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In this research, the Magnetohydrodynamic flow model within a porous vessel
containing blood was examined. What makes this study intriguing is the in-
clusion of a fractional-order derivative term in the Magnetohydrodynamic flow
system equations. Fractional derivatives were chosen for their ability to en-
compass both integer and fractional-order derivatives, leading to more realistic
modeling results. The numerical solution for the partial differential equation
system was obtained using the finite differences method. Solutions were derived
using both central difference and backward difference approaches to enhance
the reliability of the results. The Grünwald-Letnikov derivative approach was
employed for the fractional derivative term, while the Crank-Nicolson method
was applied for other terms. Solutions were obtained for velocity, temperature,
and concentration profiles. Subsequently, a thorough analysis was conducted
to investigate variations in these solutions for changing values of significant
flow parameters such as Hartmann number, Grashof number, solute Grashof
number, a small positive constant, radiation parameter, Prandtl number, and
Schmidt number. Additionally, the study analyzed changes in the fractional
derivative order. Finally, the impact of flow parameters on flow in a non-
porous medium was investigated, and the results were presented graphically.
The study highlighted the significant effects of various parameters on blood
flow.
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1. Introduction

The blood vessels should allow a sufficient amount
of blood flow. However, when the vessels are
not permeable enough and the blood flow rate
changes, circulation disorders occur. As a result,
the tissues surrounding the arteries cannot be
nourished adequately, and when sufficient blood
flow is not provided, organs are damaged. For
these reasons, mathematical models known for
blood flow are crucial for biomedical researchers,
physiologists, and medical doctors [1].

When examining fluids from a fluid mechanics
perspective, blood is generally defined as a non-
Newtonian fluid. Studies have shown that blood
flow can be described as Newtonian when blood

cells are small relative to vessel diameter and the
vessels are long [2]. Non-Newtonian fluids have
variable viscosity. If the shear rate reaches a cer-
tain level, viscosity decreases and stabilizes, be-
having like a Newtonian fluid. Newtonian flu-
ids have a linear relationship between the applied
shear stress and the resulting deformation rate
(shear rate). Fluids like water, air, and oils are
examples of Newtonian fluids, and their viscosity
only changes with temperature [3].

Biomagnetic fluids are physiological fluids influ-
enced by the presence of magnetic fields. The
most characteristic biomagnetic fluid that can be
considered a magnetic fluid is blood, as it con-
tains hemoglobin molecules found in high concen-
trations, particularly in mature red blood cells,
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which are iron oxides. Nowadays, biocompatible
magnetic materials are used in magnetic hyper-
thermia, where some very special magnetic par-
ticles are pushed into the blood. One method
currently in use for treating tumors is to place
a magnet near the tumor to capture magnetic
particles in the tumor region. In the presence
of an applied magnetic field, these particles act
as heat sources. With this process, tumor treat-
ment becomes more sensitive to radiotherapy and
chemotherapy. Another application of magnets
is occlusion, which prevents agents from reaching
the tumor region, thus reducing blood flow [4].
This important field has attracted the interest of
researchers, especially in the field of biomedical
engineering and medical technology, due to its
physiological applications during surgery, reduc-
ing blood flow, separating red blood cells from
blood, and drug targeting.

Mathematical modeling is crucial for solving
problems encountered in daily life in physics and
engineering applications. Models often involve
linear and nonlinear differential equations of in-
teger order. However, in recent years, it has been
suggested that these models may be insufficient
to describe certain phenomena, and models in-
volving fractional-order derivatives may be more
realistic. Fractional calculus is considered effec-
tive in analyzing complex cases, including disease
models, and plays a significant role in incorporat-
ing material memory effects [5]. In industry, frac-
tional mathematics is preferred because it is more
successful in modeling real systems compared to
classical mathematics [6].

Fluid mechanics studies complex nonlinear sys-
tems that arise in various branches of science
and often require simplification of models. On
the other hand, research suggests that fractional-
order models may offer more accurate represen-
tations of real-life problems compared to integer-
order models [7]. Therefore, fractional differential
equations have attracted the attention of many
researchers in the 21st century.

The expression of fractional-order derivatives was
first introduced in 1695 when L’Hôpital asked
Leibniz about the meaning of Dn f for n be-
ing a fraction. Subsequently, famous mathemati-
cians such as Euler, Laplace, Fourier, Abel, Liou-
ville, Riemann, and Laurent were drawn to frac-
tional calculus [8]. Euler developed the gamma
function to use the factorial concept for ratio-
nal numbers [9]. Thus, the gamma function be-
came an important concept in fractional analy-
sis. Fractional analysis has evolved to the present

day. Thetheory of fractional differential equa-
tions be-comes one of the most interesting and at-
tractivetopics and has shown an increasing devel-
opment.Differential equations involving fractional
orderderivatives are used to model a variety of
systemshas important applied sciences and engi-
neeringaspects [10]. Modeling utilizing fractional-
order derivatives can yield more accurate results
compared to integer-order derivatives. Conse-
quently, there has been a substantial expansion
in the realm of fractional research [11]. When
electromagnetic fields are applied to fluid ma-
terials like blood, the flow behavior is affected.
Changes in blood flow and viscosity are essential
for understanding and treating certain diseases.
Various studies have investigated the effects of
magnetic fields on flow behavior and temperature
changes. For example, J.C. Misra and his col-
leagues demonstrated that as the magnetic field
strength increases, the fluid velocity decreases,
but the temperature increases [12]. M. S. Abel
and N. Mahesha showed that the combined ef-
fect of variable thermal conductivity, radiation,
and uneven heat sources significantly influences
the heat transfer rate at the boundary layer [13].
J.C. Misra and S.D. Adhikary found that blood
viscoelasticity significantly reduces flow velocity,
and wall shear stress is greatly affected by the
Reynolds number [14]. V. Nagendramma and oth-
ers explained various parameters related to fluid
velocity, temperature, and density. They showed
that as the Prandtl number increases, the temper-
ature decreases [15]. S. Maiti and his colleagues
demonstrated that fractional-degree flow models
are faster than integer-order flow models, and as
the Sc number increases, the density of blood de-
creases [16]. B. Tripathi and B. K. Sharma ex-
pressed that blood velocity is influenced by pa-
rameters, and medical doctors can take advan-
tage of these effects in surgical procedures thanks
to the magnetic field effects [17]. M. Alam and
his colleagues studied heat transfer over a two-
dimensional stretching plate with a viscoelastic
fluid property in MHD flow [18]. A. A. Raptis ex-
amined the effects of magnetic fields on flow and
the effects of porous medium permeability. It was
concluded that increasing permeability increases
the axial velocity [19]. S. Dinarvand and his col-
leagues found that as the magnetic field strength
increases, blood flow velocity decreases [20]. E.
Nader and his colleagues focused on blood vis-
cosity and investigated how changes in conditions
affect blood viscosity [21].

This study includes numerical solutions of the sys-
tem of equations resulting from the selection of
fractional-order time derivatives in an unstable
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MHD blood flow model through a porous ves-
sel. Calculations previously performed for clas-
sical derivatives (Misra et al. [22]) are obtained
here with fractional-order time derivatives, and
the results are compared with results contain-
ing integer-order derivatives for varying param-
eter values. In addition, the impact of taking the
fractional time derivative in a non-porous medium
on flow and how changes in the derivative order
affect the flow are also explored.

2. Displayed mathematical equations

Blood flow can be considered as a flow model of
fluid through a channel in fluid mechanics. Blood
has a certain viscosity and is an incompressible,
electrically conductive liquid. Blood flow occurs
in a porous medium with time-dependent perme-
ability, and this study examines the unstable hy-
dromagnetic flow of a conductive fluid. Addition-
ally, radiation is taken into account in the heat
transfer within the fluid.

In the system shown in Figure 1, there is a uni-
form magnetic field applied in a different direc-
tion than the normal flow direction of the fluid.
The magnetic Reynolds number is assumed to be
very small, so the effect of the applied magnetic
field can be neglected due to the induced magnetic
field. The properties of the fluid are assumed to
be constant except for density, which changes only
with temperature. The basic flow in the system is
a result of the buoyancy force due to the tempera-
ture difference between the inner medium and the
wall.

Figure 1. Physical sketch of problem

When t ≤ 0, it is assumed that the plate and the
fluid are at the same temperature. However, when
t > 0, the plate’s temperature is instantly raised
or lowered to the surface temperature (Tw), and
at the same time, the concentration of species is
instantly raised or lowered to the concentration of

the fluid in the plate (Cw).

∂ū

∂x̄
= 0, (1)
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Here, ν is the kinematic viscosity, β is the ther-
mal expansion coefficient, β∗ is the concentration-
dependent thermal expansion coefficient, T is the
temperature, T∞is the temperature of the ambi-
ent fluid, C is the concentration, C∞ is the con-
centration of the ambient fluid, B0 is the strength
of the applied magnetic field, cp is the specific
heat at constant pressure, qr is the radiative heat
flux, D is the thermal molecular diffusion, and k1
is the thermal conductivity. The term νu

K
’ in (2)

is related to the permeability of the wall. The
boundary conditions are as follows:

u = 0, T = Tw + ϵ sin(nt)(Tw − T∞), (5)

C = Cw + ϵ sin(nt)(Cw − C∞),y = 0 (6)

and

u → 0, T → T∞, C → C∞, y → ∞ (7)

The relative heat flux, using the Rosseland ap-
proximation [23], is obtained as follows:

qr = −4σ∗

3k∗
∂T 4

∂y
(8)

It is assumed that the temperature difference
within the flow is quite small. Therefore, T 4 can
be approximated as a linear function using a Tay-
lor series around the temperature T∞. In this
approximation, higher-order terms are neglected.

T 4 = 4T 3
∞T − 3T 4

∞ (9)

With equations (8) and (9), the following equality
is obtained:

∂qr
∂y

= −16σ∗T 3
∞

3k∗
∂2T 2

∂y
2 (10)

Now, let’s discuss dimensionless equations.

u =
u

υ0
, (11)

θ =
T − T∞
Tw − T∞

, (12)

ϕ =
C − C∞
Cw − C∞

, (13)
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The dimensionless coordinates are as follows:

y =
yυ0
ν

, (14)

t =
tυ20
4ν

, (15)

The dimensionless parameters are as follows:

K =
K0υ

2
0

υ2
, (16)

n =
4nν

υ20
(17)

If we substitute equations (11) - (17) into equa-
tions (2) - (4), we obtain the following system of
equations. When K is taken as the permeability
of the porous medium, the equations governing
the fluid motion are as follows:

1

4

∂αu

∂tα
+ (1 + ϵ sin(nt))

∂u

∂y
=

∂2u

∂y2
(18)

− u
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1

4
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∂y2
,

(19)

1

4

∂αϕ
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+ (1 + ϵ sin(nt))

∂ϕ

∂y
=

1

Sc

∂2ϕ

∂y2
(20)

The boundary conditions are defined as follows

u = 0, θ = 1 + ϵ sin(nt), ϕ = 1 + ϵ sin(nt),

nt =
π

2
, y = 0, (21)

u → 0, θ → 0, ϕ → 0, y → ∞, (22)

u0i = 0.012ih(5− ih)4, θ0i = 0.02, ϕ0
i = 0.02

(23)

Here, u represents the velocity of the fluid, θ de-
notes temperature, and ϕ represents concentra-
tion. In general, simple blood flow models con-
sider steady flow. However, in reality, the pe-
riodic nature of the cardiac cycle leads to non-
continuous pulsatile flow, and pulsatile flow has
significant effects on flow velocities and stress dis-
tributions. A time step of h = 0.025 seconds
is set, and the highest velocity for pulsatile flow
is3.072 m/s, while the lowest velocity is 0 m/s [1].

3. Numerical calculations

The finite difference approximations for the de-
rivative terms taken with respect to y in equa-
tions,(18) - (20) given above are as follows.

∂F

∂y
=

F j
i+1 − F j

i−1

2h
, (24)

∂2F
∂y2

=
F j+1
i+1 −2F j+1

i +F j+1
i−1 +F j

i+1−2F j
i +F j

i−1

h2 ,
(25)

In which F stands for u, θ, ϕ.

When dealing with fractional derivative terms
with respect to time, the Grünwald-Letnikov [24],
[25] approach is employed, while for second-order
derivative terms, the Crank-Nicolson method is
used. Additionally, both central differencing and
backward differencing methods are utilized for
first-order derivative terms. A comparison be-
tween these two methods has been conducted,
with separate graphs plotted for each method.

∂αF
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1
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ωα
i =

m+1∑
i=0

(
1−

(
α+ 1

i

))
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ωα
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After the adjustments were made, the finite dif-
ference scheme obtained is given below.

A1u
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Here, with f = 1 + ϵ sin(nt) and h as the time
step distance, it is expressed as

A1 = −fh− 2, B1 = 4 +
1

2h(α−2)
ωα
0 ,

C1 = fh− 2, (31)

A2 = −2(
1 +Nr

Pr
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B2 = 4(
1 +Nr

Pr
) +

1

2h(α−2)
ωα
0 ,

C2 = −2(
1 +Nr

Pr
) + fh, (32)

A3 = − 2

Sc
− fh, B3 =

4
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+

1

2hα−2
ωα
0 ,

C3 = fh− 2

Sc
(33)
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Additionally, it is expressed as
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ujih

2
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1
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0
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(28), (30) since it is a tridiagonal linear equation
system, it can be solved using the Thomas Algo-
rithm. The matrix is a square band matrix con-
sisting of 2500 rows and columns. Numerical so-
lutions for a single time step were obtained using
the Maple 2021 program, and changes in param-
eters were shown using graphs. Each of matrix
calculation time about forty minutes.

4. Guidelines for tables

In this section, graphs obtained when the flow
parameters in the equation system were changed
are presented. The differences observed are com-
pared.

4.1. Presentation of figures

4.1.1. Blood flow problem under the influence
of MHD in porous media

Differences in the time derivative of the flow ve-
locity, temperature, and density of blood in un-
stable MHD flow, which arise from taking integer
derivatives of time in the previous study (see [22])
and fractional derivatives of time in this study,
have been investigated. Taking α as 1 coincides
with the previous study. Thus, the differences
between the use of integer derivatives and frac-
tional derivatives can be examined with the help
of graphs. Furthermore, changes in the absence of
porosity have been investigated. Under the given
boundary conditions,h = 0.002, α =0.8, and ϵ
are taken between 0.005 and 0.03, and numerical
computations were performed.j = 0and i are pro-
cessed between 0 and 2500, and results are ob-
tained in 2500 steps. To make the comparison
more accurate, calculations were made using the
parameter values specified below (see [22]).

M2 = 0.5, 0.8, 1.0, 1.5, 2.0,

Gr = −20,−13.8,−10, 5, 10, 20,

Gm = 5, 10, 15, 20,

P r = 0.025, 0.2, 0.7, 0.71, 1.5, 7.0, 10.0,

Nr = 1.0, 1.5, 2.0, 3.0, 3.5, 4.5,

Sc = 0.01, 0.05, 0.1, 0.2, 0.22, 0.5,

K = 10.0

In Figure 2, it is observed that asM increases, the
axial velocity decreases. This is an expected re-
sult because as theM value increases, the Lorentz
force increases. The Lorentz force opposes the
flow.

Figure 3 is plotted using the data from the Figure
2. The only difference is that a backward differ-
ence has been used for the derivative term with
respect to y. When comparing the two graphs,
no significant difference is observed. This situa-
tion indicates that the obtained results are more
reliable.

In Figure 4, both positive and negative values of
Gr were examined. It was observed that as theGr
number decreases, meaning the amount of heat
generated decreases, the velocity also decreases.

In Figure 5, when the positive values of Gm are
examined, it is seen that the velocity also de-
creases as Gm decreases.

In Figure 6, it was observed that the velocity
also decreases when the amplitude parameter ϵ
decreases.

Figure 7 is plotted using the data from Figure
6. The only difference is that a backward differ-
ence has been used for the derivative term with
respect to y. When comparing the two graphs,
no significant difference is observed. This situa-
tion indicates that the obtained results are more
reliable.

Figure 8 examines how temperature is influenced
by Nr. As Nr decreases, the temperature also
decreases.

Figure 9 is plotted using the data from Figure
8. The only difference is that a backward differ-
ence has been used for the derivative term with
respect to y. When comparing the two graphs,
no significant difference is observed. This situa-
tion indicates that the obtained results are more
reliable.

In Figure 10, temperature is examined again.
When Pr number increases, the temperature de-
creases.

In Figure 11, the change in Sc number is exam-
ined with concentration. When the channel walls
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cool, an increase in Sc leads to a decrease in con-
centration.

Figure 2. Velocity distribution for
different values of M2

(The graph plotted using central
differencing method)
Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, Gr = 10, ϵ = 0.005,
K = 10, nt = π/2.

Figure 3. Velocity distribution for
different values of M2

(The graph plotted using backward
differencing method)
Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, Gr = 10, ϵ = 0.005,
K = 10, nt = π/2.

Figure 4. Velocity distribution for
different values of Gr
Sc = 0.22, Pr = 0.71, Nr = 1, Gm =
10, ϵ = 0.005, K = 10, M2 = 0.8,
nt = π/2.

Figure 5. Velocity distribution for
different values of Gm
Sc = 0.22, Pr = 0.71, Nr = 1, Gm =
10, ϵ = 0.005, K = 10, M2 = 0.8,
nt = π/2.

Figure 6. Velocity distribution for
different values of ϵ
(The graph plotted using central
differencing method)
Sc = 0.22, Pr = 0.71, Gr = 10,
Gm = 10, Nr = 1, K = 10,
M2 = 0.8, nt = π/2.

Figure 7. Velocity distribution for
different values of ϵ
(The graph plotted using backward
differencing method)
Sc = 0.22, Pr = 0.71, Gm = 10,
K = 10, Gr = 10, Nr = 1,
M2 = 0.8, nt = π/2.
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Figure 8. Temperature distribution
for different values of Nr
(The graph plotted using central
differencing method)
Sc = 0.22, Pr = 0.2, Gm = 10,
Gr = 10, ϵ = 0.05, K = 10,
M2 = 0.8, nt = π/2.

Figure 9. Temperature distribution
for different values of Nr
(The graph plotted using backward
differencing method)
Sc = 0.22, Pr = 0.2, Gm = 10,
Gr = 10, ϵ = 0.05, K = 10,
M2 = 0.8, nt = π/2.

Figure 10. Temperature distribu-
tion for different values of Pr
Sc = 0.22, Nr = 1, Gm = 10,
Gr = 10, ϵ = 0.05, K = 10,
M2 = 0.8, nt = π/2.

Figure 11. Concentration distribu-
tion for different values of Sc
Pr = 0.2, Nr = 1, Gm = 10,
Gr = 10, ϵ = 0.005, K = 10,
M2 = 0.8, nt = π/2.

In Figures 12-19, different values of the derivative
order α, with α = 1, 0.9, and 0.8, were taken, and
the changes in the results for various flow param-
eters were observed.

As the order of the fractional derivative ap-
proaches 1, the result obtained tends to resemble
that of the classical derivative.

In Figure 12, with Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, Gr = 10, ϵ = 0.005, K = 10, M2 = 0.5;
and nt = π/2, the variation of the derivative order
α for α = 1, 0.9 and 0.8 was investigated. When α
is taken as 0.9 and 0.8 a velocity profile similar to
α = 1 is obtained, but the flow velocity decreases.

In Figure 13, with Sc = 0.22, Pr = 0.71, Nr = 1,
Gr = 10, Gm = 20, ϵ = 0.005, K = 10, M2 = 0.8
and nt = π/2, similar velocity profiles to those in
Figure 12 were observed for varying values of the
derivative order α.

Figure 14 is plotted using the data from the Fig-
ure 13. The only difference is that a backward dif-
ference has been used for the derivative term with
respect to y. When comparing the two graphs, no
significant difference is observed. This situation
indicates that the obtained results are more reli-
able.

In Figure 15, with Sc = 0.22, Pr = 0.71, Nr = 1,
Gr = 10, Gm = 10, ϵ = 0.3, K = 10;, M2 = 0.8;
and nt = π/2 similar velocity profiles to those in
Figure 12 were observed for varying values of the
derivative order α.

In Figure 16, with Sc = 0.22, Pr = 0.2, Nr = 4.5,
Gr = 10, Gm = 10,ϵ = 0.05; K = 10; M2 = 0.8;
and nt = π/2, similar velocity profiles to those in
Figure 12 were observed for varying values of the
derivative order α.

In Figure 17, with Sc = 0.22, Pr = 0.2, Nr = 4.5,
Gr = 10 ,Gm = 10, ϵ = 0.05, K = 10, M2 = 0.8;
and nt = π/2, it was observed that as α decreases,
the temperature increases.
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In Figure 18, with Sc = 0.22, Pr = 0.025,
Nr = 1, Gr = 10 ,Gm = 10, ϵ = 0.05, K = 10,
M2 = 0.8; and nt = π/2, it was observed that as
α decreases, the temperature increases.

In Figure 19, with Sc = 0.01, Pr = 0.2, Nr = 1,
Gr = 10, Gm = 10, ϵ = 0.05, K = 10, M2 = 0.8;
and nt = π/2, it was observed that as α decreases,
the concentration increases.

It is evident that the distributions of velocity,
temperature, and concentration are significantly
impacted by the fractional order parameter.

Figure 12. Velocity distribution for
different values of α and M2=0.5
Sc = 0.22, Pr = 0.71, Gm = 10,
Gr = 10, ϵ = 0.05, Nr = 1,
K = 10, nt = π/2

.

Figure 13. Velocity distribution for
different values of α and Gr=20
(The graph plotted using central
differencing method)
Sc = 0.22, Pr = 0.71, Gm = 10,
ϵ = 0.005, Nr = 1,
K = 10, M2 = 0.8, nt = π/2

.

Figure 14. Velocity distribution for
different values of α and Gr=20
(The graph plotted using backward
differencing method)
Sc = 0.22, Pr = 0.71, Gm = 10,
ϵ = 0.005, Nr = 1,
K = 10, M2 = 0.8, nt = π/2

.

Figure 15. Velocity distribution for
different values of α and Gm=20
Sc = 0.22, Pr = 0.71, Gr = 10,
ϵ = 0.05, Nr = 1, K = 10, M2 = 0.8,
nt = π/2

.

Figure 16. Velocity distribution for
different values of α and ϵ=0.3.
Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, Gr = 10, K = 10,
M2 = 0.8, nt = π/2.
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Figure 17. Temperature distribu-
tion for different values of α and
Nr=4.5.
Sc = 0.22, Pr = 0.2, Gm = 10,
Gr = 10, ϵ = 0.05, K = 10,
M2 = 0.8, nt = π/2.

Figure 18. Temperature distribu-
tion for different values of α and
Pr=0.025.
Sc = 0.22, Nr = 1, Gm = 10,
Gr = 10, ϵ = 0.05, K = 10,
M2 = 0.8, nt = π/2

.

Figure 19. Concentration distribu-
tion for different values of α and Sc =
0.01,
Pr = 0.2, Nr = 1, Gm = 10,
Gr = 10, ϵ = 0.005, K = 10,
M2 = 0.8, nt = π/2

.

4.1.2. Blood flow problem under the influence
of MHD in non-porous media

In this section, an unstable MHD blood flow prob-
lem along a non-porous vessel has been examined.

Figures 20, 21, 22, 23 and 24 show the varia-
tions in blood flow velocity. Similar to the porous
medium, the velocity first increases and then de-
creases. The effect of parameters is very similar
to that in the porous medium.

In Figure 20, it is observed that the axial velocity
decreases as M2 increases. In Figure 21, when the
Gr number decreases, the velocity also decreases.
Figure 22 shows that when Gm decreases, the ve-
locity decreases similar to what is observed in Fig-
ure 21. Figure 23 is plotted using the data from
the Figure 22. The only difference is that a back-
ward difference has been used for the derivative
term with respect to y When comparing the two
graphs, no significant difference is observed. This
situation indicates that the obtained results are
more reliable. In Figure 24, it is observed that
the velocity also decreases when ϵ decreases.

Figure 20. Velocity distribution for
different values of M2 in non-porous
media
Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, Gr = 10, ϵ = 0.005,
nt = π/2.

.

Figure 21. Velocity distribution for
different values of Gr in non-porous
media
Sc = 0.22, Pr = 0.71, Nr = 1,
Gm = 10, ϵ = 0.005, nt = π/2.

.
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Figure 22. Velocity distribution for
different values of Gm in non-porous
media
(The graph plotted using central dif-
ferencing method)
Sc = 0.22, Pr = 0.71, M2 = 0.8,
Gr = 10, ϵ = 0.005, Nr = 1,
nt = π/2

.

Figure 23. Velocity distribution for
different values of Gm in non-porous
media
(The graph plotted using backward
differencing method)
Sc = 0.22, Pr = 0.71, M2 = 0.8,
Gr = 10, ϵ = 0.005, Nr = 1,
nt = π/2

.

Figure 24. Velocity distribution for
different values of ϵ in non-porous me-
dia
Sc = 0.22, Pr = 0.71, M2 = 0.8,
Gr = 10, Gm = 10, Nr = 1,
nt = π/2.

.

5. Conclusions

In this article, a flow model considering the
MHD effect and the time-fractional derivative
in a porous medium, with the fluid assumed to
be blood, was initially studied. Finite differ-
ences and Grünwald-Letnikov approaches were
employed in numerical computations. The re-
search aimed to investigate whether there were
differences between integer-order derivatives and
fractional-order derivatives for varying parameter
values. For example, the increase in the M num-
ber has led to a decrease in speed, indicating a
decrease in velocity due to the effect of the mag-
netic field. Erdem Murat, and their colleagues
have also obtained similar results. They explained
this change as being caused by the retarding ef-
fect of the Lorentz force [26]. When Figure 8 is
examined, it can be seen that as Nr decreases, the
temperature also decreases. Similar results were
obtained by C. D. K. Bansi and colleagues [27].

Also when Sc = 0.22, P r = 0.71, Nr = 1, Gm =
10, Gr = 10, ϵ = 0.005,K = 10,M2 = 0.5 and
nt = π/2, the change in the order of the deriva-
tive was examined for α = 1.0, 0.9, and 0.8.When
α decreased to 0.9, it exhibited a similar but lower
velocity profile to α = 1, and when α = 0.8,
a lower velocity profile compared to the previ-
ous case was observed. As we moved away from
the integer order derivative, the flow velocity de-
creased.

Additionally, in this study, the non-porous
medium scenario was considered and the inves-
tigation showed that there was not a significant
difference in the flow model with varying param-
eters and fractional derivatives when the medium
is non-porous.
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6. Symbols

Gr, Grashof number,

Gm, solute Grashof number

K, permeability parameter,

M , Hartmann number,

Nr, radiation parameter,

Pr, Prandtl number,

Sc, Schmidt number,

u, dimensionless velocity,

ϵ, small positive constant ( ≪ 1),

g, acceleration due to gravity,

β, coefficient of thermal expansion,

β∗, coefficient of thermal expansion with concen-
tration,

B0, applied magnetic field,

υ0, scale of suction velocity (non-zero constant),

ν, kinematic coefficient of viscosity,

σ, electrical conductivity,

ρ, density of fluid,

T , temperature,

Tw, surface temperature,

T∞, temperature of the ambient fluid,

C, concentration,

Cw, concentration of fluid at the sheet,

C∞, concentration of the ambient fluid,

D, thermal molecular diffusivity,

k1, thermal conductivity,

K0, constant permeability of the medium,

n′, frequency of oscillation,

qr, radiative heat flux,

cp, specific heat at constant pressure,

σ∗, Stefan-Boltzmann constant,

k∗, mean absorption coefficient.
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