X(t ∧ τk))] ≥ ln

(
A1 +A2

µ1 ∧ µ2

1

k

)
× P

(
τk ≤ t

)
.

Together with (5), we get

P
(
τk ≤ t

)
≤ λt+ V (X(0))

ln

(
A1+A2
µ1∧µ2

1
k

) .

If we let k → 0, we obtain for all t ≥ 0 :

P
(
τ ≤ t

)
= 0.

Hence

P
(
τ = ∞

)
= 1.

As τe ≥ τ , then τe = ∞ a.s.

Finally, the solution is global. □

4. Decline of the disease

Theorem 4. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If
β2
1

2σ2
1
+

β2
4

2σ2
4
< µ1, then lim

t→∞
y1(t) = 0 a.s.

(2) If
β2
2

2σ2
2
+

β2
3

2σ2
3
< µ2, then lim

t→∞
y2(t) = 0 a.s.

Proof. 1. Applying Itô formula to system (3),
we get

d ln y1(t) =
1

y1(t)
dy1(t)−

1

2

1

y21
(dy1(t))

2

=
(
β1x1(t) + β4x2(t)− µ1 −

σ2
1

2
x21(t)

− σ2
4

2
x22(t)

)
dt+ σ1x1(t)dB1(t)

+ σ4x2(t)dB2(t).

It follows that

1

t
ln

y1(t)

y1(0)
=β1⟨x1(t)⟩+ β4⟨x2(t)⟩ − µ1 −

σ2
1

2
⟨x21(t)⟩

− σ2
4

2
⟨x22(t)⟩+

M1(t)

t

≤β1⟨x1(t)⟩+ β4⟨x2(t)⟩ − µ1 −
σ2
1

2
⟨x1(t)⟩2

− σ2
4

2
⟨x2(t)⟩2 +

M1(t)

t

=− σ2
1

2
⟨x1(t)⟩2 + β1⟨x1(t)⟩ −

σ2
4

2
⟨x2(t)⟩2

+ β4⟨x2(t)⟩ − µ1 +
M1(t)

t

=− σ2
1

2

(
⟨x1(t)⟩2 − 2

β1
σ2
1

⟨x1(t)⟩
)

− σ2
4

2

(
⟨x2(t)⟩2 − 2

β4
σ2
4

⟨x2(t)⟩
)
− µ1

+
M1(t)

t

=− σ2
1

2

(
⟨x1(t)⟩ −

β1
σ2
1

)2
+

β2
1

2σ2
1

− σ2
4

2

(
⟨x2(t)⟩ −

β4
σ2
4

)2
+

β2
4

2σ2
4

− µ1

+
M1(t)

t
(6)

≤ β2
1

2σ2
1

+
β2
4

2σ2
4

− µ1 +
M1(t)

t
,

where

M1(t) = σ1

∫ t

0
x1(r)dB1(r) + σ4

∫ t

0
x2(r)dB2(r).

Bearing in mind the strong law of large numbers
for martingales, we obtain

lim sup
t→∞

ln y1(t)

t
≤ β2

1

2σ2
1

+
β2
4

2σ2
4

− µ1 a.s.

Since
β2
1

2σ2
1
+

β2
4

2σ2
4

< µ1, then lim sup
t→∞

ln y1(t)
t <

0 a.s.,

which implies

lim
t→∞

y1(t) = 0 a.s.

2. Similarly, we get : lim
t→∞

y2(t) = 0 a.s., under

the condition
β2
2

2σ2
2
+

β2
3

2σ2
3
< µ2.
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This completes the proof of Theorem 4.
□

Theorem 5. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If A1+A2
µ1

≤ β1

σ2
1
, A1+A2

µ2
≤ β4

σ2
4

and

β1
A1+A2

µ1
+ β4

A1+A2
µ2

− σ2
1
2

(
A1+A2

µ1

)2
−

σ2
4
2

(
A1+A2

µ2

)2
< µ1, then

lim
t→∞

y1(t) = 0 a.s.

(2) If A1+A2
µ1

≤ β3

σ2
3
, A1+A2

µ2
≤ β2

σ2
2

and

β3
A1+A2

µ1
+ β2

A1+A2
µ2

− σ2
3
2

(
A1+A2

µ1

)2
−

σ2
2
2

(
A1+A2

µ2

)2
< µ2, then

lim
t→∞

y2(t) = 0 a.s.

Before giving the proof of Theorem 5, we will
present the two following Lemmas.

Lemma 2. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3). We have

lim
t→∞

x1(t) + y1(t) + x2(t) + y2(t)

t
= 0 a.s.

Proof. Let N(t) = x1(t) + y1(t) + x2(t) + y2(t).

From system (3), one has

dN(t) = (A1 +A2 − µ1 (x1(t) + y1(t)))

− (µ2 (x2(t)− y2(t))) dt. (7)

Then

(
A1 +A2 − (µ1 ∨ µ2)N(t)

)
dt ≤ dN(t)

≤
(
A1 +A2 − (µ1 ∧ µ2)N(t)

)
dt. (8)

Thus

A1 +A2

µ1 ∨ µ2
+
(
N(0)− A1 +A2

µ1 ∨ µ2

)
e−(µ1∨µ2)t ≤ N(t),

and

N(t) ≤ A1 +A2

µ1 ∧ µ2
+
(
N(0)− A1 +A2

µ1 ∧ µ2

)
e−(µ1∧µ2)t.

Hence

lim
t→∞

x1(t) + y1(t) + x2(t) + y2(t)

t
= 0 a.s.

The proof is complete.
□

Lemma 3. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3). Then

lim sup
t→∞

⟨x1(t)⟩ ≤
A1 +A2

µ1
a.s.,

lim sup
t→∞

⟨x2(t)⟩ ≤
A1 +A2

µ2
a.s.

Proof. By (7), we obtain

⟨x1(t)⟩ ≤
A1 +A2

µ1
− ϕ(t)

µ1
,

⟨x2(t)⟩ ≤
A1 +A2

µ2
− ϕ(t)

µ2
,

where

ϕ(t) =
x1(t) + y1(t) + x2(t) + y2(t)

t

− x1(0) + y1(0) + x2(0) + y2(0)

t
.

Bearing in mind Lemma 2, we get the seeked re-
sults. □

Proof of Theorem 5. 1. By Lemma 3, there is
T1 > 0 such that, for any t ≥ T1,

⟨x1(t)⟩ ≤
A1 +A2

µ1
and ⟨x2(t)⟩ ≤

A1 +A2

µ2
.

For all t ≥ T1, we assume that

⟨x1(t)⟩ ≤
A1 +A2

µ1
≤ β1

σ2
1

,

and

⟨x2(t)⟩ ≤
A1 +A2

µ2
≤ β4

σ2
4

.

Together with (6), we have

1

t
ln

y1(t)

y1(0)
≤− σ1

2

2

(A1 +A2

µ1
− β1

σ2
1

)2
+

β2
1

2σ2
1

− σ2
4

2

(A1 +A2

µ2
− β4

σ2
4

)2
+

β2
4

2σ2
4

− µ1

=β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
− σ2

4

2

(A1 +A2

µ2

)2
− µ1.
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Since

β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
−σ2

4

2

(A1 +A2

µ2

)2
− µ1 < 0,

then

lim sup
t→∞

ln y1(t)

t
< 0 a.s.

Consequently

lim
t→∞

y1(t) = 0 a.s.

2. Following the same method above, we get

lim
t→∞

y2(t) = 0 a.s.

□

5. Disease prevalence

Theorem 6. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If (β1 ∧ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2
>

(β1 ∧ β4) + µ1, then: lim inf
t→∞

⟨y1(t)⟩ >

0 a.s.

(2) If (β2 ∧ β3)
A1+A2
µ1∨µ2

− σ2
2+σ2

3
2

(
A1+A2
µ1∧µ2

)2
>

(β2 ∧ β3) + µ2, then: lim inf
t→∞

⟨y2(t)⟩ >

0 a.s.

Proof. 1. From (7), we have

(µ1 ∨ µ2)⟨x1(t) + x2(t)⟩ ≥ A1 +A2 − µ1⟨y1(t)⟩

− µ2
A1 +A2

µ1 ∧ µ2
− ϕ(t).

Then, one can get

⟨x1(t) + x2(t)⟩ ≥
A1 +A2

µ1 ∨ µ2
− µ1

µ1 ∨ µ2
⟨y1(t)⟩

− µ2

µ1 ∨ µ2

A1 +A2

µ1 ∧ µ2
− ϕ(t)

µ1 ∨ µ2

≥ A1 +A2

µ1 ∨ µ2
− ⟨y1(t)⟩ −

A1 +A2

µ1 ∧ µ2

− ϕ(t)

µ1 ∨ µ2
. (9)

On the other hand, one can have

1

t
ln

y1(t)

y1(0)
≥ (β1 ∧ β4)⟨x1(t) + x2(t)⟩ − µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
+

M1(t)

t
.

(10)

Combining (9) and (10) yields

1

t
ln

y1(t)

y1(0)
≥ (β1 ∧ β4)

A1 +A2

µ1 ∨ µ2
− (β1 ∧ β4)⟨y1(t)⟩

− (β1 ∧ β4)
A1 +A2

µ1 ∧ µ2
− β1 ∧ β4

µ1 ∨ µ2
ϕ(t)− µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
+

M1(t)

t
.

As a consequence, we get

lim inf
t→∞

(β1 ∧ β4)⟨y1(t)⟩ ≥(β1 ∧ β4)
A1 +A2

µ1 ∨ µ2

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
−
(
(β1 ∧ β4) + µ1

)
a.s.

Immediately, under the condition stated in the
first part of Theorem 6, we deduce that

lim inf
t→∞

⟨y1(t)⟩ > 0 a.s.

2. Concerning the second part of Theorem 6, we
get the desired result using the above method.

□

6. Simultaneous extinction and
persistence

Theorem 7. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If (β2 ∨ β3)
A1+A2
µ1∨µ2

− σ2
2+σ2

3
2

(
A1+A2
µ1∧µ2

)2
>

µ2 and lim
t→∞

y1(t) = 0 a.s., then:

lim inf
t→∞

⟨y2(t)⟩ > 0 a.s.

(2) If (β1 ∨ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2
>

µ1 and lim
t→∞

y2(t) = 0 a.s., then:

lim inf
t→∞

⟨y1(t)⟩ > 0 a.s.
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Proof. 1. In the case of the extinction of urban
infected, we have: lim

t→∞
y1(t) = 0 a.s.

Then, for any ϵ > 0, there existT2 > 0 such that:
y1(t) ≤ ϵ for all t ≥ T2.

Together with (7), one can get

ϕ(t) ≥ A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩
− µ1⟨y1(t)⟩ − µ2⟨y2(t)⟩
= A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩

− µ1
1

t

∫ T2

0
y1(r)dr − µ1

1

t

∫ t

T2

y1(r)dr

µ2⟨y2(t)⟩ ≥ A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩

− T2

t
µ1 sup

r∈[0,T2]
y1(r)− µ1(1−

T2

t
)ϵ− µ1⟨y2(t)⟩.

Then

⟨x1(t) + x2(t)⟩ ≥
A1 +A2

µ1 ∨ µ2
− T2

t
sup

r∈[0,T2]
y1(r)

− ϵ− ⟨y2(t)⟩ −
ϕ(t)

µ1 ∨ µ2
. (11)

Now, we apply Itô formula on system (3) to ob-
tain

1

t
ln

y2(t)

y2(0)
≥(β2 ∧ β3)⟨x1(t) + x2(t)⟩ − µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
+

M2(t)

t
,

(12)

where

M2(t) = σ2

∫ t

0
x2(r)dB2(r) + σ3

∫ t

0
x1(r)dB3(r).

Injecting (11) on (12) gives

1

t
ln

y2(t)

y2(0)
≥ (β2 ∧ β3)

A1 +A2

µ1 ∨ µ2

− (β2 ∧ β3)
1

t
sup

r∈[0,T2]
y1(r)

− (β2 ∧ β3)⟨y2(t)⟩ − (β2 ∧ β3)ϵ

− β2 ∧ β3
µ1 ∨ µ2

ϕ(t)− µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
+

M2(t)

t
.

According to Lemma 2, we can have

lim inf
t→∞

(β2 ∧ β3)⟨y2(t)⟩ ≥ (β2 ∧ β3)
A1 +A2

µ1 ∨ µ2
− µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
a.s.

2. Similarly, we get

lim inf
t→∞

(β1 ∧ β4)⟨y1(t)⟩ ≥ (β1 ∧ β4)
A1 +A2

µ1 ∨ µ2
− µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
a.s.

The proof is complete.
□

7. Numerical results

The main goal of this section is to perform a
numerical verification of the results obtained in
the previous sections. First of all, we choose
the initial value as (x1(0), y1(0), x2(0), y2(0)) =
(0.5, 0.7, 0.4, 0.9). The other parameters values
are summarized in Table 2 split into 8 tests.

7.1. Deterministic stability

Based on the values of Test 0, we have

((
(β1 + β4)

A1 +A2

µ1 ∧ µ2
− µ1

)
∨
(
(β2 + β3)

A1 +A2

µ1 ∧ µ2
− µ2

))
= −0.41477.

According to Theorem 2, the equilibrium E =
(0.2308, 0, 0.1667, 0) is globally asymptotically
stable which is depicted in Figure 1.

7.2. Stochastic extinction of the epidemic

By considering the values of Test 1, we have the
following calculation

β2
1

2σ2
1

+
β2
4

2σ2
4

− µ1 = −0.0036,

and

β2
2

2σ2
2

+
β2
3

2σ2
3

− µ2 = −0.1375.

From Figure 2, we observe that: lim
t→∞

y1(t) =

lim
t→∞

y2(t) = 0, which conform to the Theorem 4.

Second, we obtain for Test 2

A1 +A2

µ1
−β1
σ2
1

= −1.3626,
A1 +A2

µ2
−β4
σ2
4

= −2.441
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and

β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
− σ2

4

2

(A1 +A2

µ2

)2
− µ1 = −0.017.

According to Theorem 5, y1(t) converges expo-
nentially to zero (see Figure 2).

Next, based on the parameters values for Test 3,
the numerical values are

A1 +A2

µ1
−β3
σ2
3

= −0.9437,
A1 +A2

µ2
−β2
σ2
2

= −2.2292

and

β3
A1 +A2

µ1
+β2

A1 +A2

µ2

σ2
3

2

(A1 +A2

µ1

)2
−σ2

2

2

(A1 +A2

µ2

)2
− µ2 = −0.0799.

From Figure 2, we see that y2(t) tends to zero,
which agrees with Theorem 5.

7.3. Stochastic persistence of the epidemic

We choose values of Test 4 and Test 5 to get the
following

(β1 ∧ β4)
A1 +A2

µ1 ∨ µ2
− σ2

1 + σ2
4

2

(A1 +A2

µ1 ∧ µ2

)2
− (β1 ∧ β4)− µ1 = 0.1589

and

(β2 ∧ β3)
A1 +A2

µ1 ∨ µ2
− σ2

2 + σ2
3

2

(A1 +A2

µ1 ∧ µ2

)2
− (β2 ∧ β3)− µ2 = 0.1489.

By virtue of Theorem 6, the epidemic will be per-
sistent in both urban and rural areas (see Figure
3).

7.4. Simultaneous extinction and
persistence

Case 1. We have already considered that
lim
t→∞

y1(t) = 0. From values of Test 6, we obtain

(β2 ∨ β3)
A1 +A2

µ1 ∨ µ2
− σ2

2 + σ2
3

2

(A1 +A2

µ1 ∧ µ2

)2
− µ2 = 0.0631.

Therefore, Theorem 7 yields

lim inf
t→∞

⟨y2(t)⟩ > 0,

which is well confirmed by Figure 4.

Case 2. Based on the values of Test 7 and , we
get that

(β1 ∨ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2 − µ1 = 0.0528.

If we consider lim
t→∞

y2(t) = 0, then Theorem 7 im-

plies that: lim inf
t→∞

⟨y1(t)⟩ > 0.

Therefore, Figure 4 reflects perfectly the state-
ment of Theorem 7.
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Figure 1. Computer simulation of
x1(t), x2(t), y1(t) and y2(t) for
model (2), corresponding to Test 0.
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Figure 2. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 1, Test 2 and Test 3.
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Table 2. Parameters values.

Parameters Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
A1 0.06 0.3 0.06 0.04 0.1 0.1 0.06 0.04
A2 0.05 0.25 0.05 0.035 0.1 0.2 0.05 0.035
µ1 0.26 0.1 0.26 0.2 0.08 0.08 0.26 0.2
µ2 0.3 0.2 0.1 0.2 0.09 0.09 0.1 0.2
β1 0.14 0.2 0.14 — 0.5 — 0.14 0.6
β2 0.1 0.15 0.1 0.15 — 0.5 0.5 0.15
β3 0.2 0.2 0.2 0.211 — 0.4 0.4 0.211
β4 0.08 0.3 0.211 — 0.4 — 0.211 0.7
σ1 — 0.7 0.28 — 0.2 — 0.28 0.28
σ2 — 0.6 — 0.24 — 0.2 0.2 0.24
σ3 — 0.8 — 0.4 — 0.2 0.2 0.4
σ4 — 0.9 0.244 — 0.2 — 0.244 0.244
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Figure 3. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 4 and Test 5.
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Figure 4. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 6 and Test 7.

8. Conclusion

In this paper, we elucidate the dynamics of dis-
ease transmission between two groups from dis-
tinct regions, operating under the assumption of
comprehensive and unrestricted interaction. We
consider both a deterministic two-patch epidemic
model and its stochastic counterpart. For the
deterministic model (2), we examine the global
asymptotic stability of the equilibrium E =
(A1
µ1

, 0, A2
µ2

, 0). This result is illustrated in Figure

1. Regarding the stochastic version of model (2),
we demonstrate the uniqueness of a positive solu-
tion for model (3). The thresholds that determine

whether the disease will disappear are identified,
as detailed in Theorems 4 and 5. Additionally,
in Theorem 6, we establish conditions ensuring
disease persistence. We also highlight a third sce-
nario, distinct from those studied in sections 4 and
5, where the disease persists in one patch while si-
multaneously disappearing in the other. The ac-
curacy of our theoretical findings is validated in
the numerical simulation section.
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