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1. Introduction

We consider the generalized nonlinear
Schrödinger (GNLS) equation, given by

iωt + ωxx + q1|ω|2ω + q2|ω|4ω+
iq3(|ω|2)xω + iq4|ω|2ωx = 0,

(1)

where i =
√
−1, ω is a complex-valued function

of the spatial coordinate x and time t. The sub-
scripts t and x denote differentiation with respect
to time, t and space, x and q1, q2, q3, q4 are real
parameters. Eq.(1) describes the modulation of a
quasi-monochromatic wave train in a weakly non-
linear dispersive medium [1]. It also describes the
behaviour of the Stokes wave near the state of
modulation instability, which was independently
proposed by Johnson [2], Kakutani and Michi-
hiro [3]. The GNLS Eq.(1) takes some special
forms [1] and these forms have found many appli-
cations [1, 4]. One of the special forms of Eq.(1)
is the well known cubic nonlinear Schrödinger
(CNLS) equation:

iωt + ωxx + q1|ω|2ω = 0, (2)

which has found applications in nonlinear op-
tics [5], plasma physics [6] and fluid dynamics [7].
Other special forms of Eq.(1) have applications in-
cluding propagation of nonlinear Alfvên waves [8]
and the self-modulation of the complex amplitude
of the solution to the Benjamin-Ono equation [9].
Under the condition that the initial condition
ω(x, 0) vanishes for sufficiently large x, the CNLS
Eq.(2) has analytic solution given by [6,10]. There
are many papers about the numerical and ana-
lytical solutions of the CNLS equation. However,
a few papers can be found in the past about the
numerical and analytical solutions of the GNLS
equation. Exact solution of the GNLS equation
was obtained by using Gauss transformation by
Pathria and Morris [1]. They also obtained the
numerical solution of the GNLS equation using
the pseudo-spectral split-step method. Different
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split-step pseudo-spectral methods were imple-
mented for the numerical solution of the GNLS
equation by Pathria and Morris [4]. Muslu and
Erbay [11] used first, second and fourth-order ver-
sions of the split-step Fourier method to solve the
GNLS equation numerically. The quintic B-spline
collocation method was used to solve the GNLS
equation by Irk and Dağ [12]. A meshfree method
based on RBFs has been used to solve the GNLS
equation by Uddin and Haq [13]. Bashan, Ali, et
al. [14–16] used various methods based on the dif-
ferential quadrature method to find the solution
of the nonlinear Schödinger Equation. In liter-
ature, [17–19], many researchers have developed
various types of differential quadrature methods
(DQM) using different base functions.

Assuming that ω and all its derivatives tend to
zero rapidly as x → ±∞, the solutions of the
GNLS equation possess the following conservation
laws [1, 4]:

I1 =

∫ ∞

−∞
|ω|2dx, (3)

I2 =

∫ ∞

−∞

[
|ωx|2 −

1

2
(2q3 + q4)|ω|2Im(ωω̄x)

−1

2
q1|ω|4 +

1

6
{q3(2q3 + q4)− 2q2}|ω|6

]
dx,

(4)

and

I3 =

∫ ∞

−∞

[
2Im(ωω̄x)− q3|ω|4

]
dx, (5)

which are the conservation of mass, energy and
impulse respectively.

The differential quadrature method (DQM) was
first introduced by Bellman et al. [20] in 1972 as a
simple and versatile numerical technique for solv-
ing complex differential equations. This method
approximates a function’s derivative at a cer-
tain point through a weighted linear sum of the
functional values at specific collocation points,
whereby a key aspect is related to the compu-
tation of weighting coefficients. Many authors
have used various test functions to formulate
various DQ methods, like Legendre polynomi-
als, Lagrange interpolating polynomials, spline
functions, radial basis functions (RBF), Cheby-
chev polynomials, etc. [20–26]. Shu proposed a
better method for computing weighting coeffi-
cients [27]. Shu and Richards [28] used Lagrange
interpolating polynomials, which have no limi-
tation on the choice of grid points. This leads
to the polynomial-based differential quadrature
(PDQ) method. They also obtained a recurrence

formula to compute the weighting coefficients
for higher-order derivatives. When using Fourier
series expansion, we call it the Fourier-based dif-
ferential quadrature (FDQ) method.

The main advantage of DQM is their high accu-
racy. In general, DQMs are global in nature [29],
which means that they approximate a function
and its derivative at a point by using the func-
tional values at all collocation points in the do-
main. The number of collocation points in the
given domain must be large enough to achieve
high accuracy approximation. However, it was
found that DQM is inefficient when the num-
ber of collocation points is larger [30] because of
instability. In this regard, Zong and Lam [31]
introduced a localized DQ method to keep a bal-
ance between stability and accuracy. It has been
demonstrated that accuracy and stability can be
balanced by approximating the derivative of a
function at a position using a weighted sum of
functional values at the points in its neighbour-
hood rather than all collocation points. There-
fore, we proposed an efficient numerical approach
based on the local differential quadrature method
using Fourier series expansion to solve the GNLS
Eq.(1).

The paper is organized as follows: Section 2
briefly introduces DQM and the local Fourier-
based differential quadrature (L-FDQ) method.
The L-FDQ method is implemented in section 3
to solve the GNLS equation. In section 4, we dis-
cuss the matrix stability analysis of the proposed
method. Section 5 reports the numerical results
of the GNLS equation for some test problems. In
section 6, we draw a brief conclusion about the
presented method.

2. Differential quadrature method
(DQM)

DQM is an approximation to the derivative of a
function at any grid point using the weighted lin-
ear sum of all functional values at certain colloca-
tion points in the given domain of definition. We
consider an arbitrarily distributed N grid points
x1 < x2 < · · · < xN on the real axis. Then, ac-
cording to DQ discretization, the nth order deriva-
tives of U(x, t) w.r.t. the spatial coordinate x at
a point xi is given by

U (n)(xi, t) =
N∑
j=1

w
(n)
i,j U(xj , t), (6)
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where w
(n)
i,j represents the weighting coefficients,

i, j = 1, . . . , N and n = 1, . . . , N − 1.

2.1. Fourier-based differential quadrature
(FDQ)

For Fourier-based differential quadrature (FDQ),
we consider an arbitrary function defined on the
interval [a, b]. Two typical sets of base functions
are used to compute the weighting coefficients.

These sets of base functions are:

1, cos

(
πx

b− a

)
, sin

(
πx

b− a

)
, . . . ,

cos

(
(N − 1)πx

2(b− a)

)
, sin

(
(N − 1)πx

2(b− a)

)
,

(7)

and

gj(x) =
G(x)

sin
(
π(x−xj)
2(b−a)

)
G(1)(xj)

, x ∈ [a, b],

j = 1, 2, . . . , N

(8)

where

G(x) =
N∏
k=1

sin

(
π(x− xk)

2(b− a)

)
,

G(1)(xj) =

N∏
k=1,k ̸=j

sin

(
π(xj − xk)

2(b− a)

)
, x ∈ [a, b],

j = 1, . . . , N.

Using these sets of base functions given in Eq.(7)
and Eq.(8), the weighting coefficients for the first
and second-order derivatives as evaluated by Shu
[29] are as follows:

w
(1)
i,j =

π

2(b− a)

G(1)(xi)

sin
(
π(xi−xj)
2(b−a)

)
G(1)(xj)

, i ̸= j,

w
(2)
i,j = w

(1)
i,j

(
2w

(1)
i,i − π

(b− a)
cot

(
π(xi − xj)

2(b− a)

))
,

i ̸= j,

w
(n)
i,i = −

N∑
j=1,j ̸=i

w
(n)
i,j , n = 1, 2


(9)

where i, j = 1, 2, . . . , N . We used equally spaced
grid points in the space direction to approximate
the derivative of the unknown function.

2.2. Local Fourier-based differential
quadrature (L-FDQ)

We consider a partition a = x1 < x2 <
· · · < xi < · · · < xN = b of the do-
main [a,b]. Following the method adopted
by Shu [27], we consider a location xi (i =
1, 2, . . . , N) and for each i, consider a stencil Si =
{xi−K1 , xi−K1+1, . . . , xi−1, xi, xi+1, . . . xi+K2}
containing K + 1 (K = K1 + K2) grid points.
For the left boundary point x1,K1 = 0,K2 = K,
while for the right boundary point xN , K1 =
K,K2 = 0. Then using the K + 1 grid points
xi−K1 , xi−K1+1, . . . , xi−1, xi, xi+1, . . . xi+K2 the
nth order partial derivative of the function U(x, t)
with respect to x at xi is given by

U (n)
x (xi, t) =

K2∑
j=−K1

w
(n)
i,i+jU(xi+j , t) (10)

where , the L-FDQ weighting coefficients for the
first and second-order derivatives in Eq.(9) are
given by

w
(1)
i,i+j =

π

2(b− a)

G(1)(xi)

sin
(
π(xi−xi+j)

2(b−a)

)
G(1)(xi+j)

,

for j ̸= 0, j = −K1, . . . ,K2

(11)

where

G(1)(xi) =

K2∏
k=K1
k ̸=0

sin

(
π(xi − xi+k)

2(b− a)

)
and

G(1)(xi+j) =

K2∏
k=−K1
k ̸=j

sin

(
π(xi+j − xi+k)

2(b− a)

)
,

and

w
(2)
i,i+j = w

(1)
i,i+j

(
2w

(1)
i,i − π

b− a
cot

(
π(xi − xi+j)

2(b− a)

))
,

j ̸= 0, j = −K1, . . . ,K2.
(12)

For the diagonal coefficients w
(n)
i,i , we have

w
(n)
i,i = −

K2∑
k=−K1,

k ̸=0

w
(n)
i,i+k ; n = 1, 2. (13)

Once the weighting coefficients are computed,
then we make the following differentiation matri-

ces, W(1) =
(
w

(1)
i,j

)
N×N

and W(2) =
(
w

(2)
i,j

)
N×N

to approximate the first and second-order spatial
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derivatives of U(x, t) in the domain [a, b]. These
differentiation matrices are banded.

3. Implementation of L-FDQ

The GNLS Eq.(1) is examined in this part, with
the following initial and boundary conditions ap-
plied across the interval [a, b]:

ω(x, 0) = f(x), x ∈ [a, b] (14)

ω(a, t) = ω(b, t) = 0, t ∈ (0, T ]. (15)

Taking ω(x, t)= u(x, t) + iv(x, t), where i =
√
−1

the GNLS Eq.(1) with the initial and boundary
conditions (14) and (15) are transformed into the
following coupled initial-boundary value problem
(IBVP):

PDEs:

ut =− vxx − [q1(u
2 + v2) + q2(u

2 + v2)2]v

− [2q3u
2 + q4(u

2 + v2)]ux − 2q3uvvx

vt = uxx + [q1(u
2 + v2) + q2(u

2 + v2)2]u

− [2q3v
2 + q4(u

2 + v2)]vx − 2q3uvux


(16)

ICs : u(x, 0) = fu(x), v(x, 0) = fv(x), x ∈ [a, b]
(17)

BCs : u(a, t) = u(b, t) = 0, v(a, t) = v(b, t) = 0,

t ∈ (0, T ].
(18)

To solve the system (16) with ICs (17) and BCs
(18) at the collocation points {x1, x2, . . . , xN}
with uniform step size h = xi+1 − xi, for i =
1, 2, . . . , N − 1 we define the following:

U(t) = [u1(t), u2(t), . . . , uN (t)]T ,

V(t) = [v1(t), v2(t), . . . , vN (t)]T ,

where ui(t) = u(xi, t), vi(t) = v(xi, t) for all
i = 1, 2, . . . , N .

Using these definitions and the differentiation ma-
trices W(1) and W(2) as defined in section 3,
the system of PDEs (16) reduces to the following
system of ordinary differential equations (ODEs),
which can be written in the following matrix form:

U′(t) = − W(2) ·V(t)−
[
q1

(
U2(t) +V2(t)

)
+

q2
(
U2(t) +V2(t)

)2] ∗V(t)

−
[
2q3U

2(t) + q4
(
U2(t) +V2(t)

)]
∗(

W(1) ·U(t)
)
− 2q3U(t) ∗V(t) ∗

(
W(1) ·V(t)

)
V′(t) = W(2) ·U(t) +

[
q1

(
U2(t) +V2(t)

)
+

q2
(
U2(t) +V2(t)

)2] ∗U(t)

−
[
2q3V

2(t) + q4
(
U2(t) +V2(t)

)]
∗(

W(1) ·V(t)
)
− 2q3U(t) ∗V(t) ∗

(
W(1) ·U(t)

)


(19)

where “ · ” indicates the multiplication of two
matrices and U(t)∗V(t), U2(t) = U(t)∗U(t) de-
note the component by component multiplication
of two matrices.

Using the corresponding ICs and BCs (17) and
(18), we solve the above system of ODEs (19) by
the usual RK4 method.

4. Stability analysis

The method’s stability is analyzed using the ma-
trix stability analysis as suggested in literature
[30,32]. After linearization of the system of ODEs
(19), the resulting system can be written in the
following matrix form:

X′(t) = A ·X(t) (20)

(since, both the system of ODEs and the BCs are
homogeneous) or

[
U′(t)
V′(t)

]
=

[
−αW(1) −βI− γW(1) −W(2)

βI− γW(1) +W(2) −αW(1)

] [
U(t)
V(t)

]

where I is the identity matrix of order N × N ,
W(1) and W(2) are the weighting coefficient ma-
trices for first and second order derivatives re-
spectively, as defined in section-3. Also, we have
taken α = 2q3ū

2 + q4(ū
2 + v̄2), β = q1(ū

2 + v̄2) +
q2(ū

2 + v̄2)2 and γ = 2q3ūv̄, where ū = ||U||∞
and v̄ = ||V||∞.
The stability region for the complex eigenvalues
is shown in Figure 1 [33].
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Figure 1. Stability region for com-
plex eigenvalues.

The stability of the numerical integration of the
system (20) is related to the stability of the nu-
merical scheme for solving it. If the system of
ODEs in (20) is not stable, then the stable nu-
merical scheme for temporal discretization may
not generate the converged solution.

The stability of (20) depends on the eigenvalues
of the coefficient matrix A since its exact solution
can be found using the eigenvalues. Let λi be the
eigenvalues of the coefficient matrix A, then the
stable solution of X(t) as t → ∞ requires:

(1) if all the eigenvalues are real −2.78 <
∆t λi < 0

(2) if eigenvalues are imaginary, −2
√
2 <

∆t λi < 2
√
2

(3) if eigenvalues are complex ∆t λi should
be in the region shown in Figure 1

At the end of section 5, we will calculate the eigen-
values of the coefficient matrix A and we will see
that our scheme is stable with the proper choice
of the time step ∆t.

5. Numerical experiment

The accuracy and effectiveness of the present
method are demonstrated by taking three test
problems. The accuracy of the method is mea-
sured by using L∞− error norm, which is defined
as

L∞ =
∥∥∥ |ω|exct − |ω|approx

∥∥∥
∞

= max
1≤i≤N

∣∣∣ |ω(i)|exct − |ω(i)|approx
∣∣∣

5.1. Single solitary wave solution

The exact solitary wave solution of the GNLS
Eq.(1) for the parameters q1 = 0.5, q2 = −1.75,
q3 = −1.0 and q4 = −2.0 is given by [1, 4]:

ω(x, t) =
2eiϕ(x,t)√

4 + 3 sinh2(x− 2t− x0)
,

(21)

where ϕ(x, t) = 2 tanh−1
[
1
2 tanh(x− 2t− x0)

]
+ x− x0.

The modulus of the above solution represents a
single solitary wave initially located at x0, mov-
ing to the right with constant speed 2. The exact
values of the three conserved quantities I1, I2 and
I3 as given in Eq.(3)-Eq.(5), for this problem can
be found as:

I1 =2 log 3 ≈ 2.19722,

I2 =− 1.5 + 3.875 log 3 ≈ 2.75712,

I3 =4− 9 log 3 ≈ −5.88751.

 (22)

Table 1. L∞− errors and conserved
quantities for different stencil sizes
K, for a single solitary wave motion,
when h = 0.1, ∆t = 0.001 over the
domain −20 ≤ x ≤ 30.

K I1 I2 I3 L∞
2 2.19724 2.75715 -5.88743 2.40377 ×10−2

4 2.19712 2.75701 -5.88717 1.26695 ×10−3

6 2.19712 2.75701 -5.88717 1.07408 ×10−4

8 2.19712 2.75701 -5.88717 9.39029 ×10−6

10 2.19712 2.75701 -5.88717 4.23275 ×10−6

12 2.19712 2.75701 -5.88717 9.42336 ×10−6

Using the initial condition obtained from (21)
and imposing the boundary conditions (18), the
GNLS equation is simulated by the proposed
method for different stencils over the solution do-
main [−20, 30]. The L∞− error and the three
conserved quantities for different stencil sizes K
are reported in Table 1. From Table 1, we observe
that L∞− error decreases when K, the size of the
stencil increases from K = 2 to K = 10, however
L∞− increase when K reached 12 .
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Table 2. Comparison of L∞− error at T = 3, for a single solitary wave motion, with
x0 = 15, N = 513, K = 18 and −20 ≤ x ≤ 60..

∆t Present Method Collocation [12] First Order [11] Second Order [11]
0.010 2.75032 ×10−5 3.0 ×10−4 3.1 ×10−3 3.0 ×10−5

0.005 5.65732 ×10−6 3.1 ×10−5 1.6 ×10−3 2.0 ×10−5

0.001 3.86334 ×10−7 2.1 ×10−6 3.1 ×10−4 8.0 ×10−7

Table 3. L∞− error norms and Rate of Convergence (ROC) for various numbers of grid points
for K = 6, K = 8 and K = 10 with ∆t = 0.001 at T = 5.

N
K = 6 K = 8 K = 10

Error ROC Error ROC Error ROC

201 1.83495× 10−2 − 1.01788× 10−2 − 6.13463× 10−3 −
301 1.98217× 10−3 5.5111 4.52132× 10−4 7.71185 1.13554× 10−4 9.87958
401 3.91842× 10−4 5.65132 5.23908× 10−5 7.51345 7.34062× 10−6 9.548

-20 0 20 40 60
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
w

T=0 T=3 T=6

Figure 2. Motion of a single solitary
wave at different time levels.

Figure 3. Space time graph of a sin-
gle solitary wave for GNLS equation
(N = 513,K = 18,∆t = 0.001)

In order to compare our result with [11, 12], we
choose x0 = 15, N = 513 over the space interval
[−20, 60] with time step size, ∆t = 0.001. This
comparison is reported in Table 2. Figure 2 and
3 represent the space-time graph of the numerical
solution of single solitary wave up to time T = 6.

The absolute error distribution at time T = 6 for
this case is shown in Figure 4.

The numerical rate of convergence (ROC) is cal-
culated by using the formula [33],

ROC ≈
ln
(
E(N2)
E(N1)

)
ln
(
N1
N2

)
where E(Ni) is the L∞− error norm when using
Ni grid points.

The L∞− error norm and numerical rate of
convergence analysis for various number of grid
points are shown in Table 3. From the table it is
evident that the rate of convergence (ROC) de-
pends on the value of K.

5.2. Interaction of two solitons

In this test problem, we consider the interaction of
two solitons for the GNLS equation, in which the
coefficients are taken as q1 = 1, q2 = 1, q3 = −2
and q4 = 0. With these coefficients, we take the
initial conditions as given by [1, 4] :

ω(x, 0) = ω1(x, 0) + ω2(x, 0), (23)

where

ω1(x, 0) =
1√
2
sech

[
1

2
(x− 15)

]
ei[

1
4
(x−15)+tanh{ 1

2
(x−15)}],

and

ω2(x, 0) =
1

2
√
2
sech

[
1

4
(x− 35)

]
ei[−

1
2
(x−35)+ 1

2
tanh{ 1

4
(x−35)}].
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Table 4. Conserved quantities at
different time levels, for interaction of
two solitons over the space interval
[−50, 100] with N = 501 and ∆t =
0.001 with stencil size K = 14.

T I1 I2 I3
0 3.00145 0.18974 −1.02223× 10−4

5 3.00139 0.18977 −1.02687× 10−4

10 3.00141 0.18986 −1.02482× 10−4

15 3.00154 0.18968 −1.02161× 10−4

20 3.00142 0.18975 −1.02403× 10−4

The exact values of the conserved quantities for
this problem are I1 = 3.0, I2 = 3

16 and I3 = 0.0.
The initial condition defined in Eq.(23), repre-
sents two solitons, one initially located at x1 = 15,
moving to the right with speed 1

2 and having

amplitude 1√
2

and another initially located at

x2 = 35 moving to the left with unit speed and
having amplitude 1

2
√
2
. We have simulated this

problem with the present method. These two
solitons interact, and after the interaction, they
retain their shapes and speeds, which has been
shown in Figure 5. In Table 4, the conserved
quantities I1, I2 and I3 at different time levels are
reported. From the table, we see that the varia-
tions of these conserved quantities from the exact
values are negligible.

-20 0 20 40 60
x

0

1.×10-7

2.×10-7

3.×10-7

4.×10-7
|w|

Figure 4. Error distribution of a sin-
gle solitary wave for GNLS equation
at t=6, (N = 513,K = 18,∆t =
0.001).

Figure 5. Interaction of two solitons
(N = 501,K = 14,∆t = 0.001).

5.3. Blow-up

In [1], it has been reported that for specific val-
ues of the coefficients and for certain initial con-
ditions, the solutions of the GNLS equation have
finite time blow-up. To see this experience, we
take q1 = −2, q2 = 20 and q3 = q4 = 0 and the

Gaussian function ω(x, 0) = e−x2
as the initial

condition, the numerical simulation has been con-
ducted by our method. The exact values of the
conserved quantities for this problem are found
to be I1 =

√
π/2 ≈ 1.5331, I2 =

√
π(9

√
2 + 9 −

20
√
6)/18 ≈ −2.68447 and I3 = 0.

Table 5. Conserved quantities at
different time levels for case of finite
time blow-up ( N = 151, −7.5 ≤ x ≤
7.5, ∆t = 10−4 and K = 6).

T I1 I2 I3
0.00 1.25330 −2.68419 0.0
0.02 1.25329 −2.68414 −4.40186× 10−17

0.06 1.25107 −2.34227 −1.13798× 10−15

0.07 1.15379 −2.07551 −6.16625× 10−14

0.08 1.24722 −2.63257 3.98570× 10−14

0.10 1.25129 −2.88368 5.09393× 10−14

0.15 1.10587 −2.23570 −6.12399× 10−12

0.20 1.24751 −3.39736 1.97811× 10−11

Figure 6. Finite time blow-up,
with initial condition ω(x, 0) =

e−x2

(−7.5 ≤ x ≤ 7.5, N = 151,∆t =
0.0001,K = 12).

The conserved quantities for this problem have
been reported in Table 5, and from the table, we
see that the variation of the conserved quantity
is more in I2. Figure 6 shows the space-time
graph of this test problem. According to [1], it
has been shown that the exact solution ω(x, t) for
this problem will blow up in finite time, and an
upper bound on the blow-up time is t ≈ 1.7. How-
ever, from Figure 6, we observed that the blow-up
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is evident at t = 0.07, and this result is consis-
tent with the result obtained using the quintic b-
spline collocation method in [12]. Also, the graph
shows that the blow-up is well occurring at about
t = 0.07, 0.11, 0.15 and 0.20.

As a part of the stability analysis, we have calcu-
lated the eigenvalues of the coefficient matrix, A
as defined in Eq.(20). We take ū = v̄ = 1, so that
α = 2q3 + 2q4, β = 2q1 + 4q2 and γ = 2q3. The
maximum absolute values of the eigenvalues of
the coefficient matrix A for a single solitary wave
motion is determined to be 248.273 (N = 513).
Therefore, for maintaining stability the maximum

value of ∆t is given by ∆t < 2
√
2

248.273 = 0.0113924.
However, we take smaller values of ∆t in order
to get more accurate results. The distribution
of eigenvalues for this case is shown in Figure 7.
The figure shows that more eigenvalues are dis-
tributed near the imaginary axis.

-3.×10-6-2.×10-6-1.×10-6 0 1.×10-62.×10-63.×10-64.×10-6
-100

-50

0

50

100

Re(λi )

Im(λi )

Figure 7

Distribution of eigenvalues for the coefficient
matrix, A (N = 513,K = 12).

6. Conclusion

In this study, we have examined the numerical so-
lution of the GNLS equation by means of the L-
FDQ method. The GNLS equation is discretized
in space using differentiation matrices obtained
from the L-FDQ method, and the resulting sys-
tem of ordinary differential equations in time t is
solved by the usual RK4 method. By the present
method, the motion of a single solitary wave has
been investigated, and the results obtained are
compared with the exact solution and some other
results obtained in earlier works. It has also been
studied how two solitons interact, and it has been
found that after the encounter, the solitons main-
tained their identities. The finite time blow-up
problem has also been tackled by the suggested
approach, which is consistent with the previous
findings. Further, this study found that the finite
time blow-up is repeating.
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