
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.14, No.4, pp.294-307 (2024)

http://doi.org/10.11121/ijocta.1432

RESEARCH ARTICLE

List coloring based algorithm for the Futoshiki puzzle

Banu Baklan Şen *, Öznur Yaşar Diner

Computer Engineering Department, Kadir Has University, Turkey
banu.baklan@stu.khas.edu.tr, oznur.yasar@khas.edu.tr

ARTICLE INFO ABSTRACT

Article History:
Received 18 July 2023
Accepted 11 September 2024
Available Online 9 October 2024

Given a graph G = (V,E) and a list of available colors L(v) for each vertex
v ∈ V , where L(v) ⊆ {1, 2, . . . , k}, List k-Coloring refers to the problem
of assigning colors to the vertices of G so that each vertex receives a color
from its own list and no two neighboring vertices receive the same color. The
decision version of the problem, List k-Coloring, is NP-complete even for
bipartite graphs. As an application of list coloring problem we are interested
in the Futoshiki Problem. Futoshiki is an NP-complete Latin Square Com-
pletion Type Puzzle. Considering Futoshiki puzzle as a constraint satisfaction
problem, we first give a list coloring based algorithm for it which is efficient
for small boards of fixed size. To thoroughly investigate the efficiency of our
algorithm in comparison with a proposed backtracking-based algorithm, we
conducted a substantial number of computational experiments at different dif-
ficulty levels, considering varying numbers of inequality constraints and given
values. Our results from the extensive range of experiments indicate that the
list coloring-based algorithm is much more efficient.

Keywords:
List coloring
Precoloring extension
Latin square completion puzzle
Futoshiki puzzle
Personnel scheduling

AMS Classification 2010:
90C27; 05C85; 68Q25

1. Introduction

Since the 1980s, there has been significant the-
oretical analysis and exploration of applications
for pencil puzzle games. In recent decades, re-
search has focused on algorithmic solutions and
the computational complexity of pencil puzzle
games, including optimization versions of vari-
ous puzzle types. Latin Square Completion-Type
Puzzles (LSCP) are among the most common
types of these games.

A Latin Square Completion Puzzle (LSCP) is
a partial Latin square with empty cells. A
Partial Latin Square (PLS) is an n × n grid
that is partially filled with some numbers from
[n] = {1, . . . , n}. The goal is to fill in all the
blank cells with numbers in such a way that the
numbers are distinct in each row and each col-
umn. The objective of LSCP is to complete the
grid by filling the remaining cells with numbers
such that each number appears exactly once in

each row and each column. Two notable puzzles
in this category are Sudoku and Futoshiki.

The Futoshiki puzzle, also known as Unequal, is
a popular Japanese board-based puzzle played on
an n× n square board with additional inequality
constraints between certain cells. The objective
is to fill the cells with numbers, satisfying the
Latin square property while respecting the spec-
ified inequalities. Inequalities can occur between
horizontally or vertically neighboring cells, indi-
cating that a number in a particular cell must
be greater or smaller than the number in the ad-
jacent cell. Let S denote the set of inequality
constraints and T the set of pre-assigned cells.

The decision version of the Futoshiki game,
known as the Futoshiki Problem, is defined
as follows:

Futoshiki Problem (Futoshiki)

Instance: Fn(T, S), an n × n board, a set T of

*Corresponding Author

294

http://creativecommons.org/licenses/by/4.0/

List coloring based algorithm for the Futoshiki puzzle 295

pre-assigned cells, and a set S of inequality con-
straints.
Question: Is the Futoshiki puzzle solvable on
Fn(T, S)?

The solvability of a partial Latin square is closely
related to Hall’s condition. However, Bobga et
al. [1] demonstrated that satisfying Hall’s condi-
tion is insufficient. They provided necessary and
sufficient conditions on the configuration of the
prescribed cells to ensure the solvability of LSCP.
Further results on related topics, such as partial
Latinized rectangles, can be found in [2] and [3].

Both the decision version of the Latin Square
completion problem and the Futoshiki Prob-
lem have been proven to be NP-Complete [4, 5].

Let us define the optimization version of Fu-
toshiki Problem.

Maximum Futoshiki (MaxFutoshiki)

Input: Fn(T, S) and sign set S ⊆ SL.
Output: A Futoshiki board Fn(T, S) filled with
maximum number of valid entries.

Various studies examine the computational com-
plexity of problems defined on partial latin
squares. The Latin Square completion problem
is NP-Complete by reduction from 3-SAT [4]. In
particular the Futoshiki problem is also known
to be NP-Complete, as proved by Haraguchi et
al. [5]. As for the optimization version of the
Futoshiki, Haraguchi and Ono [5] examined the
approximability of LSCPs and formulated three
LSCP puzzles as maximization problems, present-
ing polynomial-time approximation algorithms.
These maximization problems aim to fill as many
cells as possible, instead of determining whether it
is possible to complete the entire board. MaxFu-
toshiki was shown to be NP-Hard by Haraguchi
[5], and related work on optimization versions of
LSCP problems is reviewed by Donovan [6].

Properties of Latin squares and improvements to
Galvin’s solution [7] have been explored by Ivanyi
and Nemeth [8]. Yato and Seta [9] investigated
the computational complexity and completeness
of finding alternative solutions to LSCP problems
and proposed two algorithms.

The solvability of LSCP puzzles has been exten-
sively studied in terms of time complexity, and
numerous algorithmic solutions have been pro-
posed. Sudoku, a well-known puzzle, has been ap-
proached using various algorithmic techniques for
both deterministic and metaheuristic approaches.

A deterministic algorithm does not contain any
randomness or probabilistic elements. It always
produces the same output and follows a fixed se-
quence of steps. Some major deterministic ap-
proaches to solve LSCP type problems are the
exact cover problem with, Norvig’s work with con-
straint propagation [10] and constraint program-
ming that Crawford gave [11]. As for nondeter-
ministic approaches, one can refer to the “Danc-
ing Links” algorithm that Knuth presented [12].

The term “Metaheuristic” was first used in the
study of Glover [13]. Metaheuristics are known
as one of the best methods for finding sufficiently
good solutions to NP-Hard problems. Traveling
salesman problems, scheduling problems, and as-
signment problems are some of the examples that
metaheuristics are used. Sudoku has been solved
with one of the metaheuristic methods that are ar-
tificial bee colony algorithm [14], particle swarm
optimisation [15], and ant colony optimisation al-
gorithm [16]. Moreover, as a heuristics, we can
show the study of Musliu [17] that proposes a hy-
brid method for solving Sudoku.

In this work, we concentrate on deterministic
approaches rather than solving the puzzle with
metaheuristic methods. One of the most common
techniques to solve PLSs as a combinatorial op-
timization problem is coloring [4]. Furthermore,
many graph coloring variants have been utilized
to solve LSCP puzzles. For instance, in [18], the
Sudoku puzzle is shown to illustrate the precolor-
ing extension problem [19]. Precoloring extension
is a variant of the precoloring problem in which
some vertices are precolored and others are as-
signed lists of allowed colors. Notice that the NP-
Completeness of the list coloring problem for gen-
eral graphs [20] and bipartite graphs [21] has been
proven.

Our motivation for studying the list coloring ap-
proach for the Futoshiki puzzle game stems from
the fact that while Sudoku has been extensively
studied as a graph coloring problem, Futoshiki
has not been analyzed in the same context. In
this paper, we adapt the Futoshiki puzzle game to
a new variant of the list coloring problem, which
we refer to as the list precoloring extension prob-
lem (formally defined in Section 2). We propose
a list precoloring extension algorithm and discuss
its complexity.

The rest of the paper is organized as follows. Sec-
tion 2 provides problem definitions. Section 3 ex-
plores applications related to the Futoshiki game.
Section 4 establishes the equivalence between the

296 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

list precoloring extension instance and the Fu-
toshiki problem instance. Section 5 presents an
algorithm to solve the Futoshiki problem when
the board size is fixed. Section 6 analyzes the ex-
perimental results. Finally, Section 7 concludes
the paper.

2. Problem definitions

In this section, we provide formal notation and
terminology related to graph coloring and intro-
duce a new graph coloring problem that models
the Futoshiki problem. The notation and ba-
sic terminology used in this section follow Dies-
tel [22].

We consider simple, finite, undirected graphs G =
(V,E) with a vertex set V and an edge set E. A
coloring of a graph G is a labeling of its vertices.
A k-coloring is a coloring that uses at most k col-
ors from the set [k] = 1, 2, . . . , k. A coloring is
proper if no two adjacent vertices have the same
color. The decision version of the graph coloring
problem is defined as follows:

Coloring (Col)

Instance: A graph G = (V,E) and an integer
k ≥ 1.
Question: Does G have a k-coloring?

1 1

2 2 2

Figure 1. A graph G and

a valid coloring for it.

In coloring, k is a part of the input. On the other
hand, when k is fixed, i.e., when k is not a part of
the input, we have the k-coloring problem. As an
example, a 2-coloring is given in Figure 1: vertices
in one part receive one color, while vertices in the
other part receive a different color. It is worth
noting that every bipartite graph can be colored
using only two colors.

k-Coloring (k-Col)

Instance: A graph G = (V,E).
Question: Does G have a k-coloring? k-Col is

NP-Complete for k ≥ 3 [23] and polynomial time
solvable when k = 1 or 2 [24]. List coloring is
a generalization of graph coloring. It is a proper
coloring in which each vertex v receives a color
from its own list of allowed colors. The list color-
ing problem is defined by Vizing [23] and Erdös,
Rubin and Taylor [25] independently.

List-Coloring (LiCol)

Instance: A graph G = (V,E) and a list assign-
ment L for G.
Question: Does G have a coloring where each ver-
tex v receives a color from its list L(v)?

A list assignment of a graph G = (V,E) is a
mapping L that assigns each vertex v ∈ V a List
L(v) ⊆ {1, 2, . . .} of admissible colors for v. When
L(v) ⊆ [k] = {1, 2, . . . k} for every v ∈ V we say
that L is a k-list assignment of G. Thus, the to-
tal number of available colors is bounded by k
in a k-list assignment. On the other hand, when
|L(v)| ≤ k for every v ∈ V , then we say that L is
a list k-assignment of G. Thus, the size of each
list is bounded by k in a list k-assignment.

1 1

3 2 2 3

{1, 2} {1, 3}

{1, 3} {2} {1, 2} {3}

Figure 2. A list assignment L for

the vertices of G, and a coloring

that respects L.

The List k-Coloring problem is to decide whether
a graph G = (V,E) with a list L(u) ⊆ {1, . . . , k}
for each u ∈ V has a coloring c such that c(u) ∈
L(u) for every u ∈ V . It is clearly a generaliza-
tion of k-coloring, and hence it is NP-Complete
for k ≥ 3. Refer to Figure 2 for an example. It is
important to note that, despite the graph being
bipartite in Figure 2, two colors were not enough
to color it while satisfying the constraints imposed
by the assigned lists L.

List k-Coloring (Li k-Col)

Instance: A graph G = (V,E) and a k-list as-
signment L.
Question: Does G have a coloring where each ver-
tex v receives a color from its list L(v)?

A k-precoloring of a graph G = (V,E) is a map-
ping cW : W → {1, 2, . . . k} for some subset
W ⊆ V . We say that a k-coloring c of G is
an extension or a k-extension of a k-precoloring
cW of G if c(v) = cW (v) for each v ∈ W . For
a given graph G, a positive integer k and a k-
precoloring cW of G, the Precoloring Extension
problem (PrExt) asks whether cW can be ex-
tended to a k-coloring of G. If k is fixed we denote
this problem as the k-Precoloring Extension prob-
lem (k-PrExt). Let us define the latter problem
formally.

List coloring based algorithm for the Futoshiki puzzle 297

k-Precoloring Extension (k-PrExt)

Instance: A graph G = (V,E) and a k-
precoloring cW .
Question: Is there a k-extension for cW ?

For general graphs PrExt is NP-Complete [26].
In fact, the NP-Completeness of the LSCP prob-
lem is shown via its equivalence to the k-PrExt
when it is restricted to the cartesian product of
Kn with itself [4].

We define a new coloring problem called the List
k-Precoloring Extension problem (Li k-PrExt).

List k-Precoloring Extension (Li k-PrExt)

Instance: A graph G = (V,E),W ⊆ V , a k-
precoloring cW , and a list k-assignment L for each
v ∈ V/W
Question: Is there a k-extension for cW that obeys
the list L?

Notice that when the list L is not assigned to
the vertices in V/W , then Li k-PrExt reduces
to k-PrExt. Let us denote an instance of Li k-
PrExt with LG(cW , L).

3. Applications

In this section, we will first provide a brief
overview of some notable applications related to
the problems under consideration, namely the Fu-
toshiki problem, list coloring, and its variants.
Subsequently, we will introduce a novel applica-
tion of the Futoshiki problem in the field of sched-
uling, specifically to optimize the efficiency of the
job assignment problem.

Applications of the Futoshiki problem: The
Futoshiki problem has found applications in var-
ious domains. Mahmood [27] proposed a random
number generator that utilizes the Futoshiki prob-
lem to generate numbers satisfying given condi-
tions. This generator, with good linear complex-
ity, has potential application as an encryption
key in mathematical analysis, security systems,
and simulations. Additionally, Haraguchi [28] ex-
plored the evaluation values achievable in a Fu-
toshiki puzzle with a high number of inequality
signs.

The Futoshiki configuration technique, consid-
ering partial shading conditions in photovoltaic
(PV) systems, has been proposed by Sahu et al.
[29]. They observed that incorporating the Fu-
toshiki structure increases the power generation of
PV arrays, leading to improved energy efficiency.
The technique avoids the need for changing the
electrical connection of modules by rearranging
them, and it effectively reduces mismatch loss un-
der different shading models.

Applications of List Coloring and its Vari-
ants: The list coloring problem has been widely
applied to solve optimization and scheduling
problems [30]. In Orden and Moreira’s work [31],
the problem of minimizing interference threshold
and the number of colors respecting that thresh-
old was modeled as list coloring. They demon-
strated that the problems are NP-Hard and pro-
posed DSATUR, a graph coloring algorithm, to
tackle them.

Garg et al. [32] tackled the channel frequency al-
location problem in mobile communication net-
works by modeling it as a generalized list coloring
problem. Their solutions prevented signal inter-
ference by selecting channels for neighboring base
stations in a way that they did not overlap. This
approach effectively addressed the crash failures
caused by distance limitations.

In the domain of register assignment, Zeitlhofer et
al. [33] presented a list-coloring algorithm that op-
timally assigns a large number of target variables
to a small number of CPU registers. This algo-
rithm preserves the structure of the interference
graph, ensuring the retention of interval graph
properties.

Sudoku puzzles can also be formulated as list col-
oring problems. Each cell corresponds to a ver-
tex, and the relationships between cells are repre-
sented as edges in rows and columns. The num-
bers used in Sudoku can only appear once in each
row and column, making it an instance of the
list coloring problem. Additionally, Lastrina et
al. [18] demonstrated how the precoloring exten-
sion problem can be used to illustrate the Sudoku
puzzle.

4. Li k-PrExt and Futoshiki

In this section, we show that the Futoshiki prob-
lem can be reduced to the list precoloring exten-
sion problem for the Futoshiki graph G. In the
reduction the revealed cells given in the Futoshiki
problem are used to construct the pre-coloring for
G. In addition, the list assignment is obtained us-
ing the inequality constraints.

Let n ≥ 2 be a positive integer. A Partial Latin
Square is an n×n grid that is partially filled with
some numbers from [k] = {1, . . . , n}. Let us de-
note a cell that is in the i’th row and the j’th
column of a grid as (i, j). Each cell (i, j) is repre-
sented in the graph with a vertex vij . Two cells
(i, j) and (i′, j′) are adjacent whenever they are
in the same column or in the same row.

298 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

Thus, a Latin square is represented as a graph
G = (V,E) such that V = {vij : 1 ≤ i, j ≤ n},
and E = {(vij , vi′j′) : ((i = i′) ∧ (j ̸= j′)) ∨ ((j =
j′) ∧ (i ̸= i′)} [34]. This graph is called the Fu-
toshiki graph of size n. Notice that the Futoshiki
graph G has n2(n− 1) edges. The graph G is iso-
morphic to the graphKn⊠Kn, which is the strong
product of Kn with itself [18] and it is (2n − 2)-
regular.

Recall that the Futoshiki problem of size n,
Fn(T, S), is defined on the Futoshiki graph of
size n where S is the set of inequality constraints.
Thus there are at most 2n(n−1) inequality signs.
In Figure 3, for n = 4, there are n2 = 16 vertices
and n2(n − 1) = 48 edges. An instance of the
problem on this graph can take up to 24 inequal-
ity constraints in total, yet in this instance, there
are only 5 inequality constraints.

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

{3,4} {3,4} {2,4} {1,2}

{2,3} {3,4} {1,2} {1,2}

{1} {2} {3} {4}

{2,4} {1} {2,4} 3

Figure 3. Vertices of the Futoshiki Puzzle.

Theorem 1. For every Futoshiki problem
Fn(T, S) there exists an equivalent instance of
the List k-Precoloring Extension problem
LG(cW , L) on the Futoshiki graph where k = n.

Proof. We give a polynomial time reduction that
converts a Futoshiki problem Fn(T, S) of size n×n
to a Futoshiki graph G and a list-assignment L
that corresponds to the list k-precoloring exten-
sion problem LG(cW , L) for some precoloring cW .
We also show that Fn(T, S) is solvable whenever
LG(cW , L) is solvable on G. We do the latter by
converting each solution of Fn(T, S) to a solution
of LG(cW , L) and vice versa.

Given an instance Fn(T, S) of the Futoshiki prob-
lem the entries of the n × n board cells corre-
spond to vertices of G, occurring exactly once in
each row and column. Thus, the graph G will
have n2 vertices. The cells represent vertices and
adjacent cells in each row and column represent
the edges. At the beginning of the problem, if a
number l is revealed in a cell that is represented
with a vertex v, then we say v is precolored with
color l. This gives a one-to-one correspondence
between the revealed cells T and the precoloring

cW . If no number is revealed in the cell, then
the corresponding vertex will be assigned the list
{1, 2, . . . , k}. If, in addition, there is an inequality
sign > located between some adjacent cells that
are represented with vertices u and v in G, then
for every color i ∈ L(u), there must be at least one
color j ∈ L(v) such that i > j. For the inequality
sign <, the construction of the list assignments
of the related vertices are done similarly. This
gives the construction of the list assignment L,
thereby completing the reduction of Fn(T, S) to
LG(cW , L).

Each solution of Fn(T, S) will naturally give a
proper coloring for G which is an extension of the
precoloring cW and it will obey the list L. On the
other hand, a list coloring solution of LG(cW , L)
yields a solution to the given Futoshiki problem
Fn(T, S). Notice that the precoloring and the list
assignment L are constructed so that the solution
to the list precoloring extension problem gives a
number assignment that satisfies the inequalities
located between adjacent cells.

□

3

4 3 2 1

3 4 1 2

1 2 3 4

2 1 4 3

a) Futoshiki puzzle game b) Solution to Futoshiki puzzle game

c) List precoloring extension

3

{3,4} {3,4} 4 3 2 1

3 4 1 2

1 2 3 4

2 1 4 3

{1,2}{2,4}

{3,4}{2,3}

{4}{1} {3}

{1,2}

{2}

{1,2}

{2,4} {1} {2,4}

d) Coloring

Figure 4. A Futoshiki puzzle in-
stance and the cells that correspond
to the vertices in the related Futoshiki
Graph.

Figure 4 illustrates an instance of a 4×4 Futoshiki
problem and the corresponding Futoshiki graph
construction along with the list assignment: Fig-
ure 4.a shows the initial board of the game, Fig-
ure 4.b shows the solution of the game, Figure 4.c

List coloring based algorithm for the Futoshiki puzzle 299

shows the list precoloring extension instance and,
finally, Figure 4.d shows the corresponding color-
ing as a solution to the list precoloring extension
problem.

5. List coloring-based algorithm for the
Futoshiki Problem

There are various algorithmic approaches to solve
pencil puzzles. The backtracking algorithm is
used for the class of Constraint Satisfaction Prob-
lems (CSPs). These problems are defined as a set
of variables, a set of their respective domains of
values, and a set of constraints [10]. The goal of
a CSP is to find a consistent assignment of val-
ues to variables that satisfies all constraints, sub-
ject to certain conditions. CSPs have applications
in various domains, including scheduling, plan-
ning, configuration, and puzzle-solving. LSCP-
type puzzles are seen as constraint satisfaction
problem CSPs that find a solution that satisfies
all the constraints considering assignment of vari-
ables. These problems include Sudoku, Futoshiki,
and Kakuro. Sudoku is the most popular one that
is solved as CSP by the researchers. Norvig [10]
describes two methods to solve Sudoku, namely,
constraint propogation (CP) and Local Search.
Constraint propagation is a technique that is com-
monly used in CSPs to efficiently update and re-
duce the domain of variables based on the con-
straints imposed by the problem.

In this section, we present two different determin-
istic algorithms for solving the Futoshiki Puzzle,
called FutoshikiBT and ColorFutoshik, each in-
corporating backtracking, and filtering methods
respectively.

5.1. BackTracking algorithm

The backtracking algorithm can be seen as the
simplest solution for Sudoku puzzles which are
the most commonly studied problem. Backtrack-
ing uses a recursive approach in which each cell
is assigned a number from 1 . . . n when the board
size is n×n. The backtracking algorithm system-
atically explores the solution space by iteratively
assigning values to empty cells in the puzzle and
backtracking when a contradiction or violation of
constraints is encountered.

Here, we give a backtracking algorithm that solves
the Futoshiki Puzzle to compare its efficiency with
the proposed method called ColorFutoshiki which
we give in Section 5.2. The backtracking algo-
rithm starts by selecting an empty cell in the puz-
zle and attempts to assign a value that satisfies

the row and column constraints, as well as the in-
equality constraints associated with neighboring
cells. It then moves on to the next empty cell and
repeats the process. If a contradiction arises, such
as a repeated number in a row or column, or a vi-
olation of an inequality constraint, the algorithm
backtracks to the previous cell and explores alter-
native value assignments. Although this method
guarantees a solution, it is not efficient in terms of
time complexity. Let us present our FutoshikiBT
Algorithm.

Algorithm 1 FutoshikiBT Algorithm

1: Input: Futoshiki board with constraints.
2: Output: Solution of the puzzle.

3: if colorG(n, list, v = 1, given) == False
4: print (“No solution”)
5: else
6: print (list)
7: colorG(n, list, v, given):
8: if(v == V + 1)
9: return True

10: for c in range(1, n)
11: if safe(v, list, c, given) == True
12: list[v] = c
13: if colorG(n, list, v + 1, given)
14: return True
15: end if
16: if v not in given
17: list[v] = 0
18: end if
19: return False
20: end if
21: end for
22: return False
23: safe(v, list, c, given):
24: if v in given and list[v] == c
25: return True
26: else if v in given
27: return False
28: end if
29: for (i in range(1, V))
30: if list[i] == c and neighbour(v, i)
31: return False
32: end if
33: if constraints are not satisfied
34: return False
35: end if
36: end for
37: return True

300 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

5.2. ColorFutoshiki algorithm

In this section, using the equivalence between the
Futoshiki Problem and the Li k-PrExt prob-
lem for the Futoshiki graph, as assured by Theo-
rem 1, we construct the ColorFutoshiki algorithm
to solve the Futoshiki Problem. We will ob-
serve that, this approach is equivalent to the back-
tracking algorithm with forward checking for the
Futoshiki Problem.

The backtracking algorithm considers every solu-
tion by iterating every possible number in each
cell under all satisfying conditions, assigns the
first available option, backtracks when a solution
is not possible for the next cell under consider-
ation, and tries the next possible option for the
previous cell. These methods guarantee the solu-
tion, but they do not give the solution in optimal
time. Here we aim to improve the backtracking
algorithm. This is why we need a problem space
that helps our solver save us more time. The back-
tracking method of solving the Futoshiki problem
fills each cells from left to right and top to bottom
with considering inequality constraints.

The ColorFutoshiki algorithm is an improved ver-
sion of the FutoshikiBT algorithm. Our aim is to
reduce the number of colors in each list by elimi-
nating inconsistent ones. This reduces the search
space to be explored. At the beginning of the
ColorFutoshiki algorithm, we use a filtering tech-
nique. In this filtering step we do forward check-
ing in order to create color lists. Forward checking
keeps track of the remaining possible values for
unassigned variables after a variable is assigned
a value. It propagates constraints by eliminating
values from the domains of other variables that
conflict with the newly assigned value. This tech-
nique is applied to create lists for each cell that
they can use. Thus, it will begin coloring the puz-
zle with the minimum number of colors in the list
for each cell.

5.3. Analysis of the algorithms

The input parameters for the algorithm are the
Futoshiki graph of size n, the inequality con-
straints, and the pre-assigned entries. The algo-
rithm begins by examining the constraints and
pre-assigned numbers of the Futoshiki instance
Fn(T, S), which then produces a k-precoloring in-
stance LG(cW , L). Next, it determines how to
color the given Futoshiki graph using the list of
colors assigned to each vertex through the reduc-
tion process described above. If LG(cW , L) is
a YES instance, the algorithm outputs a matrix

MG = [mij]n× n indicating the colors of the ver-
tices of the graph G. Otherwise, it concludes that
no solution exists.

First, let us analyze the FutoshikiBT algorithm,
which builds candidates for the solutions incre-
mentally and abandons candidates when it deter-
mines that they cannot possibly be solved with a
valid solution.

The function colorG(n, list, v, given) is a recur-
sive function that ensures the coloring process is
completed by checking all vertices. It attempts
to use the colors in the list for the corresponding
vertex in order. Here, n represents the puzzle di-
mension, which is equal to the size of the color
list. list is the list of colors assigned to vertices
(solution). v is the vertex number. V represents
the total number of vertices. given denotes the
values given before the game starts.

The function safe(v, list, c, given) checks whether
the given vertex can be colored with the chosen
color by verifying the constraints. In this process,
neighbour(v, i) checks the adjacency of the two
relevant vertices, ensuring that adjacent vertices
are not colored with the same color.

It is worth noting that the FutoshikiBT algorithm
does not include a process for creating preassigned
color lists. On the other hand, ColorFutoshiki
first traverses the graph and creates a list of colors
that minimizes the number of candidate colors for
each cell. It then attempts to color empty cells,
starting from the first vertex v11.

The ColorFutoshiki algorithm is an improved ver-
sion of the FutoshikiBT algorithm. Its aim is to
reduce the number of colors in each list by elim-
inating inconsistent ones. This reduction effec-
tively reduces the search space that needs to be
explored.

The pseudocode of the algorithm is provided be-
low.

List coloring based algorithm for the Futoshiki puzzle 301

Algorithm 2 ColorFutoshiki Algorithm

1: Input: Futoshiki board with constraints.
2: Output: Solution of the puzzle.

3: if colorG(pcList[1].length, list, v = 1, given)
4: print (list)
5: else
6: print (“No solution”)
7: end if

8: colorG(n, list, v, given):
9: if (v == V + 1)

10: return True
11: end if
12: for c in range(1, n)
13: if safe(v, list, pcList[v][c], given)
14: list[i] = pcList[v][c]
15: nextN = pcList[v + 1].length
16: if colorG(nextN, list, v + 1, given)
17: return True
18: end if
19: if v not in given
20: list[v] = 0
21: end if
22: return False
23: end if
24: end for
25: return False

26: safe(v, list, c, given):
27: if v in given and list[v] == c
28: return True
29: else if v in given
30: return False
31: end if
32: if constraints are not satisfied
33: return False
34: end if
35: for i in range(1,n)
36: if (hNeighbor == c & hNeighbor! = v)
37: return False
38: end if
39: if (vNeighbor == c & vNeighbor! = v)
40: return False
41: end if
42: end for
43: return True

In the ColorFutoshiki algorithm, first, we perform
filtering and create color lists for each cell based
on their admissible colors and constraints. Conse-
quently, the algorithm begins coloring the puzzle
using the minimum number of colors available in
the lists.

Unlike the FutoshikiBT algorithm, Color-
Futoshiki uses a recursive structure that does

not traverse the entire graph to color the related
vertex. Instead, it only checks the horizontal and
vertical neighbors of the vertex being colored. It
is observed that ColorFutoshiki outperforms the
FutoshikiBT algorithm in all instances of varying
difficulty levels.

Now, let us explain the ColorFutoshiki algorithm.

In lines 3-7, we call the colorG function, which
displays the solution if found. Here pcList is the
list that each cell takes.

In lines 8-25, the recursive colorG function checks
the termination condition. If this condition is not
met, it checks whether the related vertex v can
be colored based on the possible color list of v. If
v cannot be colored, the algorithm moves on to
the next color in its list. If it cannot be colored
with any color in the list, the recursive function
returns to previous vertex and the color of the
previous vertex is updated. If it can be colored,
the algorithm moves on to the next vertex, and
the admissible color is added to the color list.

In lines 26-43, if the vertex to be colored has a
preassigned (given) value, the algorithm proceeds
to the next vertex. Then, it checks whether there
is a constraint in front of or above the vertex to
be colored or not. If there is, it verifies whether
the constraint conditions are satisfied. After this
step, we check the colors of the adjacent vertices if
they have the same color. Instead of traversing all
nodes, it only checks the horizontal and vertical
neighbors of the relevant vertex.

Now let us analyze the time complexities of the
algorithms. The FutoshikiBT algorithm traverses
all vertices to check the neighborhood of the ver-
tex being colored and to decide whether the col-
ors are the same or not. For each empty cell,
there are n possible options, where n is the to-
tal number of colors. As a result, the time com-

plexity becomes O(nn2
). In the ColorFutoshiki

algorithm some values are removed from some do-
mains. Since there will be some early pruning the
time taken will be much less than the backtrack-
ing algorithm. However, the upper bound time
complexity remains the same. The reason is that
we don’t know how many values are removed. As

a result, the time complexity becomes O(nn2
).

Although the worst case time complexity of the
ColorFutoshiki algorithm is only a slight improve-
ment over the FutoshikiBT algorithm, as we will
observe below, its speed is remarkably faster in all
of the computational experiments that we have
done.

302 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

6. Results and discussion

We aim to solve the Futoshiki as an instance
of the LiCol problem. For this reason we first
improved the ColorFutoshiki algorithm. It is
an enumeration algorithm that incorporates ad-
ditional search space reductions and bounding el-
ements, making it an enhanced version compared
to FutoshikiBT. Due to the fact that Futoshiki
is classified as an NP-Complete problem, Color-
Futoshiki proves to be highly effective and suit-
able for numerous applications and purposes. Its
capabilities make it a valuable tool in addressing
the complexity of Futoshiki.

Here, we present the computational experiments
conducted to assess the efficiency of the Color-
Futoshiki algorithm in solving instances of the
Futoshiki problem. All the codes were imple-
mented in the Python programming language,
and the experiments were executed on a sys-
tem with an Intel Core i7-6700HQ CPU oper-
ating at 2.60 GHz, with 16GB RAM, running
Windows 10 (64-bit). Different instances have
been generated and tested on nxn boards for
n = 6, 7, 8, 9, 15, 20, 30, 40, 50. We ran the related
code 50 times per instance and took their aver-
age. In total, 1800 Futoshiki puzzles have been
used for each algorithms. Due to space limita-
tions, we are unable to provide a table containing
the running times for each individual test. This is
why, we present the average experimental results
for each algorithm in Table 1 and Table 2.

Solutions to the Futoshiki Problem are of partic-
ular interest due to the given application in sched-
uling on n×n boards when the size n is large. As
our experimental results demonstrate, the Color-
Futoshiki algorithm works much better even on
boards of a larger size where the number of in-
equality constraints is not necessarily restricted
to be less than n for an n× n board.

A standard deviation denotes the spread of data
concerning its mean. When the standard devia-
tion is small, it signifies that the data is tightly
clustered around the mean. Conversely, a high or
large standard deviation suggests that the data is
more widely spread.

All the results and standard deviations can be
seen in Table 1. Different numbers of constraints
and different numbers of givens are examined for
each algorithm.

The performance of the proposed algorithms for
standard search algorithms is illustrated in Figure
5 and Figure 6 with standard deviations. In this
figures, we maintain a constant number of con-
straints while showcasing the increasing number

of given values. Notably, ColorFutoshiki consis-
tently outperforms FutoshikiBT in solving puz-
zles, even when the number of constraints is held
constant. These results underscore the efficiency
of the ColorFutoshiki algorithm, particularly on
larger-sized boards, providing a performance com-
parison with the FutoshikiBT algorithm.

Figure 5. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
smaller board sizes.

In addition to running times, we also measure
the number of operations for both ColorFutoshiki
and FutoshikiBT. Since the number of explored
nodes provides insights into the efficiency of the
algorithm, we show both the number of explored
nodes and the number of removed values of each
algorithm in Table 2. A lower number of explored
nodes generally indicates a more efficient algo-
rithm, as it suggests that the algorithm is able
to reach a solution without exhaustively search-
ing through a large portion of the puzzle’s solu-
tion space. The number explored nodes allows for
comparison with other algorithms or approaches
for solving the same puzzle. For this reason, we
use this parameter to compare the ColorFutoshiki
algorithm that we present with FutoshikiBT.

We observe that the number of explored nodes
varies significantly across different instances of the
puzzle, it may indicate that the algorithm’s per-
formance is sensitive to certain characteristics of
the puzzle. Similar to the number of explored
nodes, the number of removed nodes provides in-
sight into the efficiency of the algorithm. In cer-
tain search algorithms, such as backtracking or
constraint satisfaction algorithms, removed nodes
typically refer to nodes that are pruned from the
search space because they are deemed unneces-
sary or invalid. A lower number of removed nodes
indicates that the algorithm is effectively prun-
ing the search space, which can lead to improved

List coloring based algorithm for the Futoshiki puzzle 303

Table 1. Run time for all algorithms reported in milliseconds.

size inequalities givens CF BT
6 6 1 1.54± 0.11 1.61± 0.44
6 6 20 0.28± 0.05 0.29± 0.1
6 6 30 0.19± 0.04 0.24± 0.1
6 1 6 0.59± 0.08 0.66± 0.22
6 20 6 0.5± 0.08 0.54± 0.27
6 30 6 0.53± 0.17 0.4323± 0.1073
7 7 1 1.40± 0.16 1.47± 0.52
7 7 30 0.43± 0.17 0.46± 0.18
7 7 40 0.29± 0.04 0.35± 0.08
7 1 7 1.37± 0.3 1.58± 0.5
7 30 7 2.07± 0.46 2.33± 0.58
7 40 7 1.19± 0.37 1.21± 0.52
8 8 1 3.53± 0.80 3.64± 1.33
8 8 40 0.5± 0.04 0.77± 0.29
8 8 50 0.37± 0.08 0.63± 0.2
8 1 8 2.01± 0.33 2.29± 0.73
8 40 8 6.72± 1.71 9.33± 2.32
8 50 8 5.34± 1.55 10.04± 2.3
9 9 1 8.08± 3.11 8.11± 3.06
9 9 70 0.46± 0.16 0.84± 0.2
9 18 35 1.28± 0.32 1.92± 0.63
9 1 9 3.78± 1.33 4.7± 1.69
9 70 9 8.86± 0.3 10.71± 0.92
9 35 18 2.27± 3.27 2.95± 3.22
15 15 150 2.77± 0.64 11.65± 2.54
15 15 170 2.25± 0.86 11.75± 2.86
15 15 200 1.44± 0.45 10.52± 3.94
15 1 150 11.82± 0.7 12.04± 3.26
15 90 130 3.47± 1.10 12.61± 3.33
15 150 15 2987.7± 336.8 3064.9± 103.2
20 20 300 4.98± 1.48 38.54± 8.12
20 30 320 11.58± 1.27 62.2± 3.43
20 20 370 1.575± 1.62 31.57± 6.07
20 30 300 5.21± 3.48 35.98± 8.52
20 80 250 349.97± 1.42 644.16± 7.26
20 50 350 3.55± 27.31 33.27± 29.87
30 30 500 11.000± 37.377 2585.5± 133.84
30 30 600 612.73± 34.274 1360.2± 441.69
30 30 750 41.852± 4.9579 1192.3± 78.302
30 50 500 1103.7± 135.63 2412.5± 102.47
30 100 600 608.17± 29.557 1274.6± 71.195
30 300 750 40.34± 5.8942 993.95± 34.361
40 40 750 2827.7± 97.233 12159± 402.91
40 40 950 702.37± 33.654 9869.8± 234.02
40 40 1300 91.642± 8.8446 1257.7± 51.235
40 100 750 2913.0± 599.59 9359.7± 255.39
40 300 950 437.39± 23.055 4845.2± 130.88
40 400 950 438.99± 27.05 4995.3± 142.66
50 50 1200 4443.1± 151.71 37727± 579.75
50 100 1500 2158.0± 93.02 21803.0± 358.64
50 250 2000 1817.7± 75.545 20849± 538.47
50 400 1600 1092.8± 54.712 13279± 162.22
50 400 2000 1067.5± 39.437 13145± 263.9
50 500 2000 835.95± 40.199 11559± 284.97

efficiency as it can be seen in Table 2. As the
FutoshikiBT algorithm lacks a filtering step, no

values are removed from its domains, unlike the
filtering steps in the ColorFutoshiki algorithm.

304 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

The running time of the algorithm varies depend-
ing on the puzzle’s difficulty level. We observe
that as the number of inequality signs approaches
the maximum limit, the computation time signif-
icantly decreases. This behavior can be attrib-
uted to the utilization of the backtracking method
in the ColorFutoshiki algorithm. Typically, Fu-
toshiki puzzles are played on 5×5 to 9×9 boards
(occasionally on 15× 15 boards), and existing al-
gorithmic solutions are primarily tested on boards
with dimensions up to n = 9.

In Figure 5, we compare the performance of our
method with previous solutions employing the Fu-
toshikiBT algorithm on smaller-sized boards.

Motivated by the lack of performance analysis for
larger-sized boards, we conducted experiments us-
ing the ColorFutoshiki algorithm on larger board
sizes. Additionally, we wanted to assess the al-
gorithm’s effectiveness on larger-sized boards due
to the relationship between the Futoshiki puzzle
game and larger scheduling problems, as discussed
in Section 3. In Figure 6, we compare the per-
formance of our method with previous solutions
employing the FutoshikiBT algorithm on larger-
sized boards. We even conducted experiments for
50× 50 boards. The results demonstrate that the
ColorFutoshiki algorithm efficiently solves even
30×30, 40×40 and 50×50 board games as shown
in Figure 7.

Figure 6. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
larger board sizes.

Overall, these findings highlight the efficiency
of the ColorFutoshiki algorithm, especially on
larger-sized boards, and provide a performance
comparison with the FutoshikiBT algorithm.

7. Conclusion

The Futoshiki problem is aimed to be solved as
a list coloring problem in ColorFutoshiki. It is
an enumeration algorithm that incorporates ad-
ditional search space reductions and bounding el-
ements, making it an enhanced version compared
to FutoshikiBT. Due to the fact that Futoshiki
is classified as an NP-Complete problem, Color-
Futoshiki proves to be highly effective and suit-
able for numerous applications and purposes. Its
capabilities make it a valuable tool in addressing
the complexity of Futoshiki.

A considerable number of experiments were con-
ducted to test ColorFutoshiki and FutoshikiBT,
providing a robust foundation for drawing mean-
ingful conclusions. The extensive set of experi-
ments carried out ensures that the findings are
sufficiently supported and reliable. Observing Ta-
ble 1 and Table 2, we see that ColorFutoshiki is
much more efficient than FutoshikiBT.

Figure 7. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
larger board sizes.

We incorporate a short discussion on these meta-
heuristic methods and their applications to Su-
doku. This will enhance the comprehensiveness
of our paper and provide a broader perspective
on the algorithmic techniques used to solve LSCP
type puzzles.

We are also interested in studying the Futoshiki
problem as an application of the Li k-col prob-
lem. To find approximation algorithms for the
Futoshiki puzzle, we would like to use metaheuris-
tics.

As for future work related with nature based al-
gorithms, one can see whether an Ant Colony op-
timization (ACO) algorithm gives a more efficient
algorithm to solve the Futoshiki problem. ACO
is a Swarm intelligence algorithm which is one of
the artificial intelligence techniques. A solution

List coloring based algorithm for the Futoshiki puzzle 305

Table 2. The count of removed nodes and explored nodes. NRN stands for ”No
Removed Nodes”.

size inequalities givens FC-EN FC-RN BT-EN BT-RN
6 6 1 528 15 540 NRN
6 6 20 40 173 126 NRN
6 6 30 36 180 126 NRN
6 1 6 151 78 198 NRN
6 30 6 111 81 156 NRN
6 20 6 100 81 144 NRN
7 7 1 456 18 469 NRN
7 7 30 59 276 196 NRN
7 7 40 50 291 196 NRN
7 1 7 298 113 406 NRN
7 40 7 268 125 392 NRN
7 30 7 474 124 392 NRN
8 8 1 1145 29 1160 NRN
8 8 50 65 446 288 NRN
8 8 40 78 423 288 NRN
8 1 8 580 156 736 NRN
8 40 8 1851 161 2744 NRN
8 50 8 1293 174 2920 NRN
9 9 1 2279 24 2313 NRN
9 9 70 81 647 405 NRN
9 18 35 187 546 603 NRN
9 1 9 988 194 1357 NRN
9 70 9 1629 213 2070 NRN
9 35 18 489 385 855 NRN
15 15 150 286 3040 2010 NRN
15 15 170 239 3102 1800 NRN
15 15 200 229 3139 1800 NRN
15 1 150 286 3028 2010 NRN
15 90 130 331 2975 2025 NRN
15 150 15 674261 7472 240 NRN
20 20 300 472 7589 4200 NRN
20 30 320 760 7484 5940 NRN
20 20 370 408 7588 4220 NRN
20 30 300 472 7484 4200 NRN
20 80 250 21057 6922 49580 NRN
20 50 350 417 7578 4220 NRN
30 30 500 44063 22402 116550 NRN
30 30 600 24682 23577 56400 NRN
30 30 750 1722 25450 48060 NRN
30 50 500 41511 22403 111840 NRN
30 100 600 22654 23580 52560 NRN
30 300 750 1684 25510 41220 NRN
40 40 750 69967 54498 229320 NRN
40 40 950 17714 56006 537760 NRN
40 40 1300 2542 61272 43160 NRN
40 100 750 33348 51448 219360 NRN
40 300 950 11154 56182 220240 NRN
40 400 950 11124 56224 220240 NRN
50 50 1400 59494 119420 600200 NRN
50 100 1600 29404 120771 462900 NRN
50 250 2000 25673 120862 427900 NRN
50 400 1600 16255 120912 302150 NRN
50 400 2000 16255 120912 302150 NRN
50 500 2000 12864 120979 260000 NRN

for Sudoku is given using ACO in the study of
Huw Lloyd [16]. Another solution which is the
first nature-based algorithm for the NP-Complete
Nurikabe problem is presented by Amos et al. [35].
This algorithm was developed based on ACO. For
future work, it would be interesting to solve the

Futoshiki problem using Ant Colony Optimiza-
tion (ACO) and an Artificial Bee Colony (ABC)

306 B. Baklan Şen, Ö. Y. Diner / IJOCTA, Vol.14, No.4, pp.294-307 (2024)

algorithm [36]. The performance of these ap-
proaches could then be compared with existing
solutions, such as the improved constraint pro-
gramming method developed by Kostyukova and
Tchemisova [37].

References

[1] Bobga, B., Goldwasser, J.L., Hilton A.J.W. &
Johnson P.D. (2011). Completing partial latin
squares: Cropper’s question. Australasian Jour-
nal of Combinatorics, 49, 127-152.

[2] Goldwasser, J., Hilton A., Hoffman D.G. &
Ozkan, S. (2015). Hall’s theorem and extending
partial latinized rectangles. Journal of Combi-
natorial Theory Series A, 130, 26-41. https:

//doi.org/10.1016/j.jcta.2014.10.007

[3] Euler, R. (2010). On the completability of incom-
plete Latin squares. European Journal of Combi-
natorics, 31, 535-552. https://doi.org/10.101
6/j.ejc.2009.03.036

[4] Colbourn, C.J. (1984). The complexity of com-
pleting partial latin squares. Discrete Applied
Mathematics, 8, 25-30. https://doi.org/10.1
016/0166-218X(84)90075-1

[5] Haraguchi, K. & Ono, H. (2014). Approximabil-
ity of Latin square completion type puzzles. In-
ternational Conference on Fun with Algorithms,
218-229. https://doi.org/10.1007/978-3-319
-07890-8_19

[6] Donovan, D. (2010). The completion of partial
latin squares. Australasian Journal of Combina-
torics, 22, 247-264.

[7] Galvin, F., Stephen, C.L., Kim, S.S. & Callan,
D. (2001). A Generalization of Hall’s Theorem:
10701. The American Mathematical Monthly, 108,
79-80. https://doi.org/10.2307/2695691

[8] Ivanyi, A. & Nemeth, Z. (2011). List coloring
of Latin and Sudoku graphs. 8th Joint Conf. on
Math. and Comp. Sci.

[9] Yato, T. & Seta, T. (2003). Complexity and com-
pleteness of finding another solution and its ap-
plication to puzzles. IEICE Transactions on Fun-
damentals of Electronics, Communications and
Computer Sciences, E86-A, 5, 1052-1060.

[10] Norvig, P. (2018). Solving every Sudoku puzzle.
http://norvig.com/sudoku.html.

[11] Crawford, B., Castro, C. & Monfroy, E. (2009).
Solving sudoku with constraint programming.
MCDM, CCIS Communications in Computer and
Information Science, 35, 345-348. https://doi.
org/10.1007/978-3-642-02298-2_52

[12] Knuth, D.E. Dancing links. (2000). Millennial
Perspectives in Computer Science. Proceedings of
the 1999 Oxford-Microsoft Symposium, 187-214.

[13] Glover, F.W. (1986). Future paths for integer
programming and links to artificial intelligence.
Computers & Operations Research, 13(5), 533-
549. https://doi.org/10.1016/0305-0548(86
)90048-1

[14] Pacurib, J.A., Seno, G.M.M. & Yusiong, J.P.T.
(2009). Solving Sudoku puzzles using improved
artificial bee colony algorithm. In Fourth Interna-
tional Conference on Innovative Computing, In-
formation and Control (ICICIC), 885-888. http
s://doi.org/10.1109/ICICIC.2009.334

[15] Moraglio, A., & Togelius, J. (2007). Geometric
particle swarm optimization for the Sudoku puz-
zle. In Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation
(GECCO), 118-125. https://doi.org/10.114
5/1276958.1276975

[16] Lloyd, H. & Amos, M. (2020). Solving sudoku
with ant colony optimization, IEEE Transactions
on Games, 12, 302-311. https://doi.org/10.1
109/TG.2019.2942773

[17] Musliu, N., & Winter, F. (2017). A Hybrid Ap-
proach for the Sudoku Problem: Using Constraint
Programming in Iterated Local Search, IEEE In-
telligent Systems, 32 (2), 52-62. https://doi.or
g/10.1109/MIS.2017.29

[18] Lastrina, M.A. (2012). List-coloring and sum-list
coloring problems on graphs. PhD Thesis, Iawo
University.

[19] Tuza, Z. (1997). Graph colorings with local con-
straints - a survey. Discussiones Mathematicae
Graph Theory, 17, 161-228. https://doi.org/
10.7151/dmgt.1049

[20] Karp, R.M. (1972). Reducibility among Combi-
natorial Problems. In: Complexity of Computer
Computations. The IBM Research Symposia Se-
ries, Boston, MA, Springer. https://doi.org/
10.1007/978-1-4684-2001-2_9

[21] Kratochvil, J., & Tuza, Z. (1994). Algorith-
mic complexity of list coloring. Discrete Applied
Mathematics, 50(3), 297-302. https://doi.org/
10.1016/0166-218X(94)90150-3

[22] Diestel, R. (2017). Graph Theory. Graduate Texts
in Mathematics, Heidelberg: Springer-Verlag. ht
tps://doi.org/10.1007/978-3-662-53622-3

[23] Vizing, V.G. (1976). Coloring the vertices of
a graph in prescribed colors. Diskret. Analiz.,
Metody Diskret. Anal. v. Teorii Kodov i Shem,
101, 3-10.

[24] Lovász, L. (1973). Coverings and coloring of hy-
pergraphs. Proc. 4th Southeastern Conf. on Com-
binatorics, Graph Theory and Computing, 3-12.

[25] Erdos, P. & Rubin, A.L., Taylor. (1979). Choos-
ability in graphs. Proceedings of the West Coast
Conference on Combinatorics, Graph Theory and
Computing, 26, 125-157.

[26] Garey, M.R. & Johnson, D.S. Computers and
Intractability, A guide to the theory of NP-
Completeness. W. H. Freeman and Co., 1979.

[27] Mahmood, A.S. (2019). Design random number
generator utilizing the Futoshiki puzzle. Jour-
nal of Information Hiding and Multimedia Signal
Processing, 10, 178-186.

https://doi.org/10.1016/j.jcta.2014.10.007
https://doi.org/10.1016/j.jcta.2014.10.007
https://doi.org/10.1016/j.ejc.2009.03.036
https://doi.org/10.1016/j.ejc.2009.03.036
https://doi.org/10.1016/0166-218X(84)90075-1
https://doi.org/10.1016/0166-218X(84)90075-1
https://doi.org/10.1007/978-3-319-07890-8_19
https://doi.org/10.1007/978-3-319-07890-8_19
https://doi.org/10.2307/2695691
http://norvig.com/sudoku.html
https://doi.org/10.1007/978-3-642-02298-2_52
https://doi.org/10.1007/978-3-642-02298-2_52
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1109/ICICIC.2009.334
https://doi.org/10.1109/ICICIC.2009.334
https://doi.org/10.1145/1276958.1276975
https://doi.org/10.1145/1276958.1276975
https://doi.org/10.1109/TG.2019.2942773
https://doi.org/10.1109/TG.2019.2942773
https://doi.org/10.1109/MIS.2017.29
https://doi.org/10.1109/MIS.2017.29
https://doi.org/10.7151/dmgt.1049
https://doi.org/10.7151/dmgt.1049
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0166-218X(94)90150-3
https://doi.org/10.1016/0166-218X(94)90150-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

List coloring based algorithm for the Futoshiki puzzle 307

[28] Haraguchi, K. (2013). The number of inequal-
ity signs in the design of Futoshiki puzzle. Jour-
nal of Information Processing, 21, 26-32. https:
//doi.org/10.2197/ipsjjip.21.26

[29] Sahu, H.S., Nayak, S.K. & Mishra, S. (2016).
Maximizing the power generation of a partially
shaded PV array. IEEE Journal of Emerging and
Selected Topics in Power Electronics, 4, 626-637.
https://doi.org/10.1109/JESTPE.2015.2498

282

[30] Bondy, J.A. & Murty, U.S.R. (2008). Graph The-
ory, Graduate Texts in Mathematics. Springer,
New York. https://doi.org/10.1007/978-1
-84628-970-5

[31] Orden, D., Marsa, M.I., Gimenez, G.J.M. & Hoz,
E. (2017). Spectrum graph coloring and appli-
cations to Wi-Fi channel assignment. Symmetry,
10(3), 65. https://doi.org/10.3390/sym10030
065

[32] Garg, N., Papatriantafilou M. & Tsigas, P.
(1996). Distributed list coloring: how to dynami-
cally allocate frequencies to mobile base stations.
Eighth IEEE Symposium on Parallel and Dis-
tributed Processing, 18-25. https://doi.org/
10.1109/SPDP.1996.570312

[33] Zeitlhofer, T. & Wess, B. (2003). List-coloring of
interval graphs with application to register assign-
ment for heterogeneous register-set architectures.
Signal Processing, 83 (7), 1411-1425. https:

//doi.org/10.1016/S0165-1684(03)00089-6

[34] Denes, J. & Keedwell, AD. (1991). Latin Squares.
New Developments in the Theory and Applica-
tions, North Holland.

[35] Amos, M., Crossley, M. & Lloyd, H. (2019).
Solving nurikabe with ant colony optimization.
GECCO ’19: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion,
129-130. https://doi.org/10.1145/331961
9.3338470

[36] Bektur, G. & Aslan, H.K. (2024). Artificial bee
colony algorithm for operating room scheduling
problem with dedicated/flexible resources and co-
operative operations. An International Journal of
Optimization and Control: Theories & Applica-
tions (IJOCTA), 14(3), 193-207. https://doi.
org/10.11121/ijocta.1466

[37] Kostyukova, O. & Tchemisova T. (2024). Explor-
ing constraint qualification-free optimality con-
ditions for linear second-order cone program-
ming. An International Journal of Optimization
and Control: Theories & Applications (IJOCTA),
14(3), 168-182. https://doi.org/10.11121/ijo
cta.1421

Banu Baklan Şen completed her BSc in Mathemat-
ics and Computer Science and her MSc in Information
Tehcnologies at Bahçeşehir University, Turkey. She
defended her PhD in Computer Engineering at Kadir
Has University in Turkey. Her academic work includes
graph theory algorithms and theoretical computer sci-
ence. She has participated in international academic
collaborations. Her research has led to publications in
prominent journals and presentations at international
conferences with the expertise in combinatorial opti-
mization and algorithms. She is deeply committed to
both teaching and research.

https://orcid.org/0000-0003-4545-5044

Öznur Yaşar Diner obtained her BSc in Mathe-
matics from the Middle East Technical University in
Turkey. She completed her MSc in Mathematics at the
University of Göttingen in Germany and defended her
Ph.D. in Mathematics at Memorial University of New-
foundland in Canada. Her primary research interests
lie in structural graph theory and theoretical computer
science, with a focus on combinatorial problems. She
is passionate about teaching and conducting collabora-
tive research.

https://orcid.org/0000-0002-9271-2691

An International Journal of Optimization and Control: Theories & Applications (http://www.ijocta.org)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.2197/ipsjjip.21.26
https://doi.org/10.2197/ipsjjip.21.26
https://doi.org/10.1109/JESTPE.2015.2498282
https://doi.org/10.1109/JESTPE.2015.2498282
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.3390/sym10030065
https://doi.org/10.3390/sym10030065
https://doi.org/10.1109/SPDP.1996.570312
https://doi.org/10.1109/SPDP.1996.570312
https://doi.org/10.1016/S0165-1684(03)00089-6
https://doi.org/10.1016/S0165-1684(03)00089-6
https://doi.org/10.1145/3319619.3338470
https://doi.org/10.1145/3319619.3338470
https://doi.org/10.11121/ijocta.1466
https://doi.org/10.11121/ijocta.1466
https://doi.org/10.11121/ijocta.1421
https://doi.org/10.11121/ijocta.1421
https://orcid.org/0000-0003-4545-5044
https://orcid.org/0000-0002-9271-2691
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Problem definitions
	3. Applications
	4. Li k-PrExt and Futoshiki
	5. List coloring-based algorithm for the Futoshiki Problem
	5.1. BackTracking algorithm
	5.2. ColorFutoshiki algorithm
	5.3. Analysis of the algorithms

	6. Results and discussion
	7. Conclusion
	References

