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The phenomenon of rotation serves multiple purposes in cosmic and geophys-
ical phenomena. It offers insights into the formation of galaxies and the cir-
culation patterns of oceans. Moreover, rotational diffusion elucidates the ori-
entation of nanoparticles within fluid mediums. Investigating the dynamics of
fluid peristalsis under the influence of rotational forces holds significant rele-
vance in addressing challenges associated with the transportation of conductive
physiological fluids such as blood, polymeric materials, and saline water. This
study focused on studying the impact of rotation on the peristaltic transport of
non-Newtonian pseudoplastic fluids through a wavy channel. The complexity
of flow equations, including the continuity and motion equations, is mathe-
matically formulated and transformed into dimensionless nonlinear ordinary
differential equations depending on the assumption of low Reynolds number
and long wavelength approximation. Perturbation technique is employed to
solve the problem for the stream function and the resulted system is imple-
mented and plotted using MATHEMATICA software along with the boundary
conditions. Graphical discussion is involved to utilize the impact of the emerg-
ing parameters in the flow characteristic, encompassing the velocity profile,
pressure gradient, pressure rise, and trapping phenomenon. The research re-
vealed that rotation significantly influences the fluid flow within the channel,
diminishing the regressive and inhibitory impact of the fluid parameter, con-
sequently enhancing the fluid flow within the channel.
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1. Introduction

Extensive research has been conducted on peri-
staltic motion in recent years due to the fact that
it involves the study of wave-like motion in physi-
ological fluids resulting from interaction with sur-
rounding boundaries. Such phenomena are evi-
dent during the process of food ingestion through
the esophagus, the propagation of lymphocytes
within the lymphatic system, the circulation of
blood through vessels, the movement of urine to-
ward the bladder, and numerous other instances
that collectively contribute to our understanding
of peristalsis. Moreover, peristaltic transport has

wide applications in medical engineering, science,
and modern industry, such as aggressive chemi-
cals, high solid slurries, noxious fluids (nuclear in-
dustries), heart-lung machines, blood pump ma-
chines, and dialysis machines [1–4]. The initial
effort to elucidate this phenomenon was attrib-
uted to [5]. Subsequent to this progress, numer-
ous studies, delving into the exploration of peri-
staltic flow of various fluid types under diverse
influencing factors, were illustrated by many re-
searchers. [6] discussed the impact of long wave-
lengths and the low Reynolds number assumption
on peristaltic pumping. [7] determined the impact
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of the elastic wall of a hollow cylinder’s channel of
Jeffrey’s fluid by peristaltic flow. [8] studied the
heat transfer analysis of magnetohydrodynamic
(MHD) peristaltic transport of Jeffrey fluid in an
inclined tapered asymmetric channel. For more
information, see [9–13].

Non-Newtonian fluids, including molten plas-
tics, artificial fibers, polymeric materials, food-
stuffs, blood, slurries, and synovial liquids, ex-
hibit shear-stress-strain relationships that diverge
significantly from the traditional viscous model,
finding numerous applications in manufacturing
and commerce [14–17]. Significant literature ex-
ists on the study of peristaltic motion in the pres-
ence of non-Newtonian fluids. Many of these
types of fluids exhibit characteristics of shear-
thinning yield stress materials [18], such as pseu-
doplastic fluid which is found in blood plasma,
latex paint, polymer solutions, and similar solu-
tions of high molecular weight substances. At low
shear rates, these fluids experience the formation
of shear stress that results in the reordering of the
molecules to reduce the overall stress. [9] analyzed
the impact of Soret and Dufour on the peristaltic
flow of magnetohydrodynamic (MHD) pseudo-
plastic nanofluid in a tapered asymmetric chan-
nel. The impact of pseudoplasticity and dilatancy
of fluid on the peristaltic flow of non-Newtonian
fluid in a non-uniform asymmetric channel was
investigated [19]. In 2014, [20] studied the impact
of wall properties and slip conditions on the peri-
staltic flow of pseudoplastic fluid in a curved chan-
nel. An effect of magnetohydrodynamic (MHD)
and thermal radiation on the peristaltic flow of a
pseudoplastic nanofluid through a porous medium
asymmetric canal with convection boundary con-
ditions was depicted by [21].

A rotational phenomenon plays a pivotal role in
various cosmic and geophysical phenomena. It
aids in comprehending the emergence of galax-
ies and the circulation of oceans. Nanoparti-
cles’ orientation in fluids is attributed to rota-
tional diffusion. Moreover, rotation is notewor-
thy in specific flow scenarios within physiological
fluids like saline water and blood. This synergy
of rotation facilitates the movement of biological
fluids within the intestines, ureters, and arteri-
oles. Several studies focused on the rotational
system’s impact on the peristaltic flow of various
fluids. [22] analyzed the flow of non-Newtonian
fluid with a porous medium under the effect of
rotation and magnetic force. [23] was concerned
with the peristaltic flow of a Jeffrey fluid in an
asymmetric rotating channel. [24] illustrated the

influence of magnetic force, rotation, and nonlin-
ear heat radiation on the peristaltic transport of
hybrid bio-nanofluids through a symmetric chan-
nel. [25] investigated the peristaltic flow of Bing-
ham plastic fluid under the effect of rotation and
induced magnetic field. For more information, see
Refs. [26–30].
Lately, there has been a lack of attention given to
studying peristaltic flows under conditions where
both the fluid and the channel experience solid
body rotation, i.e., the entire system, compris-
ing both the fluid and the channel, is situated
within a rotating frame characterized by a consis-
tent angular velocity. The aforementioned studies
have primarily focused on peristaltic flows involv-
ing different non-Newtonian fluids, addressing ro-
tational effects. Nevertheless, there remains a gap
in the previous literature concerning the impact of
the rotation frame on the peristaltic transport of
pseudoplastic fluids. In this study, We extended
the inquiry delineated in [19] by elucidating the
physical alterations observed in our fluid during
the flow, which experiences a reduction in viscos-
ity as the shear rate increases during rotation. As
a consequence, its velocity increases, which finds
application in various contexts such as in blood
apheresis machine and water treatment. In this
article, physical modeling governing the equation
of peristaltic flow of pseudoplastic under the effect
of rotation is described and reduced to the differ-
ential equation by using long wavelength and low
Reynolds number assumptions. The closed-form
analytic solution for the stream function and fluid
velocity is provided. Subsequently, a graphical
analysis is conducted using codes from the Math-
ematica package to illustrate the impact of key
parameters on flow characteristics.

2. Mathematical model of the problem

Assuming the incompressible peristaltic motion of
a non-Newtonian, electrically conducting, pseu-
doplastic fluid through a two-dimensional asym-
metric a wavy channel of width 2 d in which the
channel rotates about the horizontal with uni-
form angular velocity Ω see Fig. 1. The induced
sinusoidal propagation waves of wavelength λ are
advancing with a constant speed c in the X - axis,
and the Y -axis is normal to it.



338 H. A. Ali , M. R. Salman / IJOCTA, Vol.14, No.4, pp.336-345 (2024)

Figure 1. Geometry of problem

The mathematical equations for the channel walls
are provided as follows [25]:

Ȳ = h̄1(X̄, t̄) = d+ b1 Sin
(2π
λ

(X̄ − ct̄)
)
, (1)

Ȳ = h̄2(X̄, t̄) = −d− b2 Sin
(2π
λ

(X̄ − ct̄) + ϕ

)
.

(2)

where h̄1 and h̄2 are the lower and upper walls
respectively, b1 and b2 denote the waves’ ampli-
tudes, t̄ stands for time, ϕ ∈ [0, π] and represents
the phase difference. When ϕ = 0, it indicates
waves out of phase for a symmetric channel, and
when ϕ = π the waves are in phase. Additionally,
the values of d, b1, b2 and ϕ satisfy the inequity.

b1
2 + b2

2 + b1b2 Cosϕ ≤ (d)2, (3)
The governing equations for an incompressible
fluid in the fixed frame are formulated as follows:
The continuity equation is:

∇.V⃗ = 0, (4)
The motion equation is:

ρ

(
∂V⃗

∂t̄
+ (V⃗ · ∇)V⃗

)
+ ρ[Ω × (Ω × V⃗ ) + 2Ω × V⃗ ]

= −∇P̄ + ∇ · S̄, (5)
Associated with the no- slip boundary condition
bellows:

U⃗ = 0 at h̄1 and h̄2. (6)
In which V⃗ = (Ū , V̄ ) is the fluid velocity vector
in X̄ and Ȳ coordinates respectively, ρ, P̄ are the
fluid density and the pressure, ∇⃗ =

(
∂

∂X̄
, ∂

∂Ȳ

)
is

the gradient vector, ρ(Ω × (Ω × V⃗ )) denotes the
centrifugal force while the term ρ(2Ω × V⃗ ) refers
to the Coriolis force, S is the Cauchy stress tensor

for pseudoplastic fluid which defined as [9,19]:

S̄ + λ∗
1

(
∂S̄

∂t̄
− ∇

⇀
V ·S̄ − S̄ · (∇V⃗ )T

)
+ 1

2 (λ∗
1−

µ∗
1)
(
Ǎ1S̄ + S̄Ǎ1

)
= µǍ1, (7)

Ǎ1 = ∇V⃗ + (∇V⃗ )T . (8)
where µ is the fluid viscosity, λ∗

1, µ
∗

1 are the relax-
ation times, Ă1 is the first Rivlin- Ericksen tensor.
Consider the wave frame (x̄, ȳ) traveling with
speed c away from the laboratory frame. The
transformation of coordinates and flow properties
between fixed and wave frame is given by:
x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c, v̄ = V̄ , p̄(x̄) =
p̄(X̄, t̄). (9)

Now, defining the dimensionless parameters and
variables in the following manner.

x = x̄

λ
, y = ȳ

d
, u = ū

c
, v = v̄

c
, h1 = H̄1(X)

d
,

h2 = H̄2(X)
d

, d = d2
d1
, δ = d

λ
, a = b1

d
, b = b2

d
,

λ1 = cλ∗
1
d
, p = d2p̄

λµc
,Re = ρcd

µ
, sij = d

µc
S̄ij ,

µ1 = cµ∗
1
d
,Ω = b1

2Ω̄
µ

, Ta = ΩdRe
c

. (10)

where Re and δ are the Reynolds number and
the dimensionless number of waves respectively.
Introducing the dimensionless stream function
ψ(x, y), in which,

u = ∂ψ

∂y
, v = −δ ∂ψ

∂x
. (11)

The continuity equation is identically achieved.
By substituting Eq. (9) and Eq. (10) into Eqs.
(2 - 7), we get:

Re δ
(

(u+ 1)∂u
∂x

+ v
∂u

∂y

)
− 2 Ta(u+ 1) =

− ∂p

∂x
+ δ

∂sxx

∂x
+ ∂sxy

∂y
, (12)

Re δ2
(

(u+ 1)∂v
∂x

+ v
∂v

∂y

)
− 2 Ta δv = −∂p

∂y
+

δ
∂syy

∂y
+ δ2∂syx

∂x
− 1
κ
δ2v,

(13)
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sxx + λ1

(
δ

(
u
∂sxx

∂x
+ v

∂sxx

∂y

)
− 2δsxx

∂u

∂x
−

2sxy
∂u

∂y

)
+ 1

2 (λ1 − µ1)
(

2sxy

(
∂u

∂y
+

δ2 ∂v

∂x

)
+ 4δsxx

∂u

∂x

)
= 2δ ∂u

∂y
, (14)

sxy + λ1(δ
(
u
∂sxy

∂x
+ v

∂sxy

∂y

)
− δ2sxx

∂v

∂x
−

syy
∂u

∂y

)
+ 1

2 (λ1 − µ1) (sxx + syy)
(
∂u

∂y
+ δ2 ∂v

∂x

)
=

∂u

∂y
+ δ2 ∂v

∂x2 , (15)

syy + λ1

(
δ

(
u
∂syy

∂x
+ v

∂syy

∂y

)
− 2δsxx

∂v

∂y
+

2δ2sxy
∂v

∂x

)
+ 1

2 (λ1 − µ1)
(

2sxy

(
∂u

∂y
+

δ2∂v

∂y

)
+ 4δsyy

∂v

∂y

)
= 2δ ∂v

∂y
. (16)

Employing Eq. (11) and assuming a low Reynolds
number and a large wavelength approximation (
δ ≪ 1), Eqs. (12 - 16) are reduced as follows:

∂p

∂x
= ψyy(

1 + ξ (ψyy)2
) + 2Ta

(
∂ψ

∂y
+ 1

)
, (17)

∂p

∂y
= 0. (18)

Through Eq. (18), we conclude that pressure is
not a function of y, i.e., P ̸= P (y). Neglecting
pressure from Eq. (17), we get:

ψyyyy + 3ξ (ψyy)2 ψyyyy + 6ξ (ψyyy)2 ψyy+
2 Taψyy = 0, (19)

sxx = (λ1 + µ1) (ψyy)2(
1 + ξ (ψyy)2

)2 , (20)

sxy = ψyy(
1 + ξ (ψyy)2

) , (21)

syy = − (λ1 − µ1) (ψyy)2(
1 + ξ (ψyy)2

)2 . (22)

Linked to the subsequent dimensionless boundary
condition.

ψ = −F

2 , ψy = 0 at y = h1(x), (23)

ψ = F

2 , ψy = 0 at y = h2(x). (24)

where h1(x) = 1 + a Sin(2πx) and h2(x) = 1+
bSin(2πx+ Φ).
where ξ =

(
λ2

1 − µ2
1
)

is the Pseudoplastic fluid pa-
rameter.
The parameter F refers to the dimensionless mean
flows and it is given by:

F =
∫ h2

h1
u(x, y)dy =

∫ h2

h1

∂ψ

∂y
dy = ψ (h2) − ψ (h1) ,

(25)

Additionally, the connection between F and the
nondimensional mean flows in the moving frame,
θ, can be derived as:

F = θ + aSin(2πx+ Φ) + bSin(2πx). (26)

The pressure rise per unit wavelength is:

∆p =
∫ 1

0

dp

dx
dx. (27)

3. Solution of the problem

Eq. (19) poses a complex nonlinear differential
challenge, rendering an exact solution unattain-
able. In the field of fluid science, various tech-
niques [31–37] are available to find the desired so-
lution. Therefore, we turn to perturbation tech-
nique to calculate series solutions when dealing
with a small parameter. Consequently, we ap-
plied perturbation to stream function ψ and di-
mensionless mean flow F , considering them up to
the first order with respect to the Pseudoplastic
fluid parameter ξ as:

ψ = ψ0 + ξψ1 +O
(
ξ2
)
, (28)

F = F0 + ξF1 +O
(
ξ2
)
. (29)

3.1. Zeroth order system

ψ0yyyy + 2Taψ0yy = 0, (30)
With the boundary conditions.

ψ0 = −F0
2 , ψ0y = 0, at y = h1(x), (31)

ψ0 = F0
2 , ψ0y = 0 at y = h2(x). (32)

where
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F0 = θ + a Sin(2πx+ Φ) + bSin(2πx). (33)

3.2. First order system

ψ1yyyy + 3 (ψ0yy)2 ψ0yyyy+
6 (ψ0yyy)2 ψ0yy + 2Taψ1yy = 0, (34)

With the following boundary conditions.

ψ1 = −F1
2 , ψ1y = 0, at y = h1(x), (35)

ψ1 = F1
2 , ψ1y = 0, at y = h2(x). (36)

Solving the two resulting systems by writing suit-
able codes in Mathematica software, the explicit
expression of stream functions ψ0 and ψ1 ob-
tained.

ψ0(x, y) =
e−

√
Ay
(
e2

√
Ayc1 + c2

)
A

+ c3 + yc4,

(37)

ψ1(x, y) = c7 + yc8 + 1
8Ae

−3
√

Ay
(
−c2

3+

30c1c2
2e2

√
Ay + 30c1

2c2e
4
√

Ay − c1
3e6

√
Ay+

8e4
√

Ayc5 + 8e2
√

Ayc6 − 6c1c2e
2
√

Ay (−c2+

c1e
2
√

Ay
)

log
(
e2

√
Ay
))
. (38)

where A = −2Ta, and the coefficients
c1, c2, c3, c4, c5, c6, c7 and c8 consist of complex ex-
pressions that will not be detailed here.

4. Results analysis and discussion

In this section, we examine the outcomes of dif-
ferent physical parameters by utilizing the visual
representations provided. The analysis includes
the variation in the velocity profile, the gradient of
pressure, the pressure rise and the trapping phe-
nomenon as a result of the increase in the values of
the rotation parameter Ta, the pseudoplastic fluid
parameter ξ, the non- dimensional mean flows θ,
the phase difference parameter Φ, the lower wall
amplitude parameter a, and upper wall amplitude
parameter b.

4.1. Velocity profile

Figs. 2(a)-(d) illustrate a consistent pattern
where the maximum velocity is consistently near
the center of the channel, and all velocity profiles
exhibit a parabolic shape. Figs. 2(a) and 2(b)
depict a decrease in velocity profile at the central

part of the channel whereas an increasing effect
is noticed toward the boundaries, as well as in-
flection points appearing via ascending values of
Ta and ξ. This outcome arises from the physical
phenomenon wherein viscosity decreases as shear
rate escalates during rotational motion. As a con-
sequence, its velocity increases. It’s worth noting
from Fig. 2(c) that as θ enlarges, the fluid ve-
locity reduces. However, an opposite reaction on
velocity profile is observed from Fig. 2(d), that
means as the phase difference between waves in-
creases (Φ), the axial velocity increases across the
entire range of the y-axis.

Figure 2. Velocity profile for
ascending values of (a) rotation
parameter (b) Pseudoplastic pa-
rameter (c) non- dimensional
mean flows parameter (d) phase
difference parameter and fixed
b = 0.3, a = 0.6, x = 0.5, t = 0.2.
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4.2. Gradient of pressure

Figs. 3(a)-(d) record the fluctuations in the axial
pressure gradient (dp/dx), exhibiting sinusoidal
behavior across the entire x-axis range when it
is analyzed under the impact of increasing values
of the lower wall wave amplitude a, the rotation
parameter Ta, non- dimensional mean flows θ ,
and the Pseudoplastic fluid parameter ξ. It is no-
ticed from Fig. 3(a) The observed elevation in
the magnitude of the pressure gradient towards
the central region of the channel compared to its
boundaries is attributed to the augmentation of a,
leading to an expansion in the dimensions of the
channel wall. While from Figs. 3(b) and 3(c), we
conclude that the rate of change for (dp/dx) with
respect to Ta and θ means the flow can smoothly
pass without requiring a significant pressure gra-
dient. Fig. 3(d) illustrated that as ξ increases,
a reversal in the situation is depicted, as this pa-
rameter inversely correlates with the velocity of
the fluid. Consequently, a notable pressure gra-
dient is necessitated to ensure fluid flow remains
smooth.

Figure 3. Pressure gradient pro-
file for ascending values of (a) low
wall amplitude parameter (b) ro-
tation parameter (c) non- dimen-
sional mean flows parameter (d)
Pseudoplastic parameter and fixed
b = 0.3, a = 0.6, x = 0.5, t = 0.2.

4.3. Pressure rise profile

Figs. 4(a)-(d) elucidate the behavior of nondi-
mensional pressure rise ∆p versus the dimension-
less mean flow rate θ through plotting ∆p profile
with various values of the rotation parameter Ta,
the phase difference parameter Φ, the lower wall
amplitude a, and the upper wall amplitude b. It
is clear from Fig. 4(a) that the pumping rate ∆p
is enlarged in the whole region as the value of
Ta is increased. Whereas the impact of enhanc-
ing Φ and a on pumping rate anticipated in Figs.
4(b) and 4(c). The plots recorded a decay in peri-
staltic pumping region with (θ > 0,∆p > 0) while
an increment impact is noticed in the retrograde
pumping area (θ < 0,∆p > 0) and no flow area
(θ < 0,∆p < 0). The opposite scene is depicted
with an increasing b, that means the peristaltic
pumping region is enhanced while the retrograde
pumping and no flow areas are dampened, see Fig.
4(d).
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Figure 4. Pressure rise profile for as-
cending values of (a) rotation param-
eter (b) phase difference parameter
(c) lower wall amplitude parameter
(d) upper wall amplitude parameter
(d) and fixed {ξ = 0.3, θ = 0.6, x =
0.5, t = 0.2}.

4.4. Trapping phenomenon

Streamlines depict the paths followed by fluid
particles within a flow. The creation of an en-
closed, circulating mass of fluid due to the closed
streamlines is referred to as trapping phenome-
non. Figs. 5-8 are sketched to elucidate the in-
fluence of the rotation parameter Ta, the non-
dimensional mean flow parameter θ, the Pseudo-
plastic fluid parameter ξ, and the phase difference
parameter Φ on the absolute value of stream func-
tion |ψ|. Moreover, we noticed from the graphs
that the trapped bolus is composed and focused
near the channel’s walls. Figs. 5 and 6 illustrate
that as the Ta and θ values increase, the trapped
bolus size increases. This outcome correlates with
the observation that an increase in these param-
eters leads to a rise in the flow rate, thereby
resulting in the generation of more streamlines
and boluses. Figs. 7 and 8 reveal a decrease
in the size and number of the trapped bolus as
the magnitude of ξ and Φ are enlarged. This re-
sult aligns well with findings from previous studies
conducted by [9] and [19].

Figure 5. Stream lines for ascending
values of rotation parameter {Ta =
0.1, Ta = 0.3}.

Figure 6. Stream lines for ascend-
ing values of rotation parameter {θ =
0.2, θ = 0.5}.

Figure 7. Stream lines for ascending
values of pseudoplastic fluid parame-
ter {ξ = 0.1, ξ = 0.3}.

Figure 8. Stream lines for ascend-
ing values phase difference parameter
{Φ = π/6,Φ = π/4}.

5. Conclusions

The influence of rotation on peristaltic motion
for non-Newtonian pseudoplastic fluid in a wavy
channel has yielded significant insights. By mod-
eling and transforming the basic governing equa-
tions and employing perturbation method, we
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have obtained analytical expressions for key pa-
rameters such as stream function, velocity, pres-
sure gradient, and pressure rise. The study has
led to several noteworthy findings:

1. The velocity profile exhibits a parabolic
shape, with a decrease in velocity profile
attributed to an increase in the pseudo-
plastic fluid parameter ξ. This decrease
is due to the shear-thickening effect or re-
duction in fluid viscosity as the rate of de-
formation increases, thereby opposing the
flow.

2. The velocity profile exhibits a reduction
in the central region with increasing ro-
tation parameter Ta and phase difference
Φ, while it increases towards the bound-
aries. This phenomenon arises from the
enhancement of kinematic forces induced
by rotation, and wave phase difference
particularly at the boundaries, thereby ac-
celerating fluid flow.

3. Because of the direct effect of Ta param-
eter on the fluid velocity, a smooth flow
can occur without requiring a significant
pressure gradient with increasing Ta and
mean flow rate θ, while an opposite trend
is observed as ξ increases, necessitating a
substantial pressure gradient.

4. The peristaltic pumping region contracts
with an increase in the lower wall ampli-
tude a, while it strengthens with an in-
crease in the upper wall amplitude b.

5. The size of the trapped bolus increases
with increasing values of Ta and θ, while
its volume and number decrease with the
magnitude of ξ and Φ.

6. These findings offer valuable insights into
the behavior of peristaltic motion in com-
plex fluid systems, with potential applica-
tions in various fields such as biomedical
engineering, microfluidics, and industrial
processes. Understanding these phenom-
ena can aid in the design and optimiza-
tion of systems involving fluid transport,
leading to improved efficiency and perfor-
mance.
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