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Time-delay fractional optimal control problems (OCPs) are an important
research area for developing effective control and optimization strategies to
address complex phenomena occurring in various natural sciences, such as
physics, chemistry, biology, and engineering. By considering fractional OCPs
with time delays, we can design control strategies that take into account the
system’s history and optimize its behavior over a given time horizon. However,
applying the Pontryagin principle of maximization to solve these problems
leads to a boundary value problem (BVP) that includes delay and advance
terms, making analytical solutions difficult and demanding. To address this
issue, this paper presents a precise finite difference formula to solve the
aforementioned advance-delay BVP numerically. The suggested approximate
method’s error analysis and convergence properties are provided, and several
illustrative examples demonstrate the applicability, validity, and accuracy of
the proposed approach. Simulation results confirm the proposed technique’s
advantages for the optimal control of delay fractional dynamical equations.
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1. Introduction

Over the past few years, fractional calculus
(FC), as a generalization of classical calculus,
has attracted the attention of scientists and
engineers for describing various types of physical
phenomena [1]. In fact, this calculus is
known as a powerful tool for the modelling of
complex dynamical systems related to memory
effects and non-locality [2]. The FC has some
applications in epidemic modelling [3], finance
[4], diffusion equations [5], outbreak control [6],
quasi-synchronization [7], image diagnosis [8],
chaos control [9], etc. Due to the difficulty
of analytical solution for fractional dynamical
systems, some efficient approximation approaches
have been proposed for the numerical solution

of various problems containing fractional-order
operators, e.g., differential equations [10],
delay-dependent systems [11], etc.

Optimal control problems (OCPs) play a
crucial role in determining the best strategies
for controlling dynamic systems over time,
with applications ranging from engineering and
economics to biology and robotics [12–14]. A
delay fractional OCP tries to find a control
law for a delay fractional dynamical system
by minimizing a cost functional in terms of
the corresponding state and control variables
[15]. The study of time-delay fractional
OCPs is critical to develop efficient control and
optimization strategies for addressing complex
phenomena in various natural sciences, such
as physics, chemistry, biology, and engineering.
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However, due to the high complexity of
fractional OCPs with time-delay, it is extremely
difficult to obtain their analytical solution
[16]. To solve this issue, in the past decade,
some numerical techniques have been developed
including finite difference method [17, 18],
Bernstein polynomials [19], Legendre polynomials
[20, 21], linear programming technique [22],
Lagrange polynomials [23], neural network [24],
Taylor expansions [25], Chelyshkov wavelets
[26], embedding process [27], and fractional
orthogonal basis functions [28]. More recently,
the paper [29] presented a collocation method
for solving nonlinear delay fractional optimal
control systems with constraints on the state and
control variables. Another study [30] focused on
time-optimal feedback control of nonlocal Hilfer
fractional state-dependent delay inclusion with
Clarke’s subdifferential. The new work [31]
also introduced Mittag-Leffler wavelets and their
applications for solving fractional OCPs with and
without delay.

The field of fractional OCPs with time delays
presents a significant challenge due to the
complexity introduced by considering both FC
and time-delay terms simultaneously. While
there is existing research on fractional OCPs
and time-delay systems independently, the
intersection of these two areas remains relatively
unexplored. Current methods for solving
delay-dependent fractional OCPs often face
difficulties in providing accurate and efficient
solutions due to the intricate nature of the
boundary value problem (BVP) resulting from
applying the Pontryagin maximum principle.
Analytical solutions for such advance-delay BVPs
are scarce, leading to a gap in the literature
regarding effective numerical solution techniques
tailored specifically for this challenging class of
problems. Therefore, there is a pressing need
for innovative approaches that can accurately
and reliably address the unique characteristics
of delay-dependent fractional OCPs, providing
researchers and practitioners with appropriate
tools for optimizing complex dynamical systems
subjected to FC and time delays.

This research article addresses the above-mentioned
critical research gap in the field of fractional
OCPs with time delays. The study’s significance
lies in its focus on developing effective
control and optimization strategies for complex
phenomena present in various natural sciences
and engineering, where FC and time delays
play crucial roles. By introducing a precise
finite difference formula to numerically solve
advance-delay BVPs arising from applying the

Pontryagin maximum principle, this research
offers an innovative approach tailored specifically
for this challenging class of problems. The
study’s novelty is evident in its unique
contributions, including the development of
a novel numerical solution technique for
delay-dependent fractional OCPs, comprehensive
error analysis and convergence properties of the
proposed method, as well as illustrative examples
demonstrating its applicability and accuracy.
This research’s potential impact is substantial,
as it provides researchers and practitioners
with appropriate tools for optimizing complex
dynamical systems subjected to FC and time
delays, ultimately advancing the state-of-the-art
in this underexplored intersection of FC and
time-delay systems.

2. Problem Statement

Consider the following fractional dynamical
system with time-delay


C
τ0D

γ
τ z(τ) = A1(τ)z(τ) +Ad(τ)z(τ −m)

+B1(τ)v(τ), τ0 ≤ τ ≤ τf , (1a)

z(τ) = ψ(τ), τ0 −m ≤ τ ≤ τ0, (1b)

in which z ∈ Rq is the state vector, and
the symbol C

τ0D
γ
τ z(τ) signifies the left Caputo

fractional derivative [32]

C
τ0D

γ
τ z(τ) =

1

Γ(1− γ)

∫ τ

τ0

(τ − ξ)−γ dz(ξ)

dξ
dξ, (2)

in which the derivative order is denoted by
γ (0 < γ ≤ 1). Also, the parameter
m is the state time-delay, v ∈ Rr is the
control variable, and the coefficients A1(τ), Ad(τ),
and B1(τ) are continuous-time matrix functions.
Following the optimal control concept, it is
desired to determine the control v(τ) minimizing
the following performance index

J =
1

2

∫ τf

τ0

(
zT (τ)Qz(τ) + vT (τ)Rv(τ)

)
dτ, (3)

where the matrices R ∈ Rr×r and Q ∈ Rq×q are,
respectively, assumed to be positive definite and
positive semi-definite.

Theorem 1. (Pontryagin conditions of
optimality) Under the constraint given by the
dynamical system (1), if (z(τ), v(τ)) is a
minimizer of (3), then the costate vector y(τ)
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exists such that the following conditions are
satisfied:

• the Hamiltonian system, for τ0 ≤ τ ≤ τf ,
C
τ0D

γ
τ z(τ) =

∂H
∂y(τ)

, (4a)

R
τ Dγ

τf
y(τ) =

∂H
∂z(τ)

+A2(τ)y(τ +m), (4b)

• the stationary condition, for τ0 ≤ τ ≤ τf ,

∂H
∂v(τ)

= 0, (5)

• and the transversality condition

y(τ)|τ=τf
= 0, (6)

where R
τ Dγ

τf
y(τ) (0 < γ ≤ 1) is the γ-th order

right Riemann-Liouville fractional derivative of
y(τ) defined by [32]

R
τ Dγ

τf
y(τ) =

1

Γ(1− γ)

d

dτ

∫ τf

τ
(ξ − τ)−γy(ξ)dξ,

(7)

A2(τ) = Ad(τ + m)χ[τ0,τf−m](τ), and χ[a,b]

represents the characteristic function on the
interval [a, b]. The function H, called the
Hamiltonian, has also the following form

H:=0.5
(
zT (τ)Qz(τ) + vT (τ)Rv(τ)

)
+yT(τ) (A1(τ)z(τ) +Ad(τ)z(τ −m)

+B1(τ)v(τ)) .
(8)

Proof. First, we adjoin the dynamical
constraint (1) to the performance index (3) by
introducing the Lagrange multiplier y(τ) ∈ Rq,
so the following augmented functional can be
formed

Ja(v) =

∫ τf

τ0

[
H− yT(τ) C

τ0D
γ
τ z(τ)

]
dτ. (9)

Let δf(τ) denote the variation of the function
f(τ); then we take the variation of Ja(v) as

δJa(v) =

∫ τf

τ0

{[
∂H
∂z(τ)

]T
δz(τ)

+

[
∂H

∂z(τ −m)

]T
δz(τ −m)

+

[
∂H
∂y(τ)

− C
τ0D

γ
τ z(τ)

]T
δy(τ)

+

[
∂H
∂v(τ)

]T
δv(τ)

−yT(τ) C
τ0D

γ
τ δz(τ)

}
dτ.

(10)

Next, it is easily derived that

∫ τf

τ0

{[
∂H

∂z(τ −m)

]T
δz(τ −m)

}
dt

=

∫ τf

τ0

{
yT(τ)AT

d (τ)δz(τ −m)
}
dτ

=

∫ τf

m
(Ad(τ)y(τ))

T δz(τ −m)dτ

=

∫ τf

τ0

(A2(τ)y(τ +m))T δz(τ)dτ,

(11)

where A2(τ) = Ad(τ +m)χ[τ0,τf−m](τ), and χ[a,b]

denotes the characteristic function on the interval
[a, b]. Furthermore, by using the fractional
integration by parts [32] and taking into account
the transversality condition (6), we have

∫ τf

τ0

yT(τ) C
τ0D

γ
τ δz(τ)dτ

=

∫ τf

τ0

(
R
τ Dγ

τf
y(τ)

)T
δz(τ)dτ.

(12)

From Eqs. (10), (11) and (12), we deduce

δJa(v) =

∫ τf

τ0

{[
∂H
∂z(τ)

+A2(τ)y(τ +m)

−R
τ Dγ

τf
y(τ)

]T
δz(τ)

+

[
∂H
∂y(τ)

− C
τ0D

γ
τ z(τ)

]T
δy(τ)

+

[
∂H
∂v(τ)

]T
δv(τ)

}
dτ.

(13)

On an extremal v∗, we require that δJa(v
∗) = 0.

Thus, in Eq. (13), each factor multiplying a
variation has to be vanished. Since z(τ0) is
specified, it is concluded δz(τ0) = 0, but δz(τf ) is
not equal to 0; thus, it is required that y(τf ) = 0.
Furthermore, the necessary conditions given by
Eqs. (4) and (5) are achieved by setting to 0
the coefficients of δz(τ), δy(τ), and δv(τ) in
Eq. (13). □

Applying the Pontryagin’s optimality conditions
given by Theorem 1 for the time-delay fractional
OCP (1)-(3) leads to the following fractional
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advance-delay BVP

C
τ0D

γ
τ z(τ) = A1(τ)z(τ)

+Ad(τ)z(τ −m)− S(τ)y(τ), (14a)

τ0 ≤ τ ≤ τf ,

R
τ Dγ

τf
y(τ) = Qz(τ) +AT

1 (τ)y(τ)

+A2(τ)y(τ +m), (14b)

τ0 ≤ τ ≤ τf ,

with the following conditions{
z(τ) = ψ1(τ), τ0 −m ≤ τ ≤ τ0, (15a)

y(tf ) = 0, (15b)

where y(τ + m) is the advance term in time,
z(τ −m) is the time-delay argument, and S(τ) =
B1(τ)R

−1BT
1 (τ). Moreover, the optimal control

law has the following form

v∗(τ) = −R−1BT
1 (τ)y(τ), τ0 ≤ τ ≤ τf . (16)

The analytical solution of the fractional
BVP (14)-(15), including the advance and
the delay arguments, is not accessible.
Thus, our main objective is to develop an
effective approximate procedure to solve the
above-mentioned BVP numerically.

3. Some Notations and Lemmas

The fractional derivatives in the senses of
left Caputo and right Riemann-Liouville have
previously been defined in (2) and (7),
respectively. In the following, we give some
more definitions and properties of Caputo and
Riemann-Liouville fractional operators.

The left Riemann-Liouville fractional derivative
of z(τ) is defined by [32]

R
τ0D

γ
τ z(τ) =

1

Γ(1− γ)

d

dτ

∫ τ

τ0

(τ − ξ)−γz(ξ)dξ, (17)

where 0 < γ ≤ 1 denotes the fractional order.

Regarding the left and right fractional derivatives
in the senses of Riemann-Liouville and Caputo,
the following properties hold [32]

C
τ0D

γ
τ z(τ) =

R
τ0D

γ
τ z(τ)

− z(τ0)

Γ(1− γ)
(τ − τ0)

−γ ,

C
τ Dγ

τf
z(τ) = R

τ Dγ
τf
z(τ)

−
z(τf )

Γ(1− γ)
(τf − τ)−γ .

(18)

Definition 1. In order to approximate the
left and right Riemann-Liouville fractional
derivatives, the shifted Grünwald-Letnikov (SGL)

difference operators are defined as below [33]

Λγ
h,pz(τ) =

1

hγ

[
τ−τ0

h
]+p∑

k=0

w
(γ)
k z(τ − (k − p)h), (19)

Υγ
h,pz(τ) =

1

hγ

[
τf−τ

h
]+p∑

k=0

w
(γ)
k z(τ + (k − p)h), (20)

where h is the time step size, p is an integer, and

w
(γ)
k = (−1)k

(
γ
k

)
. Also, within the following

power series, the coefficients w
(γ)
k are satisfied

(1− x)γ =

∞∑
k=0

w
(γ)
k xk, (21)

so the following recursive formula computes them

w
(γ)
0 = 1, w

(γ)
k = (1− γ + 1

k
)w

(γ)
k−1, k ≥ 1.

(22)

From (21) and (22), some important properties

of the coefficients w
(γ)
k can easily be deduced, as

stated in the following lemma.

Lemma 1. Let 0 < γ < 1; then the coefficients

w
(γ)
k , given by Eq. (22), satisfy the properties

(1) w
(γ)
0 = 1, w

(γ)
1 = −γ, w

(γ)
k < 0, k ≥ 2,

(2) −
∑n

k=1w
(γ)
k < 1, ∀ n ≥ 1,

(3)
∑∞

k=0w
(γ)
k = 0.

Now, the space function Lj(R) is defined as

Lj(R) ={
z :

∫∞
−∞(1 + |ω|)j |ẑ(ω)|dω <∞;

ẑ is the Fourier transform of z} .
(23)

It is easy to show that for 0 < γ ≤ 1, if z ∈ L2(R),
then z ∈ L1+γ(R).

Lemma 2. Let z(τ) ∈ Cj(R), d
j+1z(τ)
dτ j+1 ∈ L1(R),

dkz(τ)
dτk

|τ=τ0 = 0 for k = 0, 1, 2, . . . , j, and 0 < γ ≤
1; then

Λγ
h,pz(τ) =

R
τ0D

γ
τ z(τ)

+

j−1∑
l=1

ωl(p)
R
τ0D

γ+l
τ z(τ)hl +O(hj),

(24)

in which ωl(p) is the coefficient of the power series(
1−e−x

x

)γ
epx − 1; in particular,

ω1(p) = p− γ

2
, ω2(p) =

γ

24
+

1

2
(p− γ

2
)2. (25)

Proof. The proof of this lemma is easily followed
from Theorem 1 in [34]. □

Using Lemma 2, we can formulate a third-order
difference operator for the Riemann-Liouville
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fractional derivative (17), as given by the
following definition.

Definition 2. We define a weighted SGL
difference operator for the Riemann-Liouville
fractional derivative (17) as follows

R
τ0∆

γ
hz(τ) =

2 + γ

2
Λγ
h,0z(τ)−

γ

2
Λγ
h,−1z(τ), (26)

where the operator Λγ
h,p has been given by (19).

Lemma 3. Let 0 < γ ≤ 1, and z(τ), its Fourier

transform, and R
τ0D

γ+2
τ z(τ) belong to L1(R). Then

for τ ∈ R
R
τ0∆

γ
hz(τ) =

R
τ0D

γ
τ z(τ) +O(h2), (27)

uniformly as h→ 0, where the operator R
τ0∆

γ
hz(τ)

has been defined in (26).

Proof. Let F [z(τ)](ω) = ẑ(ω) =
∫
e−iωξz(ξ)dξ

be the Fourier transform of z(τ), where i =
√
−1;

thus, we have F [z(τ − kh)](ω) = e−ikωhẑ(ω).
For each τ ∈ R, we also have F [Rτ0D

γ
τ z(τ)](ω) =

(iω)γ ẑ(ω). Applying the Fourier transform to the
both sides of Eq. (26), for each τ ∈ R we obtain

F [Rτ0∆
γ
hz(τ)](ω)

=
1

hγ
(1− e−iωh)γ(

2 + γ

2
− γ

2
e−iωh)ẑ(ω)

= σ2(iωh)(iω)
γ ẑ(ω),

(28)

where

σ2(x) =
(
1−e−x

x

)γ
(2+γ

2 − γ
2 e

−x)

= 1− γ

24
(5 + 3γ)x2 +O(x3).

(29)

There exists a positive constant C2 such that
|1 − σ2(−ix)| ≤ C2|x|2. Now, we apply the
inverse Fourier transform; since z(τ) ∈ Lγ+2(R),
we derive∣∣R

τ0D
γ
τ z(τ)− R

τ0∆
γ
hz(τ)

∣∣
=

∣∣∣∣ 1

2πi

∫ ∞

−∞
e−iωτ×

(F [Rτ0D
γ
τ z(τ)− R

τ0∆
γ
hz(τ)](ω))dω

∣∣
=

∣∣∣∣ 1

2πi

∫ ∞

−∞
e−iωτ×

(1− σ2(iωh))(iω)
γ ẑ(ω)dω|

≤ |h|2 1

2πi

∫ ∞

−∞
|ω|2+γ |ẑ(ω)|dω

≤ C2|h|2
1

2πi

∫ ∞

−∞
|1 + ω|2+γ |ẑ(ω)|dω

≤ C̃|h|2,

(30)

where C̃ = C2
2πi

∫∞
−∞ |1 + ω|2+γ |ẑ(ω)|dω. □

Definition 3. From (26), we can formally
define the second-order weighted SGL difference
(SGL2) operators as follows for the left and right

Riemann-Liouville fractional derivatives

R
τ0∆

γ
hz(τn) =

1

hγ

n∑
k=0

g
(γ)
k z(τn − kh), (31)

R
τf
∆γ

hz(τn) =
1

hγ

n∑
k=0

g
(γ)
k z(τn + kh), (32)

where h is the time step size and{
g
(γ)
0 = 2+γ

2 w
(γ)
0 ,

g
(γ)
k = 2+γ

2 w
(γ)
k − γ

2w
(γ)
k−1, k = 2, 3, . . . .

(33)

Lemma 3 shows that the SGL2 operator (31) has
the second-order of accuracy at every time level.

Remark 1. Let z(τ0) = 0 and 0 < γ ≤ 1; then
by using integrating by parts, we have

R
τ0D

γ
τ z(h) =

1

Γ(1− γ)

∫ h

τ0

z′(ξ)

(h− ξ)γ
dξ

=
z′(τ0)h

1−γ

Γ(2− γ)
+

1

Γ(2− γ)

∫ h

τ0

z′′(ξ)

(h− ξ)γ−1
dξ.

(34)

Therefore, if the function z(τ) has no derivative
at τ = τ0, then the SGL2 formula (31) is of
accuracy order 1−γ. Moreover, the SGL2 formula
is of accuracy order 2 − γ if z′(τ0) = 0 and the
second derivative of z(τ) does not exist at τ = τ0.

Now, we present the following properties for

{g(γ)k } by using Lemmas 1 and 3.

Lemma 4. For 0 < γ ≤ 1, the following
properties are satisfied by the coefficients in (33):

(1) g
(γ)
0 = 1 + γ

2 , g
(γ)
1 = −γ(γ+3)

2 ,

g
(γ)
2 = γ(γ+3γ−2)

4 , g
(γ)
k < 0, k ≥ 3,

(2) −
∑n

k=1 g
(γ)
k < g

(γ)
0 , ∀ n ≥ 2,

(3)
∑∞

k=0 g
(γ)
k = 0.

4. Numerical Method Formulation

Following the theoretical parts given in the
previous section, here we formulate an accurate
finite difference method to solve the fractional
advance-delay BVP (14)-(15). To this end, first
consider that the approximate values of z(τn) and
y(τn) are denoted by zn and yn, respectively.
Applying the SGL2 formulas (31) and (32) on
the uniform grid points τn = τ0 + nh (n =

0, 1, . . . , N) with h =
τf−τ0
N as the time step size,

a full discretization of the Pontryagin’s conditions
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(14)-(15) is formulated as follows

R
τ0∆

γ
hzn = A1(τn)zn +Ad(τn)ẑn

−S(τn)yn, τ0 ≤ τ ≤ τf , (35a)
R
τf
∆γ

hyn = Qzn +AT
1 (τn)yn

+A2(τn)ỹn, τ0 ≤ τ ≤ τf , (35b)

z−n = ψ(τ−n), n = 0, 1, 2, . . . , (35c)

yN = 0, (35d)

where τ−n = τ0 − nh, and

ẑn = z(τn − h)

≈


ψ(τn − h),
τn − h ≤ τ0,

p1(τn − h; zk, zk+1),
τ0 < τk ≤ τn − h < τk+1,

(36)

ỹn = y(τn + h)

≈


p1(τn + h; yi−1, yi),
τi−1 ≤ τn + h < τi,

0,
τf ≤ τn + h,

(37)

in which 0 ≤ i, k ≤ N − 1. Besides, the function
p1 is the linear interpolation polynomial

p1(ξ; zk, zk+1) =
ξ − τk
h

zk+1 +
τk+1 − ξ

h
zk, (38)

determined by the support points (τk, zk) and
(τk+1, zk+1). Therefore, the value of the optimal
control for n = 0, 1, . . . , N is approximated by

v∗n = −R−1BT
1 (τn)yn, (39)

where v∗n represents the numerical approximation
of v∗(τn).

5. Numerical Examples

Here, we employ three numerical examples to
show the effectiveness of the proposed finite
difference technique. Comparative results are also
given to verify the superiority of the suggested
scheme over the other methodologies available in
the literature.

Example 1. As the first case, consider a delay
fractional OCP in the form of minimizing

J =
1

2

∫ 2

0

(
z2(τ) + v2(τ)

)
dτ, (40)

subject to{
C
0 D

γ
τ z(τ) = τz(τ − 1) + v(τ), 0 ≤ τ ≤ 2,

z(τ) = 1, −1 ≤ τ ≤ 0.

(41)

Solving the problem (40)-(41) for different
values of γ, we portray, in Figure 1, the

approximate state and control functions.
Meanwhile, the performance index values J =
1.0807, 1.0658, 1.0510 were attained for γ =
0.8, 0.9, 1, respectively. As can be seen from
Figure 1, the numerical approximation goes to
the classic solution when γ tends to unity. Also,
as depicted in Table 1, the cost functional values
obtained by our proposed scheme is less than
those previously achieved in [35] by using a linear
programming (LP) control strategy. Thus, the
given comparative discussion in this part verifies
the efficiency of the suggested technique for
solving the fractional OCP (40)-(41).

Table 1. Comparison of the
approximate values for J (Example
1).

γ Method
LP strategy [35] Proposed technique

0.8 1.0807 1.0658
0.9 1.0658 1.0658
0.1 1.0514 1.0510

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 (sec.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

z
(

)

 = 0.8

 = 0.9

 = 1 (classic solution)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 (sec.)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4
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Figure 1. Simulation curves of z(τ)
and v(τ) for Example 1.

Example 2. Let us take into account, as the
second example, the performance index

J =
1

2

∫ 1

0

{
(z1(τ) + z2(τ))

2 + v2(τ)
}
dτ, (42)
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together with the delay fractional dynamical
equations

C
0 D

γ
τ z1(τ) = τz1(τ) + z2(τ − 1

4), 0 ≤ τ ≤ 1,
C
0 D

γ
τ z2(τ) = τ2z2(τ)− 5z1(τ − 1

4)

−z2(τ − 1
4) + v(τ), 0 ≤ τ ≤ 1,

(43)
and the initial conditions[

z1(τ)
z2(τ)

]
=

[
1
1

]
, −1

4
≤ τ ≤ 0. (44)

We plot the state and control variables in Figure 2
for some values of γ. Also, the performance index
values J = 2.7999, 2.2393, 1.7548 were obtained
for γ = 0.8, 0.9, 1, respectively. Comparing the
results with those reported in [35] shows a good
agreement, a fact which confirms the efficiency of
our proposed scheme to solve the delay fractional
OCP (42)-(44). In addition, the classic solution
is recovered by the fractional response in Figure 2
when γ goes to 1, a fact which is in line with
the correctness of our numerical implementation.
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Figure 2. Simulation curves of
z1(τ), z2(τ), and v(τ) for Example 2.

Example 3. As a practical case, here we consider
the minimization of

J =

∫ tf

0

(
104z21(τ) + v2(τ)

)
dτ, (45)

subject to the simplified fractional model

C
0 Dγ

τ z(τ) =

 −a 0 0
0 0 1
0 −ω2 −2ξω

 z(τ)
+

 0 ka 0
0 0 0
0 0 0

 z(τ − 0.33)

+

 0
0
ω2

 v(τ), τ ≥ 0,

(46)

which is connected to a wind tunnel at the
NASA Langley Research Center. The vector
z(τ) represents z(τ) = (z1(τ), z2(τ), z3(τ)), the

parameters in the model (46) take the values
1

a
=

1.964, ξ = 0.8, ω = 6, and k = −0.0117, and the
initial conditions are considered as

z(τ) =

 −0.1
8.547
0

 , −0.33 ≤ τ ≤ 0. (47)

Simulation curves of z1(τ), z2(τ), z3(τ), and v(τ)
for τf = 20 and γ = 0.8, 0.9, 1 are shown in
Figure 3. This figure confirms the convergence
of the fractional response to the classic solution,
given in [36], as γ goes to 1. Comparison of
our numerical findings with those reported in
[35] also shows that the new scheme is accurate
and efficient to solve the delay fractional OCP
(45)-(47).

6. Conclusion

In this study, we presented an approximate
numerical solution for time-delay fractional OCPs
using a novel finite difference formula. We began
by formulating the optimality conditions as a
system of fractional advance-delay BVPs and then
applied our accurate finite difference method to
solve these complex problems. The error analysis
and convergence properties of the proposed
method were discussed in detail, demonstrating
its reliability and effectiveness. Through
several illustrative examples and associated
simulation results, we showed the accuracy,
validity, and correctness of our approach.
In particular, our third example, which is
connected to a wind tunnel at the NASA
Langley Research Center, served as a practical
case demonstrating the applicability of our
method to real-world problems in engineering
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Figure 3. Simulation curves of z1(τ), z2(τ), z3(τ), and v(τ) for Example 3.

and aerodynamics. Furthermore, comparative
experiments highlighted the superiority of our
new method over other approximation schemes
developed in previous studies. These results
not only validate the effectiveness of our
approach but also emphasize its potential
for addressing challenging problems in various
natural sciences and engineering disciplines.
Looking ahead, future perspectives of our work
include exploring extensions of the proposed
method to more complex systems and further
practical applications. Future research directions
may also involve further refining the algorithm,
exploring additional applications across diverse
scientific disciplines, and potentially integrating
advanced computational techniques to enhance
the method’s efficiency.
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