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Contracting cancer typically induces a state of terror among the individuals
who are affected. Exploring how chemotherapy and anxiety work together
to affect the speed at which cancer cells multiply and the immune system’s
response model is necessary to come up with ways to stop the spread of
cancer. This paper proposes a mathematical model to investigate the impact
of psychological scare and chemotherapy on the interaction of cancer and
immunity. The proposed model is accurately described. The focus of the
model’s dynamic analysis is to identify the potential equilibrium locations.
According to the analysis, it is possible to establish three equilibrium positions.
The stability analysis reveals that all equilibrium points consistently exhibit
stability under the defined conditions. The bifurcations occurring at the
equilibrium sites are derived. Specifically, we obtained transcritical, pitchfork,
and saddle-node bifurcation. Numerical simulations are employed to validate
the theoretical study and ascertain the minimum therapy dosage necessary for
eradicating cancer in the presence of psychological distress, thereby mitigating
harm to patients. Fear could be a significant contributor to the spread of
tumors and weakness of immune functionality.
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1. Introduction

Models are instruments utilized in medicine
and science to interpret results, develop
hypotheses, and plan experiments to verify
them [1]. For instance, mathematical
models of population dynamics are frequently
represented by differences or differential equations
that characterize the temporal evolution of
populations [2–9]. Throughout history, ecology
has predominantly employed mathematical
models to offer qualitative explanations for
natural patterns. An exemplary illustration
of this methodology was the endeavour to
elucidate species diversity through competition
models [10–16]. Mathematicsematical modeling

is a highly versatile instrument in the field of
infectious disease epidemiology, enabling the
detection of epidemic patterns, extrapolation of
epidemic behaviors, and evaluation of the impact
of interventions, including pharmacological
treatment, immunization, quarantine, social
distance, and hygiene practices, among others
[17–22]. An example of a disease model is cancer,
which is characterized by the proliferation of
malignant cells that infiltrate other anatomical
structures and currently ranks as the second most
prevalent cause of mortality globally, surpassed
only by cardiovascular disease. Developing
novel treatment options is a burgeoning study
field for scientists seeking to manage cancer
effectively. Nevertheless, comprehending the
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intricacies of tumor cell proliferation and their
intricate interplay with the immune system is
crucial in order to devise novel therapeutic
approaches. To accomplish this, researchers
extensively depended on mathematical models
[23–27]. Several scientists have extensively
researched the mathematical modeling of tumor
evolution, its interaction with different cells, and
the process of tumor growth. They have achieved
this by creating multiple models over the past few
decades [28–33]. Cancer is amenable to a variety
of treatment modalities, including chemotherapy,
radiotherapy, and surgery. Chemotherapy, one of
the cancer treatments, is a systematic approach
that targets and eliminates cancer cells at the
site of the tumor while minimizing its impact
on effector-normal cells. This eliminates the
ability of the tumor cells to metastasize to
other anatomical sites [34–36]. For instance,
De Pillis and his associates examined multiple
mathematical models to quantify the effects of
chemotherapy [37]. In addition, Pillis et al.
devised a cancer treatment model in which they
discovered that combining chemotherapy and
immunotherapy can completely eradicate the
tumor instead of using either therapy alone [38].
On the other hand, The initial mathematical
model that incorporated the influence of fear
in a predator-prey system involving two species
was presented by Wang et al. in 2016 [39].
Prey animals may alter their grazing location
to a more secure area and relinquish their most
productive feeding sites due to predator-induced
anxiety. The user’s text is incomplete and
lacks information [40–43]. Further, There has
been a recent increase in research focusing on
the importance of mathematical models for
studying how fear-induced behavioral changes
impact the spread of diseases [44–48]. A medical
study has demonstrated that psychological
stress contributes to the dissemination of
cancer cells throughout the patient’s body.
Psychological stress causes significant dilation
and intensification of blood vessels, hence
promoting the migration of cancer cells and
facilitating the metastasis of the disease [49].
Researchers have discovered that stress-induced
hormones exacerbate the proliferation of cancer
cells inside the “lymphatic system,” thus
facilitating their dissemination to other locations,
thereby promoting the metastasis of the disease
throughout the human body [50].

The present study proposes a psychological
scare-cancer-immune-normal-chemotherapy
model (PSCINC) regulated by systems
of ordinary differential equations, drawing

inspiration from the model presented in [51].
We have enhanced the model of De Pillis et al.
by replacing the linear functional response with
the Holling type II functional response. This
modification allows us to accurately depict the
eradication of tumor cells by the immune system,
considering the possibility of a weakened immune
system due to the presence of psychological scare
of cancer. Further, there is a lack of study about
the influence of fear on the immune-cancer model.
Hence, we deem it imperative to examine this
phenomenon, as it contributes to reducing the
occurrence of catastrophic circumstances.
Further, there is a lack of study about the
influence of fear on the immune-cancer model.
Hence, we deem it imperative to examine
this phenomenon, as it contributes to reducing
the occurrence of catastrophic circumstances.
Therefore, this study is dedicated to discussing
the impact of anxiety on immune cancer patients,
which could be a significant contributor to
the spread of tumors and weakness of immune
functionality. The subsequent sections of this
document are organized as follows: section 2
examines the assumptions of the proposed model.
The presence of potential equilibrium points is
determined in section 3. Next, section 4 discusses
the stability conditions of the steady states. The
discussion in section 5 focuses on the global
stability of equilibriums. In addition, section 6
acknowledges the local bifurcation conditions in
close proximity to the fixed points. In section 7,
numerical examinations are conducted to validate
our analytical findings.

2. Assumptions of the model

Let’s examine a system of differential equations
(PSCINC) that involves immune cells I (t), tumor
cells C(t), normal cells N(t), and chemotherapy
treatment H(t) represented as
dI

dt
= α

1 + eC
+ p1IC

β1 + C
− p2IC − d1I − d2IH

= h1(I, C, H)
dC

dt
= m1C (1 − k1C) − p3IC

β2 + C
− γ1CN − d3HC

= h2(I, C, N, H)
dN

dt
= m2N (1 − k2N) − γ2CN = h3(C, N)

dH

dt
= ν − d4H = h4(H)

(1)
In the first equation of the PSCINC model, the
term α

1+eC stands for the regular production of
immune cells in the body, which is affected by
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the presence of cancer cells by the psychological
scare factor e. Therefore,e the birth-term
changes by producing fear function. The
fear function is incorporated by the decreasing
function φ (e, C) = 1

1+eC , which was initially
introduced by Wang et al. [46]. From the
biological point of view, φ (e, C) is appropriate
since

ϕ(0, C) = 1, ϕ(e, 0) = 1,

lime→∞ϕ(e, C) = 0,

limC→∞ϕ(e, C) = 0,

∂ϕ(e, C)
∂e

< 0,
∂ϕ(e, C)

∂C
< 0.

The Michaelis–Menten term p1 IC
β1+C signifies the

existence of tumor cells that provoke the immune
system’s response. p2IC indicates the immune
cells’ decay rate due to tumor cells. d1I
denotes the effector cells’ death rate. d2IH
designates the decay rate of effector cells due
to chemo-drug. In the second equation, the
(m1C (1 − k1C)) represents the tumor growth
term. The term p3IC

β2+C stands for the eradication

of cancerous cells by the body’s immune system.
γ1CN indicates the tumor cells’ decay rate due
to effector cells. d3HC designates the decay
rate of cancer cells due to chemo-drug. In
the third equation, m2N (1 − k2N) denotes the
normal cells’ growth. γ2CN represents the rate
of disintegration of normal cells caused by the
presence of tumor cells. In the last equation, ν
is the infusion of chemotherapy drugs externally,
and d4H is the decay rate of the chemo-drug.
All parameters were considered non-negative and
visibly described in Table 1. Further, Figure 1
illustrates the schematic sketch of the (PSCINC)
model.
The subsequent theorem establishes the positivity
of all solutions of the (PSCINC) model in the
positive orthant of R4

+.

Theorem 1. All of the solutions of
the (PSCINC) model I (t) , C (t) , N (t)
and H (t) with the initial conditions
(I (0) , C (0) , N(0), H(0))∈ R4

+ are positively
invariant.

(a) Before treatment

(b) After treatment

Figure 1. Schematic diagram of the (PSCINC) model.



The effect of a psychological scare on the dynamics of the tumor-immune interaction . . . 279

Table 1. Description of (PSCINC) system’s parameters.

Parameters Denotation Values Source
α A constant rate of immune cells 0.05 [47]
e Psychological scare rate from cancer 0.1 Estimated
p1 Maximum immune cell recruitment by tumor cells 0.1 [53]
β1 Half-life of effector cells 0.4 [53]
p2 Efficient elimination rate of malignant cells from effector cells 0.2 [47]
d1 Effector cells’ death rate 0.2 [53]
d2 Decay rate of effector cells due to chemo-drug 0.09 [53]
m1 Tumor’s intrinsic growth rate 0.4 [53]
k1 Tumor cells’ carrying capacity 1.5 [53]
p3 Maximum rate of killing the tumor cells by effector cells 0.3 [47]
β2 Half-life of cancer cells. 0.4 [53]
γ1 Tumor cell decay rate due to normal cells 0.2 [53]
d3 Decay rate of cancer cells due to chemo-drug 0.05 [53]
m2 Normal cell’s intrinsic growth rate 0.35 [53]
k2 Normal cells’ carrying capacity 1 [53]
γ2 Normal cell decay rate due to tumor cells 0.25 [53]
ν Infusion rate of chemotherapy drugs 0.019 [53]
d4 Decay rate of the chemo-drug 0.05 [53]

Proof. By integrating the second and third
functions of the (PSCINC) model for C (t)
and N (t) with a positive initial condition
(I (0) , C (0) , N(0), H(0)), we obtain
C (t) =

C (0) exp
{∫ t

0

[
m1 − m1k1C(s) − p3I(s)

β2 + C(s)

− γ1N(s) − d3H(s)
]
ds
}

= QC > 0

N (t) = N (0) exp
{∫ t

0

[
m2 − m2k2N (s)

− γ2C (s)
]
ds
}

= QN > 0

From the first equation of the (PSCINC) model,
we have

dI =
(

α

1 + eC
+ p1IC

β1 + C
− p2IC − d1I − d2IH

)
dt

dI ≥
[ α

1 + eQC
+ I

( p1QC

β1 + QC
− p2QC − d1

− d2ν

d4

)]
dt

Therefore, after eliminating the non-negative
terms, this produces 0000-0003-4022-8053

dI ≥
[
I
( p1QC

β1 + QC
− p2QC − d1

− d2ν

d4

)]
dt

Consequently, by integrating the equation shown
above for I(t), these yields

I(t) ≥ I (0) exp
{∫ t

0

[( p1QC

β1 + QC
− p2QC

− d1 − d2ν

d4

)]
ds
}

Similarly, from the last equation of the (PSCINC)
model, we get

dH = (ν − d4H) dt =⇒ dH ≥ −d4Hdt

By integrating the above equation, we get

H(t) ≥ H (0) exp

{∫ t

0
−d4ds

}
Thus, H(t) > 0 as t → ∞.
As a result of the exponential function’s
definition, any solution (I (t) , C (t) , N(t), H(t))
that starts inside of R4

+ with positive initial
conditions (I (0) , C (0) , N(0), H(0)) will remain
in R4

+. □

Theorem 2. All the solutions of the (PSCINC)
model are uniformly bounded if the following
condition is hold

Proof. let (I (0) , C (0) , N(0), H(0))∈ R4
+ be an

initial condition for the (PSCINC), then, by using
the Bernoulli method, we get
dN

dt
= m2N (1 − k2N) − γ2CN ≤ m2N (1 − k2N)

=⇒ N (t) ≤ 1
k2 + N (0) e−m2t

Thus, limt→∞ sup [N (t)] ≤ 1
k2

.
Similarly, we get
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lim
t→∞

sup [C (t)] ≤ 1
k1

,

Now, by using the standard comparison theory
[48] and the above bound for the cancer cells, we
get

dI

dt
= α

1 + eC
+ p1 IC

β1 + C
− p2IC − d1I − d2IH

≤ α − d1I =⇒ lim
t→∞

sup [I (t)] ≤ α

d1

and

lim
t→∞

sup [H (t)] ≤ ν

d4
.

Therefore, the corresponding domain region for
the (PSCINC) model is

φ =
{

(I, C, N, H) ∈ R4
+ : I (t) ≤ α

d1
,

C (t) ≤ 1
k1

, N (t) ≤ 1
k2

, H(t) ≤ ν

d4

}
.

□

3. Equilibria analysis

This section will delve into finding the possible
equilibrium and analyzing the system’s stability,
specifically its stability in the vicinity of
equilibrium. To accomplish this, we compute
dI
dt = dC

dt = dN
dt = dH

dt = 0 and get the following
equilibrium in two cases:

(1) No treatment case: in this case, we have
two equilibrium points given by
(a) The cancer-free or healthy point

A0 = (I0, 0, N0), where I0 = α
d1

and
N0 = 1

k2
.

(b) The endemic or treatment-free
equilibrium point A1 = (I1, C1, N1)
here N1 = m2−γ2C1

m2k2
, I1 =

−α(β1+C1)
r1C1+r2C2

1 −r3C3
1 −r4

where

r1 = p1 − p2β1 − d1 − ed1β1,

r2 = ep1 − p2 − eβ1p2 − ed1,

r3 = ep2,

r4 = d1β1,

r5 = m1k1 − γ1γ2
m2k2

,

r6 = m1 − γ1
k2

,

and C1 is the root of the following
equation

f1 (C) = a1C5+a2C4+a3C3+a4C2+a5C+a6, = 0,

where,

a1 = r3r5,

a2 = (r5 (β2r3 − r2) − r3r6)
a3 = − (r5 (r1 + r2β2) + r6 (β2r3 − r2)) .

a4 = (r5 (r4 + r1β2) + r6 (r1 + β2r2)) .

a5 = (αp3 − r6 (r4 + r1β2) + β2r4r5) .

a6 = (αβ1p3 − β2r4r6) .

Clearly, f1 (0) = (αβ1p3 − β2r4r6), and

f1 (k1) = r3r5k5
1 + (r5 (β2r3 − r2) − r3r6) k4

1

− ( r5 (r1 + r2β2) + r6 (β2r3 − r2)) k3
1

+
(

r5
(
r4 − r1β2

)
+r6 (r1 + β2r2)

)
k2

1

+ (αp3 − r6 (r4 − r1β2) + β2r4r5) k1

+ αβ1p3 − β2r4r6.

Therefore, by the intermediate value
theorem [55], f1 (C) has a positive root,
say C1 in the interval (0, k1) if one of the
following conditions is satisfied

f1 (0) < 0 and f1 (k1) > 0,
f1 (0) > 0 and f1 (k1) < 0.

Now, for I1 and N1 to be positive, the
following two conditions must be satisfied:

m2 > γ2 C1

r1C1 + r2C2
1 < r3C3

1 + r4
(2)

(2) After treatment case: in this case, we
have one positive equilibrium point A2 =
(I2, C2, N2, H2) here

H2 = ν

d4
, N2 = m2 − γ2C2

m2k2
, I2

= −α(β1 + C2)
−z0C3

2 − z1C2
2 + z2C2 − z3

where

z0 = ep2, z1 = p2 − ep1 + eβ1p2 + ed1 + eνd2
d4

,

z2 = p1 − p2β1 − d1 − ed1β1 − νd2
d4

− eνd2β1
d4

,

z3= d1β1 + νd2β1
d4

,
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z4 = m1k1 − γ1γ2
m2k2

,

z5 = γ1
k2

− m1 + νd3
d4

,

and C2 is the root of the following
equation

f2 (C) = b1C5 + b2C4 + b3C3

+ b4C2 + b5C + b6 = 0,

where
b1 = z0z4,

b2 = ( z4 (z1 + z0β2) + z0z5) .

b3 = (z4 (z1β2 − z2) + z5 (z1 + z0β2)) .

b4 = ( z4 (z3 − β2z2) + z5 (z1β2 − z2)) .

b5 = (β2z3z4 + z5 (z3 − β2z2) + αp3) .

b6 = β2z3z5 + αβ1p3.

Clearly,
f2 (0) = β2z3z5 + αp3β1

and
f2 (k1) = z0z4k5

1

+ ( z4 (z1 + z0β2) + z0z5) k4
1

+ (z4 (z1β2 − z2 ) + z5 (z1 + z0β2)) k3
1

+ (z4 (z3 − β2z2) + z5 (z1β2 − z2)) k2
1

+ (β2z3z4 + z5 (z3 − β2z2) + αp3) k1

+ β2z3z5 + αβ1p3.

Therefore, by the intermediate value theorem,
f2 (C) has a positive root, say C2 in the interval
(0, k1) if one of the following conditions is satisfied

f2 (0) < 0 and f2 (k1) > 0,
f2 (0) > 0 and f2 (k1) < 0.

For I2 and N2 to be positive, the following two
conditions must be satisfied:

m2 > γ2C2

z2C2 < z0C3
2 + z1C2

2 + z3
(3)

Since N = 0 indicates that the patients are
deceased, we exclude cases where N = 0 from
consideration. In order to analyze the linear
stability of the system at the three equilibrium
points mentioned above, it is necessary to
calculate the Jacobian matrix of the system, and
the Jacobian is

J =


j11 j12 0 j14
j21 j22 j23 j24
0 j32 j33 0
0 0 0 j44

 (4)

here.

j11 = p1C

β1 + C
− p2C − d1 − d2H,

j12 = −eα

(1 + eC)2 + p1β1I

(β1 + C)2 − p2I,

j14 = −d2I,

j21 = −p3C

β2 + C
,

j22 = m1(1 − 2k1C) − p3β2I

(β2 + C)2 − γ1N − d3H,

j23 = −γ1C, j24 = d3C,

j32 = −γ2N, j33 = m2 − 2m2k2N − γ2C,

j44 = −d4.

• The Jacobian matrix at A0 = (I0, 0, N0)
is given as:

J (A0) =

−d1 −eα − p1α
β1d1

− p2α
d1

0
0 m1 − p3α

β2d1
− γ1

k2
0

0 −γ2
k2

−m2

 (5)

Then, the eigenvalues of J (A0) are
λ0

1 = −d1 < 0, λ0
2 = m1 − p3α

β2d1
− γ1

k2

and λ0
3 < 0. Therefore, A0 is asymptotic

stable whenever if

m1 <
p3α

β2d1
+ γ1

k2
• The Jacobian matrix at A1 = (I1, C1, N1)

is given as:

J (A1) =

a
[1]
11 a

[1]
12 0

a
[1]
21 a

[1]
22 a

[1]
23

0 a
[1]
32 a

[1]
33

 (6)

where

a
[1]
11 = p1C1

β1 + C1
− p2C1 − d1,

a
[1]
12 = −eα

(1 + eC1)2 + p1β1I1

(β1 + C1)2 − p2I1,

a
[1]
21 = −p3C1

β2 + C1
,

a
[1]
22 = m1 − 2m1k1C1 − p3β2I1

(β2 + C1)2 − γ1N1,

a
[1]
23 = −γ1C1,

a
[1]
32 = −γ2N1,

a
[1]
33 = m2 − 2m2k2N1 − γ2C1.

So, the eigenvalues of J (A2) are the
roots of the following equation

(
λ3 + U1λ2 + U2λ + U3

)
= 0 (7)
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where:
U1 = −

(
a

[1]
11 + a

[1]
22 + a

[1]
33

)
U2 = −

(
−a

[1]
11

(
a

[1]
22 + a

[1]
33

)
− a

[1]
22a

[1]
33

+ a
[1]
23a

[1]
32 + a

[1]
12a

[1]
21

)
U3 =

(
a

[1]
11

(
a

[1]
23a

[1]
32 − a

[1]
22a

[1]
33

)
+ a

[1]
12a

[1]
21a

[1]
33

)
U1U2 − U3 =

((
a

[1]
11 + a

[1]
22 + a

[1]
33

) (
−a

[1]
11(

a
[1]
22 + a

[1]
33

)
− a

[1]
22a

[1]
33 + a

[1]
23a

[1]
32 + a

[1]
12a

[1]
21

))
−
(

a
[1]
11

(
a

[1]
23a

[1]
32 − a

[1]
22a

[1]
33

)
+ a

[1]
12a

[1]
21a

[1]
33

)
Thus, according to the Routh-Hurwitz
rule [56], A1 will be asymptotically stable
if U1 > 0, U3 > 0 and U1U2 > U3.

• The Jacobian matrix at A2 =
(I2, C2, N2, H2) is given as:

J (A2) =



a
[2]
11 a

[2]
12 0 a

[2]
14

a
[2]
21 a

[2]
22 a

[2]
23 a

[2]
24

0 a
[2]
32 a

[2]
33 0

0 0 0 a
[2]
44


(8)

where,

a
[2]
11 = p1C2

β1 + C2
− p2C2 − d1 − d2H2,

a
[2]
12 = −eα

(1 + eC2)2 + p1β1I2

(β1 + C2)2

− p2I2, a
[2]
14 = −d2I2,

a
[2]
21 = −p3C2

β2 + C2
,

a
[2]
22 = m1 − 2m1k1C2 − p3β2I2

(β2 + C2)2

− γ1N2 − d3H2,

a
[2]
23 = −γ1C2, a

[2]
24 = −d3C2,

a
[2]
32 = −γ2N2,

a
[2]
33 = m2 − 2m2k2N2 − γ2C2,

a
[2]
44 = −d4.

So, the eigenvalues of J (A2) are the roots
of the following equation

(−d4 − λ)
(
λ3 + D1λ2 + D2λ + D3

)
= 0 (9)

where,

D1 = −
(
a

[2]
11 + a

[2]
22 + a

[2]
33

)
D2 = −

(
−a

[2]
11

(
a

[2]
22 + a

[2]
33

)
− a

[2]
22a

[2]
33 + a

[2]
23a

[2]
32 + a

[2]
12a

[2]
21

)
D3 =

(
a

[2]
11

(
a

[2]
23a

[2]
32 − a

[2]
22a

[2]
33

)
+ a

[2]
12a

[2]
21a

[2]
33

)
D1D2 − D3 =

((
a

[2]
11 + a

[2]
22 + a

[2]
33

)
(
−a

[2]
11

(
a

[2]
22 + a

[2]
33

)
− a

[2]
22a

[2]
33

+ a
[2]
23a

[2]
32 + a

[2]
12a

[2]
21

))
−
(
a

[2]
11

(
a

[2]
23a

[2]
32 − a

[2]
22a

[2]
33

)
+ a

[2]
12a

[2]
21a

[2]
33

)
.

Thus, according to the Routh-Hurwitz
rule, A2 will be asymptotically stable on
the condition that D1 > 0, D3 > 0 and
D1D2 > D3.

4. Global stability at the cancer-free
steady state

To reach a healthy state, in this section, we will
examine the global stability surrounding A0 to
explore the dynamics of the (PSCINC) system at
regions far from the equilibrium point A0.

Theorem 3. A0 is a GAS provided the following
conditions hold:

m1k1 ≥ max

{
2
d1

(
−αe

1+eC + p1 I
β1+C − p2I

)2
, 2γ22

m2k2

}
m1 < p3I

β2+C + γ1N


(10)

Proof. Let’s define a Lyapunov function [57] for
the (PSCINC) model at A0 as follows: L(t) =
(I−I0)2

2 + C +
(
N − N0 − N0ln N

N0

)
, where L(t) is

a positive definite about A0. Thus,
dL

dt
= (I − I0) dI

dt
+ dC

dt
+
(

N − N0
N

)
dN

dt

= (I − I0)
( α

1 + eC
+ p1 IC

β1 + C

− p2IC − d1I − α+d1I0
)

+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
+ (N − N0) (m2 (1 − k2N) − γ2C) .
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Therefore,
dL

dt
= (I − I0)( −αeC

1 + eC
+ p1 IC

β1 + C
− p2IC − d1 (I − I0)

)
+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
+ (N − N0) (−m2k2 (N − N0) − γ2C) .

i.e.,
dL

dt
= C (I − I0)

( −αe

1 + eC
+ p1 I

β1 + C
− p2I

)
− d1 (I − I0)2

+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
− m2k2 (N − N0)2 − γ2C (N − N0) .

=⇒ dL

dt
= −m1k1

2 C2 + C (I − I0)( −αe

1 + eC
+ p1 I

β1 + C
− p2I

)
− d1 (I − I0)2 − m1k1

2 C2 − γ2C (N − N0)

− m2k2 (N − N0)2

+ C

(
m1 − p3I

β2 + C
− γ1N

)

=⇒ dL

dt
≤ −

√m1k1
2 C +

√
d1 (I − I0)

2

−

√m1k1
2 C +

√
m2k2 (N − N0)

2

+ C

(
m1 − p3I

β2 + C
− γ1N

)

Therefore, dL/dt < 0, and hence L(t) is a Lyapunov
function under condition 10. □

Thus, the cancer-free steady state A0 fulfills
the requirements for local stability, rendering
the point globally stable. From a biological
perspective, chemotherapy refers to the process
of selectively eliminating tumor cells if conditions
(10) are met.

5. Local bifurcation

This section examines the local bifurcation
conditions close to steady states by applying
Sotomayor’s rule for local bifurcation [58,59].

Theorem 4. For m1
∗ = p3α

β2d1
+ γ1

k2
, the (PSCINC)

model, at A0 has

(1) No saddle-node bifurcation (SNB).
(2) A transcritical bifurcation (TB) if(

T [0]
)T [

D2hm1 (A0, m1
∗)
(
S[0], S[0]

)]
̸= 0. (11)

(3) A pitchfork bifurcation (PB) if condition
(11) is violated where the notation in (11)
will be introduced during the proof.

Proof. At m1
∗ = p3α

β2d1
+ γ1

k2
, J(A0) has a zero

eigenvalue λ0
2 = 0. Therefore, J(A0) at m∗

1
becomes

J∗ (A0) =

−d1 −eα − p1α
β1d1

− p2α
d1

0
0 0 0
0 −γ2

k2
−m2


Now, let S[0] =

(
s

[0]
1 , s

[0]
2 , s

[0]
3

)T
and T [0] =(

t
[0]
1 , t

[0]
2 , t

[0]
3

)T
represent the eigenvectors

corresponding to the zero eigenvalue of J∗(A0)
and J∗T (A0) respectively. Direct computation
gives

S[0] =
(− (β1 (ed1 + p2) + p1) α

d2
1β1

, 1,
−γ2
m2k2

)T

and

T [0] = ( 0, 1, 0)T .

Now, let h = (h1(I, C), h2(I, C, N), h3(C, N))T ,
then differentiating h with respect to m1 gives:

∂h

∂m1
=
(

∂h1
∂m1

,
∂h2
∂m1

,
∂h3
∂m1

)
= (0, C(1 − k1C, 0),

hm1 (A0, m1
∗) = (0, 0, 0) .

Hence,

T [0]T hm1 (A0, m1
∗) = (0, 1, 0) (0, 0, 0)T = 0

That means the (SNB) cannot happen at m1
∗.

Subsequently, since

T [0]T hm1 (A0, m1
∗) = 0

T [0]T
[
Dhm1 (A0, m1

∗) S[0]
]

= (0, 1, 0)

0 0 0
0 1 0
0 0 0




−(β1(ed1+p2)+p1) α
d2β1
1

−γ2
m2k2

 = 1 ̸= 0
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T [0]T
[
D2hm1 (A0, m1

∗)
(
S[0], S[0]

)]
= (0, 1, 0)

2s
[0]
1

p1
(
1 − I0s

[0]
1

)
β1

−
(
p2 + 2e2αs

[0]
1

) ,
p3 (1 + (2I0 − β2))

β2
2

−2
(
m∗

1k1 − γ1s
[0]
3

)
, −s

[0]
3

(
γ2 + 2m2k2s

[0]
3

))T

=

p3
(
1 + s

[0]
2 (2I0 − β2)

)
β2

2
− 2

(
m1

∗k1 − γ1s
[0]
3

) .

This means the required conditions for (TB)
are satisfied under condition (11). Finally, if
condition (11) is not satisfied, then.(

T [0]
)T

D3hm1 (A0, m∗
1)
(
S[0], S[0], S[0]

)
=

2p3
(
2β2s

[0]
1 − 1 − 3I0

)
β3

2
.

□

Theorem 5. For

γ1
∗ =

−a
[1]
11

2 (
a

[1]
22 + a

[1]
33

)
− 2a

[1]
22a

[1]
33a

[1]
11

C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)
−

−a
[1]
22

2 (
a

[1]
11 + a

[1]
33

)
+
(
a

[1]
11 + a

[1]
22

)
C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)

−

(
−a

[1]
33

2
+ a

[1]
12a

[1]
21

)
C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)
where γ2

∗ > 0, and the formulas of a
[2]
ij are given

in (8), the (PSCINC) model at A1 has a (SNB)
if (

T [1]
)T [

D2hγ1 (A1, γ∗
1)
(
S[1], S[1]

)]
̸= 0 (12)

Proof. According to J(A1), given by (6), the
(PSCINC) model at A1 has a zero eigenvalue,
say λ2

2 = 0, at γ1
∗ and the Jacobian matrix

J∗(A1) = J(A1, γ1
∗),becomes:

J∗ (A1) =

η11 η12 0
η21 η22 η23
0 η32 η33

 ,

here,

η11 = p1C1
β1 + C1

− p2C1 − d1,

η12 = −eα

(1 + eC1)2 + p1β1I1

(β1 + C1)2 − p2I1,

η21 = −p3
β2 + C1

,

η22 = m1 − 2m1k1C1 − p3β2I1

(β2 + C1)2 − γ1
∗N1,

η23 = −γ1
∗C1,

η32 = −γ2N3, η33 = m2 − 2m2k2N1 − γ2C1.

Now, let
S[1] =

(
s

[1]
1 , s

[1]
2 , s

[1]
3

)T

and
T [1] =

(
t
[1]
1 , t

[1]
2 , t

[1]
3

)T

represent the eigenvectors corresponding to
the zero eigenvalue of J∗(A1) and J∗T (A1)
respectively. Direct computation gives

S[1] =
(−η12

η11
, 1,

−η32
η33

)T

and
T [1] =

(−η21
η11

, 1,
−η23
η33

)T

where η11 ̸= 0 and η33 ̸= 0.
Subsequently, since

T [1]T hγ1 (A1, γ1
∗) =

(−η21
η11

, 1,
−η23
η33

)
(0, −C1N1, 0)T = −C1N1 ̸= 0(

T [1]
)T [

D2hγ1 (A1, γ∗
1)
(
S[1], S[1]

)]
=
(−η21

η11
, 1,

−η23
η33

)
(

2p1β1(s1
[1] − I1s2

[1])s2
[1]

(β1 + C1)2 − 2p2s1
[1]s2

[1]

+
2e2α

(
s2

[1]
)2

(1 + eC1)3 ,
p3s2

[1](s2
[1] − s1

[1]
β2)

(β2 + C1)2

+
2p3β2I1

(
s2

[1]
)2

(β2 + C1)3 − 2s2
[1](γ1

∗ + m1k1s2
[1],

−
(
s2

[1]γ2 + 2m2k2
))T

=
((2p1β1(s1

[1] − I1s2
[1])s2

[1]

(β1 + C1)2 − 2p2s1
[1]s2

[1]

+
2e2α

(
s2

[1]
)2

(1 + eC1)3

)−η21
η11

+
(

p3s2
[1](s2

[1] − s1
[1]

β2)
(β2 + C1)2 +

2p3β2I1
(
s2

[1]
)2

(β2 + C1)3

− 2s2
[1](γ1

∗ + m1k1s2
[1]
)

−
(
s2

[1]γ2 + 2m2k2
)(−η23

η33

))
Hence, condition (12) guarantees that the second
condition of saddle-node bifurcation is satisfied.
Therefore, the (PSCINC) model has SNB at A1
with the parameter γ∗

1 . □
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Theorem 6. For

γ2
∗ =

−a
[2]
11

2 (
a

[2]
22 + a

[2]
33

)
− a

[2]
22

2 (
a

[2]
11 + a

[2]
33

)
(
a

[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

+

(
a

[2]
11 + a

[2]
22

)(
−a

[2]
33

2
+ a

[2]
12a

[2]
21

)
(
a

[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

−
2a

[2]
11a

[2]
22a

[2]
33(

a
[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

where γ2
∗ > 0, and the formulas of a

[2]
ij are given

in (8), the (PSCINC) model at A2 has a (SNB)
if

(
T [2]

)T [
D2hγ2 (A2, γ∗

2)
(
S[2], S[2]

)]
̸= 0 (13)

Proof. According to J(A2), given by (8), the
(PSCINC) model at A2 has a zero eigenvalue,
say λ3

2 = 0, at γ2
∗ and the Jacobian matrix

J∗(A2) = J(A2, γ2
∗), becomes:

J∗ (A2) =


ς11 ς12 0
ς21 ς22 ς23
0 ς32 ς33
0 0 0

ς14
ς24
0
ς44


ς11 = p1C2

β1 + C2
− p2C2 − d1 − d2H2,

ς12 = −eα

(1 + eC2)2 + p1β1I2

(β1 + C2)2 − p2I2,

ς13 = 0,

ς14 = −d2I4,

ς21 = −p3
β2 + C2

,

ς22 = m1 − 2m1k1C2 − p3β2I2

(β2 + C2)2

− γ1N2 − d3H2,

ς23 = −γ1C2,

ς24 = d3C2,

ς32 = −γ2
∗N2,

ς33 = m2 − 2m2k2N2 − γ2
∗C2,

ς44 = −d4.

Now, let

S[2] =
(
s

[2]
1 , s

[2]
2 , s

[2]
3 , s

[2]
4

)T

and

T [2] =
(
t
[2]
1 , t

[2]
2 , t

[2]
3 , t

[2]
4

)T

represent the eigenvectors corresponding to
the zero eigenvalue of J∗(A2) and J∗T (A2)
respectively. Direct computation gives

S[2] =
(

ς22ς33 − ς23ς32
ς21ς32

,
−ς33
ς32

, 1, 0
)T

and

T [2] =
( ς22ς33 − ς23ς32

ς12ς23
,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

] )T

where ς12 ̸= 0.

T [2]T hγ2 (A2, γ2
∗) =

( ς22ς33 − ς23ς32
ς12ς23

,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

] )T

(
(0, 0, −C2N2, 0)T

)T
= −C2N2 ̸= 0.

(
T [2]

)T [
D2hγ2 (A2, γ∗

2)
(
S[2], S[2]

)]
=
(

ς22ς33 − ς23ς32
ς12ς23

,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

])
(2p1β1(s1

[2] − I2s2
[2])s2

[2]

(β1 + C2)2

− 2p2s1
[2]s2

[2] +
2e2α

(
s2

[2]
)2

(1 + eC2)3 ,

p3s2
[2](s2

[2] − s1
[2]

β2)
(β2 + C2)2 +

2p3β2I2
(
s2

[2]
)2

(β2 + C2)3

− 2s2
[2](γ1 + m1k1s2

[2],

−
(
s2

[2]γ2
∗ + 2m2k2

)
, 0
)T

□
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=
((2p1β1(s1

[2] − I2s2
[2])s2

[2]

(β1 + C2)2

− 2p2s1
[2]s2

[2] +
2e2α

(
s2

[2]
)2

(1 + eC2)3

)
((

ς22ς33 − ς23ς32
ς12ς23

)
+ p3s2

[2](s2
[2] − s1

[2]
β2)

(β2 + C2)2

+
2p3β2I2

(
s2

[2]
)2

(β2 + C2)3 − 2s2
[2](γ1 + m1k1s2

[2]
)

(−ς33
ς23

)
−
(
s2

[2]γ2
∗ + 2m2k2

))
.

Hence, condition (13) guarantees that the second
condition of saddle-node bifurcation is satisfied.
Therefore, the (PSCINC) model has SNB at A2
with the parameter γ∗

2 .

6. Optimal control

This section focuses on analyzing the model
following the administration of chemotherapy
treatment at a certain time. From a biomedical
standpoint, we have included the notion of
optimum control in the model. For this purpose,
we should look into the problem with a control
strategy that can lessen the health hazard for
the patient. Therefore, we propose and analyze
the optimal control problem applicable to model
(PSCINC) to determine the optimal dose of
chemotherapy to control the tumor. We decide
on control inputs v of cellular chemotherapy,
included in the fourth equation of the (PSCINC)
model, to be supplied from an external source at
different times.
So, let us assume that the time-dependent form
of our considered model is given in (1) with the
following initial conditions for the model set:
So, let us assume that the time-dependent form
of our considered model is given in (1) with
the following initial conditions for the (PSCINC)
system set:
I (0) = I0, C (0) = C0, N (0) = N0, H (0) = H0,

(14)
The objective function, which is to be minimized,
is defined as follows:

Ω (τ) =
∫ tf

0
[I (t) + C (t) + ε1ν2(t)]dt, (15)

The constants ε1 represent the weight factors
of the respective terms. These are utilized to
equalize the magnitude of the phrases. The
ideal selection of control variable ν will effectively
reduce tumor density and maximize immune

density simultaneously, while also minimizing
any unfavorable side effects within a set time
frame. The initial component of the integrand
function represents the overall quantity of
tumor cells, the subsequent component of the
integrand function represents the overall quantity
of immune cells, and the last component of
the integrand function indicates the efficacy of
the administered medications on the organism.
Here, we employ an optimum control problem
to the model to minimize the administration of
chemotherapeutic drugs, aiming to mitigate side
effects and shorten the patient’s recovery period.
Here, we set up an optimal control ν∗ such that

Ω (ν∗) = min {Ω (ν) : ν ∈ ∆}, (16)
where ∆ = {ν : measurable, 0 ≤ ν ≤ 1, t ∈ [0, tf ]}
is the admissible control set.

6.1. The existence of optimal control

In this sub-section, we analyze the existence of an
optimal control of the (PSCINC) model (1). The
property of super solutions Ī , C̄, N̄ , and H̄ of the
model (1) is that trajectories given by

dĪ

dt
= α − d1Ī ,

dC̄

dt
= m1C̄ − p3I, (17)

dN̄

dt
= m2N̄ ,

dH̄

dt
= ν − d4H̄,

are bounded. In vector form, we can express the
above system (17) as:

Ī
C̄
N̄
H̄


′

≤


−d1 0 0 0
−p3 m1 0 0

0 0 m2 0
0 0 0 −p4




Ī
C̄
N̄
H̄

+


α
0
0
ν


Since this is a linear system with bounded
coefficients and the time frame is limited, so, we
can conclude that the solutions Ī, C̄,N̄ , and H̄,
of the above system are bounded. Using the
theorem proposed by Lukes [60], we found that
the admissible control class and the corresponding
state equations with assumed initial conditions
are non-empty. Also, by the definition of the set
∆, it is clear that the control set ∆ is convex and
closed. Since the state solutions are bounded,
hence, the right-hand sides of the state system
(1) are continuous and bounded by a sum of the
bounded controls and the states.
Now, we examine the convexity of the integrand
of Ω (ν) on ∆ and that it is bounded below by
τ1ν2(t) − τ2 with τ1, τ2 > 0. Let p, q be distinct
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elements of Ω and 0 ≤ Y ≤ 1. We have to show
that Ω (p1Y + (1 − Y ) p2, q1Y + (1 − Y ) q2) ≤
(1 − Y ) Ω (p1, q1) + Y Ω (p2, q2) where, Ω (ν) =
I (t) + C (t) + ε1ν2(t),
To establish it, we proceed as follows:
Ω (p1Y + (1 − Y ) q1, p2Y + (1 − Y ) q2)
− (1 − Y ) Ω (p1, p2) + Y Ω (q1, q2)
= C (t) + I (t) + ε1(p1Y + (1 − Y ) q1)2

− Y
{

C (t) + I (t) + ε1p2
1

}
− (1 − Y )

{
C (t) + I (t)

+ ε1q2
1
}

= I (t) + C (t) + ε1
(
p2

1Y 2 + 2p1q1Y (1 − Y )

+ (1 − Y )2q2
1
)
−Y

{
I (t) + C (t) + ε1p2

1

}
−
{

I (t) + C (t) + ε1q2
1

}
+ Y

{
I (t) + C (t) + ε1q2

1

}

= ε1p2
1Y 2 + 2ε1p1q1Y (1 − Y ) + ε1(1 − Y )2q2

1

− ε1p2
1Y − ε1q2

1 + ε1q2
1Y

= ε1p2
1Y 2 + 2ε1p1q1Y − 2ε1p1q1Y 2

+ ε1
(
1 − 2Y + Y 2

)
q2

1 − ε1p2
1Y − ε1q2

1 + ε1q2
1Y

= ε1p2
1Y 2 − 2ε1p1q1Y 2 + ε1q2

1Y 2

− ε1p2
1Y + 2ε1p1q1Y − ε1q2

1Y

= − ε1 (p2 − q2)2 Y (1 − Y ) [Since, (Y − 1) ≤ 0,
and if ε1 ≥ 0],
and

I (t) + C (t) + ε1ν2 (t) ≥ ε1ν2 (t) ≥ τ1ν2(t)
≥ τ1ν2(t) − τ2.

This shows that τ1ν2(t) − τ2 is a lower bound
of Ω (τ, µ). This verifies that there exists an
optimal control ν∗ for which Ω (ν∗)=min Ω (ν∗) =
min {Ω (ν) : ν ∈ ∆} From the above analysis and
conclusion, we state the following theorem.

Theorem 7. Subject to the system (1), with
initial conditions I (0) = I0, C (0) = C0, N (0) =
N0, andH (0) = ν0, the objective functional

Ω (ν) =
∫ tf

0

[
I (t) + C (t) + ε1ν2 (t)

]
dt

admits an optimal control ν∗ such that
Ω (ν∗) = min{Ω (ν) : ν ∈ ∆} , where ∆ =
(ν)νare piecewise continuous, 0 ≤ ν ≤ 1, t ∈
[0, tf ].

6.2. Characterization of the optimal
control

For applying the Pontryagin maximum principle
[46], we introduced the four co-state variables

ξi (i = 1, 2, 3, 4). The Hamiltonian function is
given by
h = I +C +ε1ν2 + ξ1İ + ξ2Ċ + ξ3Ṅ +ξ4Ḣ (18)

With substitution from (1) into (18), we get
h∗ = I + C + ε1ν2

ξ1

(
α

1 + eC
+ p1 IC

β1 + C
− p2IC − d1I − d2IH

)
+ ξ2

(
m1C (1 − k1C) − p3IC

β2 + C
− γ1CN − d3HC

)
+ ξ3 (m2N (1 − k2N) − γ2CN ) + ξ4 (ν − d4H) ,

The Hamiltonian equations are:

ξ̇1 = −∂h∗
∂I

, ξ̇
2

= −∂h∗
∂C

, ξ̇3 = −∂h∗
∂N

, ξ̇4 = −∂h∗
∂H

,

(19)
where, ξi (t) , i = 1, 2, 3, 4 are the adjoint functions
to be determined suitably.
The form of the adjoint equations and
transversality conditions are standard results
from Pontryagin’s Maximum Principle [61]. The
adjoint system can be written in the form:

ξ̇1 = −∂h∗
∂I

= −1 − ξ1

(
p1C

β1 + C
− p2C − d1 − d2H

)
+ ξ2

p3IC

β2 + C
,

ξ̇2 = −∂h∗
∂C

= −1 + ξ1( −eα

(1 + eC)2 + p1β1I

(β1 + C)2 − p2I)

− ξ2(m1 − 2Cm1k1 − p3β2I

(β2 + C)2 − γ1N − d3H)

+ ξ3γ2N,

ξ̇3 = −∂h∗
∂N

= ξ2γ1C − ξ3 (m2 − 2m2k2N − γ2C) ,

ξ̇4 = −∂h∗
∂H

= ξ1d2I + ξ2d3C + d4ξ4,

The transversality conditions are ξi (tf ) = 0, for
i = 1, 2, 3, 4.
The condition dictate the necessary optimum
control functions is
∂h∗
∂ν = 0.

Hence, we get

ν∗ (t) = − ξ4
2ε1

; ν = ν∗(t) (20)

By using the bounds for the control ν∗(t) from
(20), we get
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ν∗ =


− ξ4

2ε1
, if 0 ≤ − ξ4

2ε1
≤ 1

0, if − ξ4
2ε1

≤ 0
1, if ξ4

2ε1
≥ 1


In compact notation, we have

ν∗ = min
{

max
{

0, − ξ4
2ε1

}
, 1
}

, (21)

Based on the analysis and conclusion presented
above, the subsequent theorem is derived.

Theorem 8. For optimal control ν∗

and corresponding state variable solutions
I∗ (t) , C∗(t), N∗(t) and H∗(t) that minimize over
∆, there exist specific adjoint variables ξi (t),
i = 1, 2, 3, 4 satisfying the following system:

ξ̇1 = −1 − ξ1

(
p1 C

β1 + C
− p2C − d1 − d2H

)
+ ξ2

p3IC

β2 + C
,

ξ̇2 = −1 + ξ1( −eα

(1 + eC)2 + p1 β1I

(β1 + C)2 − p2I)

− ξ2(m1 − 2Cm1k1 − p3β2I

(β2 + C)2

− γ1N − d3H) + ξ3γ2N,

ξ̇3 = ξ2γ1C − ξ3 (m2 − 2m2k2N − γ2C) , (22)
ξ̇4 = ξ1d2I + ξ2d3C + d4ξ4,

subject to the transversality conditions

ξi (tf ) = 0, i = 1, 2, 3, 4.

Furthermore, the subsequent properties are valid:

τ∗ = min
{

max
{

0, − ξ4
2ε1

}
, 1
}

7. Numerical Analysis

Numerical verification is essential for completing
analytical studies. In this section, we visually
confirmed the accuracy of our analytical findings
for the (PSCINC) system using the software
MATLAB. This verification holds significant
practical significance. The simulations were
conducted using the parameter values specified

below [53].
α =0.05, e = 0.1, p1 = 0.1, β1 = 0.4, p2 = 0.2,

d1 = 0.2, d2 = 0.09, m1 = 0.4, k1 = 1.5,

p3 = 0.3, β2 = 0.4, γ1 = 0.2, d3 = 0.05,

m2 = 0.35, k2 = 1; γ2 = 0.25, ν = 0.019,

d4 = 0.05.

Now, we will consider five scenarios to
comprehend the dynamic behavior of the
(PSCINC) model and assess the influence
of chemotherapy treatment and psychological
anxiety on tumor suppression. Subsequently, the
outcomes of the five cases will be juxtaposed for
comparison. The five cases are:

7.1. Case I: the healthy case

In this scenario, we examine the interaction
dynamics between healthy cells N(t) and immune
cells I(t) in the absence of chemotherapy
treatment and psychological nervousness, i.e.,
where ν = 0 and e = 0. Figure 2 depicts the
(PSCINC) model with a cancer-free equilibrium
point and a single positive equilibrium at A0 =
(2, 0, 2.38, 0) Furthermore, regardless of the initial
values, the solution initially experiences growth
or decline before converging asymptotically to A0
after approximately thirty days.

Figure 2. The dynamics of
(PSCINC) model with C = 0, ν = 0
and e = 0.

7.2. Case II: no treatment case

Here, we examine the behavior of the (PSCINC)
model in the absence of treatment and the
psychological scare. Figure 3 illustrates the
performance of the (PSCINC) model where ν = 0
and e = 0. All initial conditions lead to the
convergence of the system to a treatment-free
equilibrium point A1 = (I1, C1, N1, 0) =
(0.25, 0.13, 0.9, 0). In addition, the population of
immune cells steadily diminishes as the number
of tumor cells gradually increases. Furthermore,
this case clearly demonstrates that eradicating
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tumor cells is unattainable without a well-defined
therapeutic strategy.

Figure 3. The dynamics of the
(PSCINC) model with ν = 0 and
e = 0.

7.3. Case III: psychological scare case

The objective of this case is to demonstrate the
impact of anxiety on the interaction between
cancer cells and immune cells in the absence
of chemotherapy drugs. Figure 4 explains the
performance of the (PSCINC) model where ν = 0
with various values of e. The relationship between
rising anxiety and declining immune function is
evident. As a result, the tumor cells significantly
grow; therefore, external treatment is needed.

Figure 4. The dynamics of the
(PSCINC) model with ν = 0 and
various value of e.

7.4. Case IV: a treatment case

In this instance, we will examine the intricacies
of the (PSCINC) system when subjected
to chemo-drug. Figure.5 clearly depicts
the global stability characteristics of the
positive steady state A2 = (I2, C2, N2, H2) =
(0.2, 0.14, 0.89, 0.38). The administration of
chemotherapy leads to a substantial decrease
in tumor cells within the body compared to
past instances. In addition, chemotherapy also
adversely affects the immune cells, decreasing

the quantity of immune cells compared to the
previous cases. Considering those mentioned
above, additional doses are necessary to achieve
a state devoid of tumors.

Figure 5. The dynamics of the
(PSCINC) model with treatment
case.

7.5. Case V: a minimum dosage of
chemo-drug

This case aims to examine the effects of modifying
the number of chemotherapy doses required to
achieve a healthy state. Figure 5 clarifies the
performance of the (PSCINC) model with various
values of ν. The solution of the (PSCINC) system
asymptotically converges to A2 when v is less
than 0.14. Conversely, the system tends towards
a cancer-free state A0 when ν = 0.14. Thus,
a value of ν = 0.14 is the minimum dosage of
chemotherapy necessary to achieve a condition
devoid of cancer.

Figure 6. The dynamics of the
(PSCINC) model with various values
of ν

8. Conclusion

It has been looked at how an ODE mathematical
model for tumor growth works, which includes
how immune cells interact with tumor cells and
how psychological scares and chemotherapy drugs
work. The fundamental attributes of the model’s
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solutions, including positivity and boundedness,
were established. A stability analysis was
conducted on the system under consideration to
investigate the model’s dynamic behavior. Our
research indicates that the constant state devoid
of tumors is stable globally under particular
conditions. This suggests that the prescribed
treatment can eliminate tumor cells from the
body for a specific tumor growth rate.
The numerical simulations validate the analytical
findings. Precisely, the threshold values for the
transcritical bifurcation are calculated, indicating
the point at which cancer transitions from
persisting to eradicating. Additionally, numerical
analysis reveals that when the tumor size is
modest, the prescribed chemotherapy drug can
effectively eliminate tumor cells from the body
with a minimal minimum dose. Nonetheless,
a constraint of our model is that prolonged
treatment and a substantial dosage of medications
are necessary to eradicate large tumors, both of
which can be detrimental to the patient’s health.
Our upcoming research will focus on augmenting
the immune system by regular vitamin intake or
the utilization of stem cells.
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