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1. Introduction

Consider the following FBVP

u′′ = −λu, t ∈ [a, b] (1)

which satisfy the conditions

âi1u (a) = âi2u
′ (a) (2)

b̂i1u (b) = b̂i2u
′ (b) (3)

where âi1, âi2, b̂i1, b̂i2 intuitionistic fuzzy num-

bers, λ > 0, at least one of the numbers âi1 and

âi2 and at least one of the numbers b̂i1 and b̂i2 are
nonzero.

The subject of fuzzy differential equations (FDEs)
was first introduced by Kaleva [1] and Seikkala [2]
and has been expended and studied by many re-
searchers for the purpose of modeling problems
in science and engineering [3–6]. Most practical
problems require the solution of an FDE satis-
fying fuzzy initial or boundary conditions., so a
fuzzy initial value problem (IVP) or boundary
value problem (BVP) should be solved. There are
several approaches to solve fuzzy problems such
as the Hukuhara derivative or Seikkala derivative,
the differential inclusion and the derivative based

on the Zadeh’s extension principle which is widely
used for FDEs [7–16].

Puri and Dan introduced the H-derivative [17],
and later it was further explored by Kaleva [1] and
Seikkala [2]. But in some cases the H-derivative
method has a disadvantage that a fuzzy differen-
tial equation may have only solutions with nonde-
creasing lengths of the diameter of the level sets
[1, 18]. This disadvantage was solved by Hüller-
meier [19], who interpreted a FDE as a family
of differential inclusions. Another approach to
solve fuzzy problem has been proposed, including
Zadeh’s extension principle expanding the ordi-
nary differential equations to the fuzzy cases [20].
Then the arithmetic operations are considered to
be operations on fuzzy numbers [21].

An effective concept of the differentiability
of fuzzy-valued functions is given as the
strongly generalized differentiability concept (gh-
differentiability) which was first introduced by
Bede et al [22]. The fuzzy solutions with gh-
differentiability have some not an interval solu-
tions which are associated with the existence of
switch points [23]. In addition, Gasilov et al. ar-
gued that the solutions obtained by the method of
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Khastan and Nieto [7] are difficult to evaluate, be-
cause the solutions to the four different problems
may not reflect the nature of the phenomenon be-
ing studied [9].

Recently, intutionistic fuzzy set theory (IFST) has
become very popular. It is used in various indus-
tries, robotics, in audiovisual systems etc. There-
fore, many researchers have dedicated their time
to the development of IFST. Atanassov [24] gen-
eralized the concept of fuzzy set theory by intu-
itionistic fuzzy set (IFS) which is an extension of
fuzzy set introduced by Zadeh [25]. The degree of
acceptance in fuzzy sets is only considered, other-
wise IFS is characterized by a membership func-
tion and a non-membership function so that the
sum of both values is less than one [26, 27]. The
concept of intuitionistic fuzzy metric space has
been introduced Melliani et al. [28] and differen-
tial and partial differential equations have been
discussed under intuitionistic fuzzy environment.

On the other hand, Melliani et al. [10] gave the
the existence and uniqueness theorem of a solu-
tion to the intuitionistic FDE. Numerical solution
of intuitionistic FDE by Runge-Kutta method has
been introduced with intuitionistic treatment in
[29] and by Euler method has been discussed by
Nirmala and Chenthur Pandian based on the α−
level [30].

In literature, although there are many approaches
to solve the FDEs, there are only few papers such
as [11–14, 31] in which the eigenvalues and the
eigenfunctions of the FBVP are examined by us-
ing different methods such as H-differentiabilty,
gH-differentiability and the Zadeh’s extension
principle.

The main aim of this research is to find eigen-
values of FBVP under the intuitionistic Zadeh’s
extension principle [32].

In this work, the solutions of the intuitionistic
fuzzy eigenvalue problem are studied. The rest
of this study is organized as follows, In Section 2,
consists of basic definitions related to intuitionis-
tic fuzzy set theory. In Section 3, intuitionistic
fuzzy problem and a numerical example is given.
Conclusion of the paper is in section 4.

2. Preliminaries

Before proceeding to the solution method, the no-
tations and definitions that will be used through-
out the paper are given. To denote an intuition-
istic fuzzy number, a bar of the form̂i is placed

over a letter. Also, ûi(t) is written for intuition-
istic fuzzy-valued functions defined over the real
numbers.

Definition 1. [26] Let A ⊆ X and let µA(t) :
X → [0, 1], ζA(t) : X → [0, 1] be two functions
such that 0 ≤ µA(t) + ζA(t) ≤ 1. The set

Âi = {(t, µA(t), ζA(t)) : t ∈ X,

µA(t), ζA(t) : X → [0, 1]}
is called an intuitionistic fuzzy set of X.

Here µA(t) is called membership function and
ζA(t) is called non-membership function and the
set of all intuitionistic fuzzy sets of X will be de-
noted by IF (X).

Definition 2. [26] Let Âi ∈ IF (X). The set

A(α, β) = {t ∈ X : α, β ∈ [0, 1] ;

µA(t) ≥ α, ζA(t) ≤ β, 0 ≤ α+ β ≤ 1}
is called the (α, β)-level of the intuitionistic fuzzy

set Âi.

Theorem 1. [26] Let Âi ∈ IF (X). Then
A(α, β) = A(α) ∩ A∗(β) holds.Here A(α) is
α−level set and A∗(β) is β−level set.

Definition 3. [26] An intuitionistic fuzzy set

Âi ∈ IF (Rn) satisfying the following properties
is called an intuitionistic fuzzy number in Rn

1) Âi is a normal set, i.e., ∃ t0 ∈ Rn such that
µA(t0) = 1 and vA(t0) = 0,

2) A(0) and A∗(1) are bounded sets in Rn,

3) µA : Rn → [0, 1] is an upper semi-continuous
function, i.e.,

∀ k ∈ [0, 1], ({t ∈ A : µA(t) < k}) is an open
set.

4) ζA : Rn → [0, 1] is a lower semi-continuous
function, i.e.,

∀ k ∈ [0, 1]({t ∈ A : ζA(t) > k}) is an open set.

5) The membership function µA(t) is quasi-
concave, i.e.,

∀ n ∈ [0, 1], ∀ x, y ∈ Rn

µA(nt+ (1− n)x) ≥ min(µA(t), µA(x)),

6) The non-membership function ζA(t) is quasi-
convex; i.e.,

∀ n ∈ [0, 1], ∀x, y ∈ Rn

ζA(nt+ (1− n)x) ≤ max(ζA(t), ζA(x)).

The set of all intuitionistic fuzzy numbers of Rn

will be denoted by IFN(Rn).

Definition 4. [10] A triangular intuitionistic

fuzzy number (TIFN) Âi ∈ IF (Rn) is defined with
the following membership and non-membership
functions:

µA(t) =


t−a1
a2−a1

; a1 ≤ t ≤ a2
a2−t
a3−a2

; a2 ≤ t ≤ a3
0; otherwise
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and

ζA(t) =


a2−t
a2−a∗1

; a∗1 ≤ t ≤ a2
t−a2
a∗3−a2

; a2 ≤ t ≤ a∗3
1; otherwise

.

Here a∗1 ≤ a1 ≤ a2 ≤ a3 ≤ a∗3 and it is denoted by

Âi = (a1, a2, a3; a
∗
1, a2, a

∗
3).

Remark 1. [33] Let Âi ∈ IFN(R). Then
[
Â
]α

and
[
Â∗

]β
are closed and bounded intervals such

that[
Â
]α

=
[
A−

α , A
+
α

]
= [(a2 − a1)α+ a1, a3 − (a3 − a2)α]

and

[
Â∗

]α
= [a2 − (a2 − a∗1)α, (a

∗
3 − a2)α+ a2] .

Definition 5. [32] Let X and Y be two sets and

g : X → Y be a function. Let Âi be an intuitionis-

tic fuzzy set in X. Then f(Âi) is an intuitionistic
fuzzy set in Y such that for every y ∈ Y

µ
g
(
Âi

)(y) =
{

sup {µA(x) : g (x) = y} ; y ∈ g (x)
0; y /∈ f (x) ,

and

ζ
g
(
Âi

)(y) =
{

inf {ζA(x) : g (x) = y} ; y ∈ g (x)
1; y /∈ g (x) ,

Definition 6. [33] The function

θ (x) =

{
1, x ≥ 0
0, x < 0

is called the Heaviside step function.

3. Numerical Method for the FBVP

Here, the eigenvalues and the fuzzy eigenfunctions
of the intuitionistic fuzzy problem (1)-(3) are in-
vestigated. Then, similar to the method applied
by Titchmarsh [34], we will use the solutions of
(1) that satisfy the fuzzy initial conditions instead
of the fuzzy boundary conditions. To solve intu-
itionistic fuzzy IVPs, the method created by Akin
and Bayeğ is used [33]. To do this, firstly the crisp
IVP will be solved.

Then, the solution of intuitionistic FIVPs will be
obtained from classical solutions using the intu-
itionistic Zadeh’s extension principle. The fuzzy
solutions do not require the analysis of existence
of switching endpoints of α and β levels, because
Heaviside (step) function will be applied during
the interval operations on α and β levels.

Now, let the linear and homogeneous differen-
tial equation (1) be considered separately with
intuitionistic fuzzy boundary conditions (2) and
(3),respectively.

{
χ′′ + λχ = 0

χ (a) = âi2, χ
′ (a) = âi1

(4)

and {
Ψ′′ + λΨ = 0

Ψ (b) = b̂i2, Ψ
′ (b) = b̂i1.

(5)

where âi1, âi2, b̂i1, b̂i2 intuitionistic triangular
fuzzy numbers, λ > 0.

Theorem 2. [33] Let χ̂i (t) and Ψ̂i (t) be
the solution of the intuitionistic IVP in (4)
and (5) obtained by intuitionistic Zadeh’s ex-

tension principle. Let α and β levels of χ̂i

(t) and Ψ̂i (t), âik and b̂ik (k = 1, 2) be given
by [χ−

α (t, λ) , χ+
α (t, λ)], [Ψ−

α (t, λ) ,Ψ+
α (t, λ)] and[

(χ∗)−α (t, λ) , (χ∗)+α (t, λ)
]
,
[
(Ψ∗)−α (t, λ) , (Ψ∗)+α (t, λ)

]
;[

(ak)
−
α , (ak)

+
α

]
,
[
(bk)

−
α , (bk)

+
α

]
and

[
(a∗k)

−
α , (a

∗
k)

+
α

]
,[

(b∗k)
−
α , (b

∗
k)

+
α

]
, respectively. Then the α and β

levels of the solution can be determined as fol-
lows:

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−β =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+β =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

and

Ψ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

Ψ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)−β =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)+β =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

Here K1k(t) and K2k(t) are Heaviside function.

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−α =

2∑
k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+α =

2∑
k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

First, let us look for the solution to the problem
in Equation (4). Then, by performing similar op-
erations, we find the solution to the problem (5).
First of all we solve the following crisp IVP re-
lated to the fuzzy IVP in Eq. (4) and then apply
intuitionistic Zadeh’s Extension Principle to the
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solution [33]:{
χ′′ + λχ = 0

χ (a) = a2, χ
′ (a) = a1

(6)

where a1, a2 and λ are real numbers. The gen-
eral solution of the differential equation (6) can
be written as:

χλ(t) = C1χ1(t) + C2χ2(t), (7)

where C1 and C2 are arbitrary constants; χ1(t)
and χ1(t) are linearly independent functions sat-
isfying the Eq. (6).

Let us substitute the initial conditions to find the
coefficients C1 and C2 in equation Eq. (7). There-
fore, the following system of equations is obtained:{

C1χ1(a) + C2χ2(a) = a2
C1χ

′
1(a) + C2χ

′
2(a) = a1

(8)

In Eq.(8) C and B are unknown coefficients and
the following notations are used for convenience.

W =

(
w11 w12

w21 w22

)
;

w11 = χ1(a), w12 = χ2(a), w21 = χ′
1(a), w22 = χ′

2(a);

−→
C =

(
C1

C2

)
, −→a =

(
a2
a1

)
.

According to these notations, (8) is written in the
matrix form:

W
−→
C = −→a .

Using Cramer’s method, C1 and C2 are obtained
as follows:

CJ =
|W1|
|W |

− |W2|
|W |

.

Here

|W | =

∣∣∣∣ w11 w12

w21 w22

∣∣∣∣ = w11w22 − w21w12,

|W1| =

∣∣∣∣ a2 w12

a1 w22

∣∣∣∣ = a2w22 − a1w12,

|W2| =

∣∣∣∣ w11 a2
w21 a1

∣∣∣∣ = a1w11 − a2w21.

Thus, C1 and C2 can be rewritten as

C1 =
|W1|
|W |

=
a2w22 − a1w12

|W |
,

C2 =
|W2|
|W |

=
a1w11 − a2w21

|W |
.

C1 and C2 can be rewritten as follows to simplify
the above results, respectively

C1 = a2f22 − a1f12,

C2 = a1f11 − a2f21

where fij =
wij

|W | ; i, j = 1, 2.

From the results for C1 and C2, the classical so-
lution of the given crisp IVP can be derived as
follows:

χλ(t) = C1χ1(t) + C2χ2(t),

= (a2f22 − a1f12)χ1(t)

+ (a1f11 − a2f21)χ2(t).

This solution can also be written as:

χλ(t) = a2 (f22χ1(t)− f21χ2(t))

+a1 (f11χ2(t)− f12χ1(t)) .

Next the following notations are used for the sake
of its comprehension:

K11 (t) = f22χ1(t)− f21χ2(t),

K12 (t) = f11χ2(t)− f12χ1(t). (9)

Thus the solution of the crisp IVP (6) can be writ-
ten as:

χλ(t) = a2K11 (t) + a1K12 (t) . (10)

It is easy to see that the solution in Eq. (10) is lin-
early dependent only on the initial values. Now,
Zadeh’s extension principle is applied to the intu-
itionistic fuzzy sets and the solution of the fuzzy
IVP as follows:

χ̂i
λ(t) = âi2K11 (t) + âi1K12 (t) (11)

In terms of α and β levels of the intuitionistic
fuzzy numbers it is obtained that


[χ−

α (t, λ) , χ+
α (t, λ)] =

2∑
k=1

[
(ak)

−
α , (ak)

+
α

]
K1k(t)[

(χ∗)−α (t, β) , (χ∗)+α (t, β)
]
=

2∑
k=1

[
(a∗k)

−
α , (a

∗
k)

+
α

]
K1k(t)

where χ−
α (t, λ), (ak)

−
α , ; (χ∗)−α (t, λ), (a∗k)

−
α are

lower bounds for α−levels and β−levels, respec-
tively and χ+

α (t, λ), (ak)
+
α , ; (χ∗)+α (t, λ), (a∗k)

+
α

are upper bounds for α−levels and β−levels, re-
spectively

Using the Heaviside function and interval arith-

metic the α and β levels of the solution χ̂i
λ(t)

can be written as follows:

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−α =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+α =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(12)

For
[
Ψ̂i

λ(t)
]α

, a solution is found for the problem

(5) by doing similar operations. So the solution
of the crisp IVP Ψλ(t) can be written as:
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Ψλ(t) = b2K21 (t) + b1K22 (t) . (13)

Then Zadeh’s extension principle is applied and
the solution of the fuzzy IVP as follows:

Ψ̂i
λ(t) = âi2K21 (t) + âi1K22 (t) . (14)

By taking α−levels and β−levels, into account in
the solution (5) and using the Heaviside function,

the solution Ψ̂i
λ(t) can be written as follows:



Ψ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

Ψ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)−α =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)+α =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(15)

Because the eigenvalues of the problem (1)-(3)
if and only if consist of the zeros of function
W (χ,Ψ) (t, λ) in [34], Wronskian function is
found from the classical solutions (10) and (13)
for classic eigenvalue λ as follows :

W (χ,Ψ) (t, λ) = χλ(t)Ψ
′
λ(t)− χ′

λ(t)Ψλ(t). (16)

Now we give the following numerical example to
demonstrate the proposed method.

Example 1. Consider the intuitionistic fuzzy
boundary value problem

−u′′ = λu (17)

2̂iu (0) = 1̂iu′ (0) (18)

4̂iu (1) = 3̂iu′ (1) (19)

where 1̂i = (0, 1, 2;−1, 1, 3), 2̂i = (1, 2, 3; 0, 2, 4),

3̂i = (2, 3, 4; 1, 3, 5) , 4̂i = (3, 4, 5; 2, 4, 6) intuition-
istic triangular fuzzy numbers and λ = p2, p > 0.

From problem (17)-(19) , we get two intuitionistic
FIVPs as follows:

χ′′ + p2χ = 0, χ (0) = 1̂i, χ′ (0) = 2̂i (20)

and

Ψ′′ + p2Ψ = 0, Ψ(1) = 3̂i, Ψ′ (1) = 4̂i. (21)

Let us first solve the crisp IVP:

χ′′ + p2χ = 0, χ (0) = 1, χ′ (0) = 2.

By solving the differential equation in the crisp
IVP, the general crisp solution is obtained as:

χ (t, λ) = C1 cos (pt) + C2 sin (pt) .

The functions K11(t) and K12(t) are obtained as
follows:

K11(t) = cos (pt)

K12(t) =
1

p
sin(pt). (22)

Thus the solution of the crisp IVP can be written
using (22) as:

χ (t, λ) = a2K11 (t) + a1K12 (t)

=
2

p
sin(pt) + cos (pt) (23)

Similarly, the solution Ψ(t, λ) is written as:

Ψ(t, λ) =
4

p
sin (pt− p) + 3 cos (pt− p) . (24)

0 5 10 15

p

-30

-20

-10

0

10

20

30

40

W

Figure 1. The function W (λ) =(
3p+ 8

p

)
sin (p) + (4− 6) cos (p) .

Then, Wronskian functions can be gotten from
Eq. (16) as:

W (λ) = W (χ,Ψ) (t, λ)

=

(
3p+

8

p

)
sin(p) + (−2) cos(p).

The classic eigenvalues of problem (17)-(19) con-
sist of the zeros of the W (λ) functions. For this
reason, an infinite number of eigenvalues satisfy-
ing the equation W (λ) = 0 can be obtained by
calculating p values in Matlab programme in Fig-
ure 1.

Table 1. Eigenvalues of the fuzzy problem.

pn λn
n = 1 3.30241 10.90581
n = 2 6.38091 40.71581
n = 3 9.49291 90.11511
n = 4 12.61831 159.22151
n = 5 15.74981 248.05621

n ≈ nπ (nπ)2



Intuitionistic fuzzy eigenvalue problem 225

The first five eigenvalues are found numerically
and then the approximation of the remaining
eigenvalues is written in tabl e 1.

From (12) and (15) α−levels and β−levels of the

solutions χ̂i
λ(t) and Ψ̂i

λ(t), respectively can be
found as follows:

χ−
α (t, λ) = [2− α− 2 (1− α) θ (K11(t))]K11(t)

+ [3− α− 2 (1− α) θ (K12(t))]K12(t),

χ+
α (t, λ) = [α+ 2 (1− α) θ (K11(t))]K11(t)

+ [α+ 1 + 2 (1− α) θ (K12(t))]K12(t),

(χ∗)−α (t, β) = [2β + 1− (4β) θ (K11(t))]K11(t)

+ [2 + 2β − (4β) θ (K12(t))]K12(t),

(χ∗)+α (t, β) = [1− 2β + (4β) θ (K11(t))]K11(t)

+ [2− 2β + (4β) θ (K12(t))]K12(t).

and

Ψ−
α = [4− α− 2 (1− α) θ (K21(t))]K21(t)

+ [5− α− 2 (1− α) θ (K22(t))]K22(t),

Ψ+
α = [2 + α+ 2 (1− α) θ (K21(t))]K21(t)

+ [3 + α+ 2 (1− α) θ (K22(t))]K22(t),

(Ψ∗)−α = [3 + 2β − (4β) θ (K21(t))]K21(t)

+ [4 + 2β − (4β) θ (K22(t))]K22(t),

(Ψ∗)+α = [3− 2β + (4β) θ (K11(t))]K21(t)

+ [4− 2β + (4β) θ (K22(t))]K22(t).

where θ(t) is the Heaviside function, K11(t) =
cos (pt), K12(t) =

1
p sin(pt), K21(t) = cos (pt− p)

and K22(t) =
1
p sin(pt− p).

In particular, p1 = 3.30241 in Table 1 and sub-
stitute (25) and (25) are selected. The α and β

levels of the solutions χ̂i
p1(t) and Ψ̂i

p1(t) are given
in Figures 2, 3 and Figures 4, 5.

Consider the FBVP given as in (17)-(19), using
gh-differentiabilty by converting the FDE into a
family of systems of classical differential equa-
tion [35]. Now we have that the graphical rep-
resentation of the endpoint functions χ−

α , χ
+
α in

Figure 6 and Ψ−
α , Ψ+

α in Figure 7 obtained of
(1,1)-system for every α ∈ [0, 1]. In Figure 6

and 7, it is seen that the χ̂ and Ψ̂ functions do
not fulfil the fuzzy solution properties duo to the
existence of switching points in the entire interval
[0, 3.5].
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Figure 2. The χ̂i
λ(t) solution in Ex-

ample 1. The black line represents
the reel solution. The red and blue
lines represent upper solution for β =
1 and α = 0, respectively and the
dashed red and blue lines represent
lower solution for β = 1 and α = 0,
respectively
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Figure 3. The blue region of the in-
tersection of fuzzy solution [χ]

α
and

[χ∗]
α
of the intuitionistic fuzzy solu-

tion in Example 1
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Figure 4. The Ψ̂i
λ(t) solution in Ex-

ample 1. The black line represents
the crisp solution. The red and blue
lines represent upper solution for β =
1 and α = 0, respectively and the
dashed red and blue lines represent
lower solution for β = 1 and α = 0,
respectively
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Figure 5. The blue region of the in-
tersection of fuzzy solution [ψ]

α
and

[ψ∗]
α
of the intuitionistic fuzzy solu-

tion in Example 1
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Figure 6. The χ solution of the
(1,1)-system related to (17)-(19) in
the sense of gH-derivative.The blue
line and the red line represent respec-
tively the left and right end-points of
the 0-level of the solution the black
line represent the reel solution in Ex-
ample 1

0 0.5 1 1.5 2 2.5 3 3.5

t

-3

-2

-1

0

1

2

3

 Ψ
,

 (t
) 

 ← (Ψ
gh

) 
0 

-

  (Ψ
gh

) 
0 

+
→ 

Figure 7. The ψ solution of (1,1)-
system related to (17)-(19) in the
sense of gH-derivative.The blue line
and the red line represent respectively
the left and right end-points of the 0-
level of the solution the black line rep-
resent the reel solution for Example 1

4. Conclusion

The main contribution of this article is the study
of intuitionistic fuzzy eigenvalue problem with
boundary values given by intuitionistic fuzzy
numbers. The eigenvalues of the fuzzy problem
are found mainly on the idea of the intuitionis-
tic Zadeh’s extension principle. To do this the
method proposed in Theorem 2 is used. Then one
of the obtained eigenvalues is arbitrarily selected
and substituted in the fuzzy solutions to obtain

the intuitionistic fuzzy eigenfunctions χ̂i
λ(t) and

Ψ̂i
λ(t) which are shown in Figures 2, 3, 4 and

5. To prevent switch-points as illustrated in Fig-
ure 6 and in Figure 7, Heaviside function is used
during the interval operations on α and β-levels.

The approach using the gH-derivative is equiv-
alent to the study of some systems of classical
differential equations, which can lead to an addi-
tional study of switching points as shown in Fig-
ures 6 and 7. Moreover from this approach, the
sign of the solution is considered itself and the
signs of its first and second derivatives.

By using the method in this paper, fuzzy eigen-
functions are obtained without dealing with these
unfavourable situations.
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