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This study introduces an innovative fractional methodology for analyzing
the dynamics of COVID-19 outbreak, examining the impact of intervention
strategies like lockdown, quarantine, and isolation on disease transmission.
The analysis incorporates the Caputo fractional derivative to grasp long-term
memory effects and non-local behavior in the advancement of the infection.
Emphasis is placed on assessing the boundedness and non-negativity of the
solutions. Additionally, the Lipschitz and Banach contraction theorem are
utilized to validate the existence and uniqueness of the solution. We determine
the basic reproduction number associated with the model utilizing the next
generation matrix technique. Subsequently, by employing the normalized
sensitivity index, we perform a sensitivity analysis of the basic reproduction
number to effectively identify the controlling parameters of the model. To
validate our theoretical findings, numerical simulations are conducted for
various fractional order values, utilizing a two-step Lagrange interpolation
technique. Furthermore, the numerical algorithms of the model are represented
graphically to illustrate the effectiveness of the proposed methodology and to
analyze the effect of arbitrary order derivatives on disease dynamics.
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1. Introduction

In the realm of infectious diseases, mathematical
modeling stands as a pivotal tool, offering
insights into the spread and control mechanisms.
The foundations of this discipline were laid
in 1927 by Kermack and Mc Kendric, who
introduced a fundamental compartment model
for complex epidemic studies in epidemiology
[1]. In the contemporary world, heightened
attention has been directed towards research on
an array of epidemic diseases like HIV, Malaria,
Dengue, HBV, posing significant challenges in
containment and prevention of disease within
the human population. As the world grapples
with these pre-existing health concerns, a new,

unprecedented threat emerged on the horizon
in late 2019, named COVID-19, originating
in Wuhan, China. This novel coronavirus
rapidly escalated into a pandemic, challenging
our understanding of disease transmission and
intervention strategies. Although, the exact
origins of the virus remains elusive, it is believed
to have originated from animals and potentially
transmitted to humans through intermediaries
such as SARS-CoV and MERS-CoV. COVID-19
manifests with a range of symptoms, from
the typical fever, dry cough, and fatigue to
severe respiratory distress with some cases
being asymptomatic. During the pandemic,
individuals infected with the coronavirus could
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spread it even without displaying the symptoms,
constituting an incubation period of ranging
from 2 to 14 days [2]. In the absence
of a specific treatment for the first year of
its emergence, non-pharmaceutical interventions
took precedence such as isolation, mask-wearing,
sanitization, and stringent restrictions on public
gatherings. Governments around the world
imposed lockdowns, constituting one of the
largest quarantines in history, to curb the virus’s
spread. Consequently, understanding the role of
different intervention strategies in transmission
control remains a vital research focus. Several
compartmental models analyzing the effect of
various intervention strategies for COVID-19 have
been proposed. In the study conducted by
[3], a model was introduced to analyze the
COVID-19 outbreak in China (Shanxi province).
The researchers investigated the impact of the
city lockdown date on the ultimate case count.
They discovered that an earlier lockdown in the
city could significantly reduce the number of
infectious cases. Another study by [4], focused on
the COVID-19 pandemic in the U.S.A, analyzing
the impacts of non-pharmaceutical strategies.
Additionally, [5] formulated a mathematical
model to analyze the spread of COVID-19 in
India. Their findings highlighted the significance
of strict isolation measures for susceptible
individuals, which could effectively bring down
the rate of contact between susceptible and
infected persons.

Nowadays, Fractional calculus is emerging
as a vital branch of mathematics, extending
traditional calculus by including integrals and
derivatives with non-integer orders, enabling a
more nuanced analysis of epidemic dynamics,
originating from Leibniz’s inquiry in 1695 [6].
Over the past three decades, researchers have
delved into a range of fractional derivatives, such
as Riemann-Liouville, Caputo, Caputo-Fabrizio,
Atangana-Baleanu and more, captivated by
their usage in diverse domains, including
science, biology, economics, and engineering.
Unlike traditional integer-order models focusing
solely on the current state, fractional order
models incorporate memory and hereditary
effects, integrating past information to make
more accurate epidemic predictions. Current
advancements in epidemiological research
emphasize the significance of utilizing models
incorporating fractional order derivatives. A
study investigated the behavior of HCV
(Hepatitis C virus) disease, employing a
mathematical model incorporating differential
equations (DEs) of fractional-order. This

model accounted for two crucial transmission
components: interactions between the virus and
cells, and the rate at which infected cells are
cured, as presented in [7]. Also, in a study
[8] researchers investigated the dynamics of
COVID-19 transmission in Ethiopia, emphasizing
on different age classes of infected population.
The researchers employed Chebyshev polynomials
to transform a fractional system into a set of
algebraic equations. Additionally, [9] introduced
an epidemic model of fractional order, integrating
the classical Atangana-Baleanu-Caputo operator
and Caputo operator, to investigate COVID-19
transmission. Considering these instances, it
becomes apparent that employing fractional
order derivatives in modeling real-life situations
produces more precise outcomes than integer
order scenarios. This statement finds support
by a multitude of research investigations
[10–16] in the field. In particular, Caputo
fractional derivative (CFD) has found widespread
application in various epidemic models,
underscoring its utility. This significance is
particularly evident when dealing with constant
functions, as the Caputo derivative of such
functions yields zero. The Caputo operator plays
a pivotal role in solving ordinary differential
equations, involving a subsequent fractional
integral to achieve the desired order of fractional
derivative. Notably, the Caputo fractional
differential equation allows for the inclusion of
local initial conditions in the model derivation
process. Numerous researchers have successfully
employed the Caputo operator to model diverse
real-life scenarios, as evidenced by the literature
[17–21].

Consequently, we emphasize the continued
application of the Caputo operator in our
current work, building upon the successful
endeavors of previous researchers. This study
investigates the dynamics of COVID-19 model
considering the effect of intervention strategies
introduced by [22]. By utilizing the CFD, our
objective is to grasp the memory effect and
non-local behavior essential for understanding the
dynamics of COVID-19 infection. The choice of
CFD lies in its capability to incorporate local
primary conditions and enhance the accuracy
of the model. The paper is structured in
the described manner: Section 2 delves into
fundamental mathematical concepts essential for
the subsequent discussions. Section 3 describe the
formulation and examination of the extension of
COVID-19 model utilizing the CFD. In Section
4, we explore the non-negativity and boundedness
of the model, accompanied by an exploration of
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the existence and uniqueness of solution for the
given model. Section 5 determines the basic
reproduction number and conducts a sensitivity
analysis concerning each parameter. Section
6, presents a numerical simulation employing
a two-step Lagrange interpolation method to
validate the theoretical findings. Section 7,
showcases the results and discussion. Finally, in
Section 8, we draw conclusions from the entire
study.

2. Preliminaries

Within this part, we will define some basic
notations and definitions related to fractional
calculus, that will be extensively utilized in this
paper.

Definition 1. Let ϕ : (0,∞) → R be a function,
then the Riemann-Liouville fractional integral
operator [6] with order α > 0 is expressed as:

C
0I

α
t ϕ(t) =

1

Γ(α)

∫ t

0

ϕ(s)

(t− s)α−1
ds; t ≥ 0, (1)

here, Γ(.) referred as a well-known Gamma
function.

Definition 2. Let ϕ : (0,∞) → R be a function,
then the CFD [6] with order α > 0 is represented
as

C
0D

α
t ϕ(t) =



1

Γ(n− α)

∫ t
0

ϕn(s)

(t− s)α+1−n
ds;

α ∈ (n− 1, n),

Dn
tϕ(t) ; α = n,

(2)

where, t ≥ 0 and n is any positive integer. When
α ∈ (0, 1),

C
0D

α
t ϕ(t) =

1

Γ(n− α)

∫ t

0

ϕ
′
(s)

(t− s)α
ds. (3)

Also, the corresponding fractional integral with
order (α > 0) is described as

C
0I

α
t ϕ(t) =

1

Γ(α)

∫ t

0

ϕ(s)

(t− s)α−1
ds; ℜ(α) > 0.

(4)

Definition 3. The Laplace transform(LT) [9] of
the CFD with order α > 0 is expressed as:

L
[
C
0D

α
t ϕ(t)

]
(s) = sαL [ϕ(t)]

−
n−1∑
m=0

ϕ(m)(0)sα−m−1,
(5)

where, α ∈ (n− 1, n] and n ∈ N.

Definition 4. The Mittag-Leffler function [23]
characterized by two parameters is expressed as

Ea,b(S ) =

∞∑
r=0

S r

Γ(r a + b)
, (6)

where, a, b > 0 and also, Ea,1(S ) = Ea(S ). The
LT of one parameter Mittag-Leffler function can
be expressed as follows:

L [1− Ea(−kta)] =
k

s(sa + k)
,

L [Eα(−kta)] =
sa

s(sa + k)
.

(7)

3. Formulation of Mathematical Model

Within this part, we develop a fractional-order
epidemic model by applying the CFD operator to
the classical integer-order model of COVID-19, as
described in [22]. The COVID-19 integer-order
model is defined by the given set of nonlinear
ordinary DEs:

dS(t)

dt
= (1− ρ)Ω− βS(A+ I)− (µ+ λ)S + ζQ1,

dQ1(t)

dt
= ρΩ− σβQ1(A+ I) + λS − (µ+ ζ)Q1,

dA(t)

dt
= βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A,

dQ2(t)

dt
= q1A− (q3 + q4 + µ)Q2,

dI(t)

dt
= q3Q2 + q2A+ (δ + µ+ γ)I,

dT (t)

dt
= γI − (µ+ η)T,

dR(t)

dt
= q4Q2 + ηT − µR,

(8)
with initial conditions

S(0) = S0 > 0, Q1(0) = Q1,0 ≥ 0, A(0) = A0 ≥ 0,

Q2(0) = Q2,0 ≥ 0, I(0) = I0 ≥ 0,

T (0) = T0 ≥ 0, R(0) = R0 ≥ 0. (9)

Here, the entire population P(t) is segmented
to seven sub-population compartments, say S(t),
A(t), Q1(t), Q2(t), T (t), I(t), andR(t) where the
total population is sum of these compartments as:

P(t) = S(t) +Q1(t) +A(t) +Q2(t) + I(t)

+ T (t) +R(t). (10)

When an individual is in good health but
can contract the infection is susceptible (S),
Susceptible individuals under quarantine due to
lockdown measures are comprising in (Q1), those
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in the community who exhibit no symptoms
yet are in incubation period are categorized
as Asymptomatic (A), those asymptomatic
individuals who are self-quarantined (Q2), those
individuals who are seriously ill (I), those
individuals who are isolated for treatment (T )
and recovered population (R). The parameters
mentioned in the model (8) are thoroughly defined
and their corresponding values are presented in
Table 1. In system (8) individuals in (Q1)
compartment, representing susceptible people
under quarantine due to lockdown, interact to
infected people with a reduced rate compare to
individuals in the susceptible (S) compartment.
This concept is governed by multiplying a scaling
factor σ with the contact rate β, where 0 ≤ σ ≤ 1
and 1−σ represents the effectiveness of lockdown
i.e., σ = 0 describe the scenario of complete
lockdown and σ = 1 describe the situation of no
lockdown.

The above classical-integer order model of
COVID-19 (8)-(9) is expanded into a fractional
order system with an order α (0 < α ≤ 1). As,
the model represented by equations (8) can be
expressed in integral form as:

dS(t)

dt
=

∫ t

0
κ(t− s)[(1− ρ)Ω− βS(A+ I)

− (µ+ λ)S + ζQ1]ds,

dQ1(t)

dt
=

∫ t

0
κ(t− s)[ρΩ− σβQ1(A+ I) + λS

− (µ+ ζ)Q1]ds,

dA(t)

dt
=

∫ t

0
κ(t− s)[βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A]ds,

dQ2(t)

dt
=

∫ t

0
κ(t− s)[q1A− (q3 + q4 + µ)Q2]ds,

dI(t)

dt
=

∫ t

0
κ(t− s)[q3Q2 + q2A

+ (δ + γ + µ)I]ds,

dT (t)

dt
=

∫ t

0
κ(t− s)[γI − (η + µ)T ]ds,

dR(t)

dt
=

∫ t

0
κ(t− s)[q4Q2 + ηT − µR]ds.

(11)
In this context, κ(t − s) represents the kernel
function. On employing the power law of the
kernel function as described in [24], we obtain:

κ(t− s) =
1

Γ(α− 1)
(t− s)α−2. (12)

Now, on replacing the value of kernel from
equation (12) into equation (11) and subsequently
using the CFD with order α− 1, we obtain:

c
0D

α−1
t

[
dS(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [(1− ρ)Ω

− βS(A+ I)− (µ+ λ)S + ζQ1],

c
0D

α−1
t

[
dQ1(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [ρΩ

− σβQ1(A+ I) + λS − (µ+ ζ)Q1],

c
0D

α−1
t

[
dA(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [βS(A+ I)

+ σβQ1(A+ I)− (q1 + q2 + µ)A],

c
0D

α−1
t

[
dQ2(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q1A

− (q3 + q4 + µ)Q2],

c
0D

α−1
t

[
dI(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q3Q2 + q2A

+ (δ + γ + µ)I],

c
0D

α−1
t

[
dT (t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [γI − (η + µ)T ],

c
0D

α−1
t

[
dR(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q4Q2 + ηT − µR].

(13)

Since, c
0D

α−1
t , c

0I
α−1
t are inverse operators to

each other. Therefore, the COVID-19 model with
fractional order of α (0 < α ≤ 1) is formulated as:

c
0D

α
t S(t) = (1− ρ)Ω− βS(A+ I)

− (µ+ λ)S + ζQ1,
c
0D

α
t Q1(t) = ρΩ− σβQ1(A+ I) + λS − (µ+ ζ)Q1,

c
0D

α
t A(t) = βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A,
c
0D

α
t Q2(t) = q1A− (q3 + q4 + µ)Q2,

c
0D

α
t I(t) = q3Q2 + q2A+ (δ + γ + µ)I,

c
0D

α
t T (t) = γI − (η + µ)T,

c
0D

α
t R(t) = q4Q2 + ηT − µR,

(14)

In the fractional order systems, maintaining
dimensional consistency plays a pivotal role,
ensuring that the units of measurement on both
sides of the equations align smoothly. To achieve
this consistency, a practical approach involves
adjusting the parameters on the right-hand side
of the equations, typically by raising their power
to α, as discussed in [25–27]. In this context,
our proposed fractional-order model takes the
following form:
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c
0D

α
t S(t) = (1− ρα)Ωα − βαS(A+ I)

− (µα + λα)S + ζαQ1,
c
0D

α
t Q1(t) = ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1,
c
0D

α
t A(t) = βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A,
c
0D

α
t Q2(t) = qα1A− (qα3 + qα4 + µα)Q2,

c
0D

α
t I(t) = qα3Q2 + qα2A+ (δα + γα + µα)I,

c
0D

α
t T (t) = γαI − (ηα + µα)T,

c
0D

α
t R(t) = qα4Q2 + ηαT − µαR,

(15)

with the initial conditions:

S(0) = S0 > 0, Q1(0) = Q1,0 ≥ 0, A(0) = A0 ≥ 0,

Q2(0) = Q2,0 ≥ 0, I(0) = I0 ≥ 0,

T (0) = T0 ≥ 0, R(0) = R0 ≥ 0. (16)

4. Analytical Study of the Model

In this segment, we discuss certain key properties
for the COVID-19 fractional order model(15).

4.1. Non-negativity and boundedness

To prove the positivity of solutions for fractional
order model (15), we first discuss the subsequent
lemma.

Lemma 1. (Generalized Mean Value Theorem
[28]). Let ϕ(t) is continuous on interval [a, b] and
c
0D

α
t ∈ C(a, b] with 0 < α ≤ 1, then

ϕ(t) = ϕ(a) +
1

Γ(α)
(0D

α
t ϕ)(z)(t− a)α, (17)

where, a ≤ z ≤ t,∀ t ∈ (a, b].

Thus, if 0D
α
t ϕ(t) ≥ 0, ∀ t ∈ (a, b), then ϕ is a

non-decreasing function and if 0D
α
t ϕ(t) ≤ 0, ∀

t ∈ (a, b), then ϕ is a non-increasing function.

Theorem 1. (Positivity). All solutions of
the system (15)-(16) are non-negative and are
remains in

R7
+ = {Q(t);Q(t) = (S(t), Q1(t), A(t), Q2(t), I(t),

T (t), R(t)) ∈ R7,Q(t) ≥ 0}.

Proof. We will prove the non-negativity of
solutions for our system (15) by using the Lemma
1. Since,

c
0D

α
t S|S=0 = (1− ρα)Ωα + ζαQ1 ≥ 0,

c
0D

α
t Q1|Q1=0 = ραΩα + λαS ≥ 0,

c
0D

α
t A|A=0 = βαSI + σαβαQ1I ≥ 0,

c
0D

α
t Q2|Q2=0 = qα1A ≥ 0,

c
0D

α
t I|I=0 = qα3Q2 + qα2A ≥ 0,

c
0D

α
t T |T=0 = γαI ≥ 0,

c
0D

α
t R|R=0 = qα4Q2 + ηαT ≥ 0.

(18)

As, a result ∀ t > 0, the solutions of the system
remain positive and they will remain within
R7
+. Also, the vector field consistently directs

towards R7
+ on each hyperplane encompassing the

non-negativity orthant. □

Theorem 2. (Boundedness). All solutions of the
system (15)-(16) starting in R7

+ is bounded.

Proof. To establish the theorem, we derive the
subsequent result from equations (15) as follows:

c
0D

α
t P(t) = c

0D
α
t S(t) +

c
0D

α
t Q1(t) +

c
0D

α
t A(t)

+ c
0D

α
t Q2(t) +

c
0D

α
t I(t)

+ c
0D

α
t T (t) +

c
0D

α
t R(t),

= Ωα − µαP(t)− δαI,

≤ Ωα − µαP(t).

Utilizing the LT of CFD, as discussed in
Definition 3, on the above equation, result in

sαL
[
P(t)

]
− sα−1 P(0) ≤ Ωα

s
− µαL

[
P(t)

]
,

L
[
P(t)

][
sα + µα

]
≤ Ωα

s
+ sα−1P(0),

L
[
P(t)

]
≤ Ωα

s(sα + µα)
+

sα−1

sα + µα
P(0),

P(t) ≤ Ωα

µα
L −1

[ µα

s(sα + µα)

]
+ P(0)L −1

[ sα−1

sα + µα

]
.

By using the Definition 4, we get

P(t) ≤ Ωα

µα

[
1− Eα(−µαtα)

]
+ P(0)

[
Eα(−µαtα)

]
≤ Ωα

µα
−
(Ωα

µα
− P(0)

)
Eα(−µαtα)

≤ Ωα

µα
− cEα(−µαtα),where c =

Ωα

µα
− P(0).

This indicates that 0 ≤ P(t) ≤ Ωα

µα
, as t → ∞.

Therefore, as a consequence the total population
and the sub populations all are bounded. Thus,
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every solution of the model (15)-(16) starts in
region R7

+ and remains in the region:

A = {(S,Q1, A,Q2, I, T,R) ∈ R7
+ : S +Q1 + A+

Q2 + I + T +R ≤ Ωα

µα
}.

□

4.2. Existence and uniqueness of solution

We discuss the existence and uniqueness of the
solution for the CFD model (15) by utilizing the
Banach fixed point theory [29] in this segment.

Let B(J ) denote a Banach space consisting of
continuous real-valued functions defined on the
interval J = [0, b], with the norm specified as:

∥(S,Q1, A,Q2, I, T,R)∥ = ∥S∥+ ∥Q1∥+ ∥A∥
+ ∥Q2∥+ ∥I∥+ ∥T∥+ ∥R∥,

where,

∥S∥ = Sup
t∈J

|S(t)|, ∥Q1∥ = Sup
t∈J

|Q1(t)|,

∥A∥ = Sup
t∈J

|A(t)|, ∥Q2∥ = Sup
t∈J

|Q2(t)|,

∥I∥ = Sup
t∈J

|I(t)|, ∥T∥ = Sup
t∈J

|T (t)|,

∥R∥ = Sup
t∈J

|R(t)|.

Now, consider the DE,
C
0D

α
t Q(t) = G (t,Q(t)) ; t ∈ J , 0 < α ≤ 1,

Q(0) = Q0 ≥ 0, (19)

where,

Q(t) = (S(t), Q1(t), A(t), Q2(t), I(t), T (t), R(t))
′
,

Q(0) = (S0, Q1,0, A0, Q2,0, I0, T0, R0)
′
,

G (t,Q(t)) = (G1,G2,G3,G4,G5,G6,G7)
′
,

and

G1(t,Q(t)) = Ωα(1− ρα)− βαS(A+ I)

− (µα + λα)S + ζαQ1,

G2(t,Q(t)) = ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1,

G3(t,Q(t)) = βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A,

G4(t,Q(t)) = qα1A− (qα3 + qα4 + µα)Q2,

G5(t,Q(t)) = qα3Q2 + qα2A+ (δα + µα + γα)I,

G6(t,Q(t)) = γαI − (ηα + µα)T,

G7(t,Q(t)) = qα4Q2 + ηαT − µαR.

Theorem 3. All the kernels Gj, where j =
1, 2, 3, · · · , 7 fulfills the Lipschitz condition within
the Banach space B(J ).

Proof. Consider, Q(t), Q(t) be two functions,
then

∥G1(t,Q(t))− G1(t,Q(t))∥
= ∥(1− ρα)Ωα − βαS(A+ I)− (µα + λα)S

+ ζαQ1 − (1− ρα)Ωα + βαS(A+ I)

+ (µα + λα)S − ζαQ1∥

= ∥−βα(A+ I)(S − S)− (µα + λα)(S − S)∥
≤ |K1| ∥S − S∥,
where, K1 = −(βα(d3 + d5) + µα + λα)

and ∥A∥ ≤ d3, ∥I∥ ≤ d5.

||G2(t,Q(t))− G2(t,Q(t))||
= ||ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1 − ραΩα + σαβαQ1(A+ I)

− λαS + (µα + ζα)Q1||
= || − σαβα(A+ I)(Q1 −Q1)

− (µα + ζα)(Q1 −Q1)||
= || − (σαβα(A+ I) + (µα + ζα))(Q1 −Q1)||
≤ |K2| ||Q1 −Q1||,
where, K2 = −(σαβα(d3 + d5) + (µα + ζα))

and ||A|| ≤ d3, ||I|| ≤ d5.

||G3(t,Q(t))− G3(t,Q(t))||
= ||βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A− βαS(A+ I)

− σαβαQ1(A+ I) + (qα1 + qα2 + µα)A||
= ||βαS(A−A) + σαβαQ1(A−A)

− (qα1 + qα2 + µα)(A−A)||
≤ |βα ||S||+ σαβα ||Q1||+ (qα1 + qα2 + µα)| ||A−A||
≤ |K3| ||A−A||,
where, K3 = (βαd1 + σαβαd2 + qα1 + qα2 + µα)

and ||S|| ≤ d1, ||Q1|| ≤ d2.

||G4(t,Q(t))− G4(t,Q(t))||
= ||qα1A− (qα3 + qα4 + µα)Q2 − qα1A

+ (qα3 + qα4 + µα)Q2||
= || − (qα3 + qα4 + µα)(Q2 −Q2)||
≤ |K4| ||Q2 −Q2||,
where, K4 = −(qα3 + qα4 + µα).
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||G5(t,Q(t))− G5(t,Q(t))||
= ||qα3Q2 + qα2A+ (δα + µα + γα)I − qα3Q2 − qα2A

− (δα + µα + γα)I||
= || − (δα + µα + γα)(I − I)||
≤ |K5| ||I − I||,
where, K5 = −(δα + µα + γα).

||G6(t,Q(t))− G6(t,Q(t))||
= ||γαI − (ηα + µα)T − γαI + (ηα + µα)T ||
= || − (ζα + µα)(T − T )||
≤ |K6| ||T − T ||,
where, K6 = −(ζα + µα).

||G7(t,Q(t))− G7(t,Q(t))||
= ||qα4Q2 + ηαT − µαR− qα4Q2 − ηαT − µαR||
= || − µα(R−R)||
≤ |K7| ||R−R||,
where, K7 = −µα.

After adding all the aforementioned equations, we
get

∥G (t,Q(t))− G (t,Q(t))∥

≤ ∥G1(t,Q(t))− G1(t,Q(t))∥

+ ∥G2(t,Q(t))− G2(t,Q(t))∥

+ ∥G3(t,Q(t))− G3(t,Q(t))∥

+ ∥G4(t,Q(t))− G4(t,Q(t))∥

+ ∥G5(t,Q(t))− G5(t,Q(t))∥

+ ∥G6(t,Q(t))− G6(t,Q(t))∥

+ ∥G7(t,Q(t))− G7(t,Q(t))∥
≤ |K1| ∥S − S∥+ |K2| ∥Q1 −Q1∥+ |K3| ∥A−A∥

+ |K4| ∥Q2 −Q2∥+ |K5| ∥I − I∥
+ |K6| ∥T − T∥+ |K7| ∥R−R∥

≤ K∥Q(t)− Q(t)∥,
where, K = Max{|Ki|; i = 1, 2, 3, · · · , 7} is
the Lipschitz constant of the kernel G (t,Q(t)).
Hence, G (t,Q(t)) satisfies the Lipschitz
condition. □

Theorem 4. If
K

Γ(α+ 1)
≤ 1, then the model

(15) possesses a unique solution.

Proof. Consider, Ψ : B → B be a linear map
represented by,

Ψ(Q(t)) = Q0(t) +
1

Γ(α)

∫ t

0

1

(t− s)1−α

× G (s,Q(s))ds,

and, Q(t),Q(t) ∈ B then, we have

∥Ψ(Q(t))−Ψ(Q(t))∥

=

∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ t

0
(t− s)α−1(G (s,Q(s))

− G (s,Q(s)))ds

∣∣∣∣∣∣∣∣
≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣G (s,Q(s))

− G (s,Q(s))
∣∣∣∣ ds

≤ K ∥Q(s)− Q(s)∥
Γ(α)

∫ t

0
(t− s)α−1 ds

≤ Ktα

αΓ(α)
∥Q(s)− Q(s)∥.

Thus, Ψ is a contraction, if
K

Γ(α+ 1)
≤ 1.

Hence, from Banach contraction principle, the
fractional order system (15) possesses a unique
solution. □

5. The Reproduction Number and it’s
Sensitivity Analysis

5.1. Reproduction number

Epidemiologically, the basic reproduction number
often denoted as R0 indicates the average
count of new infections originating from one
infected individual within a vulnerable population
throughout their infectious period. It is
a fundamental concept used to measure the
potential for disease transmission in a population.
If R0 < 1 then eventually disease will die out
from population and if R0 > 1, the disease
will persist and potentially lead to an outbreak.
To calculate R0 we first determine the Disease
Free Equilibrium point (DFE) denoted by (E∗

0 ).
Since, Equilibrium points represent the solutions
to equation describing the system, at which
the variable experiences zero rate of change.
Specifically, the disease free equilibrium (DFE)
signifies a state where the disease does not persist
within the population. By setting

c
0D

α
t S = c

0D
α
t Q1 =

c
0D

α
t A = c

0D
α
t Q2

= c
0D

α
t I = c

0D
α
t T = c

0D
α
t R = 0,

we calculate the equilibrium points based on the
system. Now, applying the necessary conditions
involves setting all infectious compartments of the
model to zero i.e. A = Q2 = I = T = R = 0.

We obtained the DFE point of the model as
follows:
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E∗
0 = (S∗

0 , Q
∗
1,0, A

∗
0, Q

∗
2,0, I

∗
0 , T

∗
0 , R

∗
0)

=

(
Ωα(µα(1− ρα) + ζα)

µα(λα + µα + ζα)
,

Ωα(µαρα + λα)

µα(λα + µα + ζα)
,

0, 0, 0, 0, 0

)
.

We then apply the next-generation matrix
method [30, 31] to evaluate the R0 of the model
(15). This involves determining the spectral
radius of the next generation matrix (FV−1),
in which F represent the Jacobian of matrix
F (transmission compartment, signifying the
appearance of new infections) and V express the
Jacobian of matrix V (transition compartment)
at the DFE point:

F =


βα(S∗

0 + σαQ∗
0) 0 βα(S∗

0 + σαQ∗
0) 0

0 0 0 0
0 0 0 0
0 0 0 0



V =


b2 0 0 0
−qα1 b3 0 0
−qα2 −qα3 b4 0
0 0 −γα b5



R0 = ϱ(FV−1)

=
βαΩα[σα(ραµα + λα) + (ζα + µα(1− ρα))]

µα b1 b3 b22
× [b3b2 + qα2 b2 + qα3 q

α
1 ], (20)

where, b1 = µα + ζα + λα, b2 = qα1 + qα2 + µα,
b3 = qα3 + qα4 + µα, b4 = δα + γα + µα and
b5 = ηα + µα.

5.2. Sensitivity analysis

Sensitivity analysis is crucial for assessing
the robustness of model predictions and
understanding how the output variable changes
concerning variations in input parameters.
Within this part, we delve into the sensitivity
analysis of R0 and the model parameters by
utilizing the Normalized Sensitivity Index as
discussed in [32]. This method identifies the most
influential parameter for R0 and their impacts
on disease transmission. The normalized forward
sensitivity index of a variable to a parameter is
the ratio of the relative change in the variable to
the relative change in the parameter. as discussed
in [33].

Specifically, for the R0 concerning the parameter
p, it is calculated as:

℘R0
p =

∂R0

∂ p
× p

R0
. (21)

Where, the sensitivity index of R0 w.r.t
parameter p is positive, if R0 increases concerning
p and negative if R0 decreases concerning p.

Table 1. Parameter description and
their corresponding values sourced
from the relevant literature [22].

Parameters Biological meaning Values
Ω Recruitment rate of susceptible peoples 0.0000421
ρ Fraction of individuals under 0.5

quarantine due to the implemented lockdown
λ Transmission rate at which Susceptible 0.5

people moving to Quarantine class(Q1)
β Rate of transmission of infection between 0.07

individuals
µ Mortality rate 0.0000421
ζ Transmission rate of Quarantine people 0.0715

moving to Susceptible class
σ efficacy factor of lockdown 0.5
q1 Rate by which Asymptomatic individual 0.2

move into self-Quarantine class Q1

q2 Rate by which Asymptomatic individual 0.1428
showing the symptoms

q3 Rate at which Self-Quarantine people 0.21
enters into Infected class

q4 Rate by which self-Quarantine people 0.08
recovers

γ Rate by which infected individuals are 0.11
treated

η Rate by which infected people are 0.0917
recovered with medical treatment

δ Disease induced death rate 0.05

Table 2. Sensitivity indices of R0.

parameters indices
Ω +1
ρ -3.27412e-05
β +1
µ -1.00031
ζ +0.0972096
σ +0.777734
q1 -0.25982
q2 -0.09752
q3 +0.08925
q4 -0.0892
δ -0.200737
γ -0.4416
λ -0.0972096

However, calculating the sensitivity indices of
R0 explicitly in terms of the model’s parameters
proves challenging due to the intricate nature
of R0. Consequently, we assess the sensitivity
indices using the values of parameters provided
in Table 1. We obtained sensitivity indices for
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R0 concerning the thirteen distinct parameters
in the model that are displayed in Table 2.
Additionally, a visual representation of these
numerical sensitivity indices is provided in Figure
1. According to the computed sensitivity indices,
a 10% increment in the recruitment rate (Ω),
lockdown efficacy factor (σ), and the transmission
rate (β) results in a 10%, 7.7%, and 10% increase
in the value of R0, respectively. On the contrary,
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q
1

q
2

q
3

q
4

P
a
r
a
m

e
t
e
r
s

Figure 1. Sensitivity of the R0

concerning all thirteen parameters.

when it comes to parameters such as the natural
death rate (µ), the treatment rate (γ), the
rate at which symptomatic individuals enter
self-quarantine (q1) and disease-induced death
rate (δ), an increase of 10% in their values results
in a decrease of R0 by 4.4%, 2.5%, 2.1%, and 10%
respectively.

Therefore, the findings indicate that a 10% rise
in the transmission rate β and recruitment rate
Ω, significantly increases R0, with a notable
impact. Additionally, the lockdown scaling factor
σ also demonstrates a substantial effect on R0.
While, the remaining parameters exhibit low
perturbation, exerting minimal influence on R0.
This analysis is depicted in Figure 1, illustrating
the high sensitivity of the transmission rate, and
the significant impact of the lockdown scaling
factor on R0.

6. Numerical Algorithm

We utilize numerical technique to approximate
the solutions for nonlinear ordinary and partial
differential equations that cannot be resolved
through standard analytical techniques. In this
study, the numerical approach is based on the

two-step Lagrange interpolation approach, as
detailed in [34–36] to address the fractional order
COVID-19 model (15).

From equation (19), we have

C
0D

α
t Q(t) = G (t,Q(t)) , t ∈ [0, b] , 0 < α ≤ 1,

Q(0) = Q0, (22)

and its solution is

Q(t) = Q(0) +
1

Γ(α)

∫ t

0
(t− s)α−1 G (s,Q(s)) ds.

(23)

Let, h =
T

n
, tϑ = ϑh, ϑ = 0, 1, 2 · · · , n ∈ Z+,

then at point t = tϑ+1, equation (23) becomes

Q(tϑ+1) = Q(0) +
1

Γ(α)

∫ tϑ+1

0
(tϑ+1 − s)α−1

× G (s,Q(s)) ds,

which can be expressed as,

Q(tϑ+1) = Q(0) +
1

Γ(α)

ϑ∑
ς=0

∫ tς+1

tς

(tϑ+1 − s)α−1

× G (s,Q(s))ds. (24)

By approximating the function G (s,Q(s))
over interval [tς , tς+1] by using the Lagrange
polynomial,

G (s,Q(s)) =
s− tς−1

tς − tς−1
G (tς ,Q(tς))

− s− tς
tς − tς−1

G (tς−1,Q(tς−1)). (25)

Using equation (25) in (24) and then simplifying
the integral, we get

Qϑ+1 = Q(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G (tς ,Q(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G (tς−1,Q(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
.
(26)

Using the aforementioned scheme (26) for
numerical solution of our proposed model (15),
we get
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Sϑ+1 = S(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G1 (tς , S(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G1(tς−1, S(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(27)

Q1,ϑ+1 = Q1(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G2 (tς , Q1(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G2(tς−1, Q1(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(28)

Aϑ+1 = A(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G3 (tς , A(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G3 (tς−1, A(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(29)

Q2,ϑ+1 = Q2(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G4 (tς , Q2(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G4 (tς−1, Q2(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(30)

Iϑ+1 = I(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G5(tς , I(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G5 (tς−1, I(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(31)

Tϑ+1 = T (0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G6(tς , T (tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G6(tς−1, T (tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(32)

Rϑ+1 = R(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G7(tς , R(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G7(tς−1, R(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
.
(33)

7. Results and Discussion

We utilized the numerical method outlined in
preceding subsection, and employed baseline
values for parameters (as detailed in Table 1)
and the initial conditions of the model from
pertinent literature [22]. The initial conditions
were specified as follows:

S(0) = 0.69× 109, Q1(0) = 0.7× 109,

A(0) = 3800, Q2(0) = 800, I(0) = 601,

T (0) = 825, R(0) = 566. (34)

To illustrate the dynamics of the formulated
COVID-19 model (15), we provide graphical
visualizations in Figures 2, 3, 4 and 5. These
visualizations enable us to analyze the influence
of the CFD on the dynamics of population by
altering key model parameters and exploring
different values of fractional order. We used
MATLAB software for simulating numerical
results, and our discussed numerical approach
provided approximate solutions, which are
visually depicted in the referenced figures. Figure
2 displays the population dynamics of the
discussed model, utilizing the CFD within a
time sequence framework, measured in weeks.
In Figure 2, the behaviors of I(t), Q2(t), T (t),
and R(t) are portrayed for fractional order values
α = 0.80, 0.85, 0.90, 0.95 and 1.

Figure 2a demonstrates that infection increase
and decrease rapidly as the fractional order rises.
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(a) (b)

(c) (d)

Figure 2. Solution behavior of I(t), Q2(t), T(t), R(t).

Similar patterns can be observed in Figures
2b and 2c, respectively. During this critical
period, medical treatment plays a pivotal role
in controlling infections, ensuring suitable care
for individuals and facilitating their recovery, as
indicated in Figure 2d. The recovered population
increases over time, with variations observed for
different fractional order values. It is noteworthy
that, as α approach to 1, the fractional order
model solution converges toward the solution
obtained from the conventional integer-order
model.The convergence becomes faster as the
fractional order α approaches one. This behavior
can be attributed to fractional order derivatives
retaining the population dynamics of previous
time instants, which effectively slows down the
rate of reaching stability.

Figures 3, 4 and 5 illustrate the impact of highly
sensitive parameters such as β (transmission
rate), σ (lockdown scaling factor), and γ
(rate of exposure to treatment class) on R0

and simultaneously explores the impact of the
transmission rate, lockdown scaling factor and
recovery rate on the presented model. We
investigate how these governing factors influence
the dynamics and behavior of the system.
The strategies for managing the spread of
the disease primarily revolve around minimizing

the transmission of the covid-19 infection from
individuals who are infected to those who are
susceptible, and enhancing the rate of recovery.
These measures are crucial in managing and
preventing the continued dissemination of the
disease. On the left side of the figures, pattern
of the (R0) is displayed, while the right side
illustrates the behavior of the infected population
for distinct values of the specified parameters.

Figure 3, illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (β), while the remaining
parameters remain the same as in Table 1, with
considering a fractional order α = 1.

It reveals that β leads to a rapid and
substantial increase in R0, and as its value
escalates from 0.10 to 0.50, result in a
corresponding rise in the infection. Figure
4, illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (γ), while the remaining
parameters remain the same as in Table 1, with
considering a fractional order α = 1. The
variation of R0 concerning γ demonstrates an
inverse relation. Increasing the value of γ
significantly reduces the cases of infected
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Figure 3. (a) Variation of R0

with β. (b) Variation of infected
population.
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Figure 4. (a) Variation of R0

with γ. (b) Variation of Infected
Population.

individuals, as depicted in Figure 4. Additionally,
Figure 5 illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (β), while the remaining

parameters remain the same as in Table 1, with
considering a fractional order α = 1, where, σ =
0 corresponds to a state of complete lockdown,
σ = 0.5 to a partial lockdown and, σ = 1 to a
no lockdown scenario. It depicts the impact of
the parameter σ on the R0 and on the infected
population, ranging from 0 to 1. It is evident
that without imposing a lockdown, infection levels
would inevitably rise.

8. Conclusions

In our study, we investigated the mathematical
model involving CFD to determine the
transmission dynamics of COVID-19. Our
analysis included fundamental assessments of
the formulated model, ensuring boundedness and
non-negativity within the feasible region. These
analyses ensure that the model offers valuable
and realistic perspective into the dynamics of
COVID-19 outbreak. With addition to this,
we established the existence and uniqueness of
proposed model solutions with the help of Banach
fixed
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Figure 5. (a) Variation of R0

with σ. (b) Variation of Infected
Population.

point theorem. We computed the basic
reproduction number R0 by employing the
next-generation matrix technique, serving as
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a threshold parameter in the evolution of
infection. This parameter is pivotal in
identifying whether the disease endures or
dissipates within the population. Furthermore,
we employed the normalized sensitivity index to
conduct a sensitivity analysis of R0 for several
model parameters. The impact of different
parameters on the R0 has been analyzed as
well. This analysis enabled us to pinpoint the
control parameters significantly impacting the
progression of infection.

Moreover, we utilized the two-step Lagrange
interpolation method to perform numerical
simulations across various fractional order values
(α) in the proposed fractional model. This
numerical approach not only validated our
theoretical results but also provided significant
insights into the dynamical behavior of the
model influenced by fractional order. Our
numerical results highlighted the substantial
impact of increasing the lockdown scaling factor
σ and decreasing the transmission rate β on
reducing the number of COVID-19 infections.
Furthermore, these findings offer crucial insights
for intervention strategies, especially concerning
lockdown measures, effectively managing
COVID-19 transmission, and reducing the
transmission rate. Implementing isolation and
quarantining susceptible also emerged as effective
strategies to curtail transmission.

While the fractional order COVID-19 model has
furnished valuable insights into the epidemic
transmission process and identified critical
factors for its spread, a more detailed analysis
requires extending the model along with some
additional factors. Future research work should
incorporate various fractional derivatives, such
as fractal-fractional, Atangana-Beta derivative,
Caputo-Fabrizio, and more. These extensions
will pave the way for more comprehensive and
in-depth studies in the field.
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