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Linear second-order cone programming (SOCP) deals with optimization
problems characterized by a linear objective function and a feasible region
defined by linear equalities and second-order cone constraints. These
constraints involve the norm of a linear combination of variables, enabling
the representation of a wide range of convex sets. The SOCP serves as a
potent tool for addressing optimization challenges across engineering, finance,
machine learning, and various other domains. In this paper, we introduce new
optimality conditions tailored for SOCP problems. These conditions have the
form of two optimality criteria that are obtained without the requirement of any
constraint qualifications and are defined explicitly. The first criterion utilizes
the concept of immobile indices of constraints. The second criterion, without
relying explicitly on immobile indices, introduces a special finite vector set
for assessing optimality. To demonstrate the effectiveness of these criteria, we
present two illustrative examples highlighting their applicability. We compare
the obtained criteria with other known optimality conditions and show the
advantage of the former ones.
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1. Introduction

A conic optimization problem is characterized
by a constraint stipulating that the optimization
variables must belong to a closed convex cone.
Such problems encompass a wide spectrum of
optimization problems and serve as a fundamental
framework for addressing various real-world
challenges. Conic problems form a broad and
important class of optimization problems, since
according to [1, 2], any convex optimization
problem can be represented as a conic one.
This universality underscores the essential
significance of conic optimization in mathematical
optimization theory. In recent years, conic
optimization has attracted considerable attention
due to its versatility and widespread applicability
across diverse domains [3–5]. Among the most
prominent and extensively studied subclasses

of conic optimization problems are Linear
Programming (LP) and convex Quadratic
Programming (QP) problems. Another
notable class of conic optimization problems is
Semidefinite Programming (SDP), where the
optimization is performed over the cone of
positive semidefinite matrices. SDP has garnered
significant interest owing to its utility in tackling
a broad range of optimization tasks, including
control theory, combinatorial optimization, and
quantum information processing (see [6–8]).

Linear Second-Order Cone Programming (SOCP)
deals with conic problems where the objective
is to optimize a linear cost function over
the intersection of an affine set and the
product of the second-order (Lorentz) cones in a
finite-dimensional vector space. The problems of
LP, QP, and the quadratically constrained convex
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quadratic problems can be formulated as SOCP
problems, which in turn, belong to a special class
of SDP problems (see e.g. [9–11], and others).

The class of SOCP problems has been extensively
studied in the past two decades due to its broad
applicability across various fields of research,
including engineering, finance, control theory,
robust and combinatorial optimization. The
literature dedicated to second-order problems is
vast. For the applications, see, e.g. [10, 12, 13],
and the references therein. As highlighted in
[9], many of the SDP problems encountered
in practical applications and considered in [7],
can also be formulated as instances of SOCP
problems, further emphasizing the significance
and relevance of SOCP in optimization theory and
practice.

Necessary and sufficient optimality conditions
play an important role in optimization by
providing a framework for identifying optimal
solutions. By leveraging these conditions,
researchers and practitioners can effectively
discern the best possible outcome from the
optimization process. Among the various types of
optimality conditions, two prominent categories
can be distinguished: the optimality conditions
in ordinary (punctual) form as in, e.g., [14–17]
and sequential optimality conditions, see [18–20].
Additionally, other types of optimality conditions,
such as those discussed in [21, 22], contribute to
the comprehensive understanding of optimization
processes and strategies.

To test ordinary optimality conditions for a
primal feasible solution x0, one has to find a
finite vector y0, which is a dual feasible solution,
and check a finite number of equalities and
inequalities constructed on the base of x0 and y0.
When applying sequential optimality conditions
to a feasible solution x0, it is necessary to
identify some sequences, {xk} and {yk}, of vectors
associated with the primal and dual variables,
respectively, and check some conditions in the
form of limits of functions built on the base of
these sequences.

Optimality conditions are often formulated under
certain additional conditions on the problem’s
constraints, known as constraint qualifications
(CQ). Constraint qualifications are properties
inherent in the analytical description of a feasible
set ensuring that its structure around a given
feasible point can be described by (first-order)
approximations of the constraint functions (see
e.g. [23]) and guarantee the Karush-Kuhn-Tucker
(KKT) optimality conditions to hold at a local
minimizer. The most widely used CQ for
SOCP is the Slater condition (or strict feasibility)

presupposing the existence of a feasible solution
that belongs to the interior of the feasible set.

Constraint qualifications are particularly
crucial for deriving primal and primal-dual
characterizations of solutions in optimization
and variational problems. They are essential
for studying duality relations, conducting
sensitivity and stability analysis, and justifying
the convergence and evaluating the convergence
rate of computational methods.

Many papers are dedicated to CQ conditions for
different classes of optimization problems (see
[14, 15, 18, 23–26], and others). One of the
main challenges in this area is that for many
conic problems in general and SOCP problems
in particular, the CQs needed for formulation
of optimality conditions may not hold (see, for
example, [9, 16, 27], and the references therein).
Therefore, it is very important to search for
optimality conditions that do not rely on any
CQ (referred to as CQ-free optimality conditions).
Many research is dedicated to CQ-free optimality
conditions for different classes of optimization
problems (see [16, 19–21, 28, 29], and others).
However, to the best of the authors’ knowledge,
no CQ-free optimality conditions in the ordinary
form specifically designed for SOCP problems
have been published to date.

In this paper, new CQ-free optimality conditions
in the ordinary form are derived for SOCP
problems. These conditions are formulated and
proven in the form of two criteria. Illustrative
examples demonstrate situations where classical
conditions fail to test optimality, while the
optimality criteria presented in the paper allow
such a test.

The paper is structured as follows. In section 2,
we formulate the problem and introduce the basic
notation. In section 3, we introduce the set I0 of
special constraint indices referred to as immobile.
Here the immobility of a constraint’s index means
that this constraint remains active for all feasible
values of the problem’s variables. We utilize the
set of immobile indices to prove an optimality
criterion for SOCP problems. This criterion does
not use any additional conditions on the feasible
set of the problem under consideration, making
it an CQ-free optimality criterion. However, its
application may be hindered by the requirement
for information about the set I0, which may not
always be available. In the subsequent section
4, we present an alternative CQ-free optimality
criterion wherein the set I0 is not explicitly
utilized. At the end of the section, we provide
a short discussion on two different approaches
to the CQ-free optimality conditions and on the
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properties of the approach proposed in the paper.
Illustrative examples in section 5 highlight the
new optimality conditions derived in the paper
particularly in scenarios where the classical KKT
optimality conditions fail to suffice. In section
6, motivated by the optimality criterion obtained
by Gorokhovik in [21], for a more general class
of convex problems and using the lexicographical
separations approach, we formulate the optimality
criteria for SOCP. We compare this criterion with
that obtained in sections 3 and 4. The paper ends
with some conclusions presented in section 7.

2. Problem’s statement and basic
notions

Consider a linear second-order cone programming
problem in the form

SOCP : max b⊤x

s.t. Aix+c(i) ∈ SOC(i), i ∈ I,

where x ∈ Rn is a vector of decision variables,
b ∈ Rn, c(i) ∈ Rmi+1, Ai ∈ R(mi+1)×n, i ∈ I, are
given vectors and matrices; the sets

SOC(i) := {z =

(
z0
z∗

)
∈ Rmi+1,

z0 ∈ R, z∗ ∈ Rmi : ||z∗|| ≤ z0}, i ∈ I,

are the second-order cones. Here n ∈ N, mi ∈ N,
i ∈ I; ||z∗|| =

√
z⊤∗ z∗, and the set I ⊂ N is

supposed to be a finite index set.

Given i ∈ I, the second-order cone SOC(i) is
convex, full-dimensional, nice, and consequently,
is facially exposed (for definitions see e.g. [6]).

In what follows, for i ∈ I, we will suppose that a
vector z ∈ SOC(i) has the form z = (z0, z

⊤
∗ )

⊤ ∈
Rmi+1, where z0 ∈ R, z∗ ∈ Rmi .

Given x ∈ Rn and i ∈ I, denote

z(i, x) := Aix+ c(i).

For the problem (SOCP), the corresponding
standard (Lagrangian) dual problem has the form

SOCD : min
∑
i∈I

c(i)⊤y(i)

s.t.
∑
i∈I

A⊤
i y(i) = −b, y(i) ∈ SOC(i), i ∈ I,

where vectors y(i), i ∈ I, are the decision
variables.

A vector x ∈ Rn is a strictly feasible solution
in the problem (SOCP) if z(i, x) ∈ intSOC(i)
for all i ∈ I. A feasible solution of the problem
(SOCD), consisting of vectors y(i), i ∈ I, is
called strictly feasible if y(i) ∈ intSOC(i) for all
i ∈ I. Here intS stands for the interior of a set S.

Lemma 1. [Weak duality, [9]] If x̄ is feasible in
the problem (SOCP) and (ȳ(i), i ∈ I) is feasible
in the dual problem (SOCD), then the value of
the objective function of (SOCP) evaluated at x̄
is less than or equal to the value of the objective
function of (SOCD) evaluated at (ȳ(i), i ∈ I).

Given a primal-dual pair of optimization
problems (P) and (D), let val(P) and val(D)
denote the optimal values of the cost functions of
these problems. The difference val(D) − val(P)
is called the duality gap.

From Lemma 1, it follows that for a pair of dual
problems (SOCP) and (SOCD), the duality gap
is non-negative. To guarantee that the duality
gap is equal to zero, the problems should satisfy
certain additional conditions.

The following theorems are proved in [9].

Theorem 1. [Strong duality] If the second-order
cone problems (SOCP) and (SOCD) have
strictly feasible solutions, then they both
have optimal solutions (are solvable) and
val(SOCD)− val(SOCP) = 0.

Theorem 2. [KKT optimality conditions]
Suppose that (SOCP) is strictly feasible (admits
a strictly feasible solution). Then a feasible
solution x0 is optimal in this problem iff there
exist vectors y0(i), i ∈ I, such that∑

i∈I
A⊤

i y
0(i) = −b,

y0(i) ∈ SOC(i), y0(i)⊤z(i, x0) = 0 ∀i ∈ I.

(1)

Without additional conditions (CQs) on the
constraints of the problem (SOCP), the duality
gap may be positive. In this case, the KKT
optimality conditions may not be met (see [9,27],
and the example below).

The aim of this study is to formulate and prove
for the second-order cone problem (SOCP) new
CQ-free optimality conditions in the ordinary
form.

3. An optimality criterion for the
primal second-order cone problem

Denote by X the set of feasible solutions of the
problem (SOCP):

X := {x ∈ Rn : z(i, x) ∈ SOC(i) ∀ i ∈ I}. (2)

Notice that the set X is convex.

Suppose that X ̸= ∅ and consider a subset of the
index set I:

I0 := {i ∈ I : ||z∗(i, x)|| = z0(i, x) ∀x ∈ X}. (3)

This subset plays an important role in our
approach. It contains the indices of constraints



Exploring constraint qualification-free optimality conditions for linear second-order cone programming 171

that can be characterized as always active or
immobile in the terminology of our previous
papers (see e.g. [16, 30], and the references
therein).

The constraints of the problem (SOCP) are said
to satisfy the Slater condition if the problem
admits a strictly feasible solution, i.e. there exists
a vector x̄ ∈ Rn such that

z(i, x̄) ∈ intSOC(i) ∀i ∈ I. (4)

The Slater condition is one of CQs that guarantee
the existence of KKT multipliers for a given
optimal solution.

It is easy to show that conditions (4) are
equivalent to the inequalities

||z∗(i, x̄)|| < z0(i, x̄) ∀i ∈ I. (5)

Therefore, in terms of (3), one can see that the
constraints of the problem (SOCP) satisfy the
Slater condition iff I0 = ∅. Hence, the emptiness
of the set I0 can be considered as a constraint
qualification.

In what follows, we will use the following notation
for i ∈ I:

Ri :=


1 0 ... 0
0 −1 .... 0
... ... ... ...
0 0 ... −1

 ∈ R(mi+1)×(mi+1);

intSOC(i) := {z =

(
z0
z∗

)
∈ Rmi+1 : ||z∗|| < z0},

bd+ SOC(i) :={z =

(
z0
z∗

)
∈ Rmi+1 : ||z∗|| = z0,

z0 > 0}.
Then, for any i ∈ I, it holds

SOC(i) = intSOC(i) ∪ bd+ SOC(i) ∪ {0}, (6)

where 0 is the null vector in the corresponding
real space Rmi+1.

Since X ̸= ∅, then it is easy to show that there
exists a vector x̃ ∈ Rn such that

||z∗(i, x̃)|| < z0(i, x̃) ∀i ∈ I \ I0,
||z∗(i, x̃)|| = z0(i, x̃) ∀i ∈ I0. (7)

A vector x̃ satisfying (7), is called a minimally
active feasible solution of the problem (SOCP).

For i ∈ I, let z ∈ Rmi+1 and y ∈ Rmi+1

be complementary, i.e. satisfy the following
complementarity conditions:

z⊤y = 0, z ∈ SOC(i), y ∈ SOC(i). (8)

Then (see [9]) one of the next conditions takes a
place:

a0) z ∈ intSOC(i) =⇒ y = 0;

b0) z ∈ bd+ SOC(i) =⇒ y = αRiz, α ≥ 0;

c0) z = 0 =⇒ ∀y ∈ SOC(i).

Proposition 1. Let x̃ be a minimally active
feasible solution of the problem (SOCP). Then
for i ∈ I0 and x ∈ X, there exists a corresponding
number αi = αi(x), such that

z(i, x) = αiz(i, x̃), αi ≥ 0. (9)

Proof. Let i ∈ I0 and x ∈ X. It follows from the
convexity of the set X that 0.5(x̃+ x) ∈ X. From
this inclusion and the definition of the index set
I0, one can conclude:

||z∗(i, 0.5(x̃+ x))|| = z0(i, 0.5(x̃+ x)),

||z∗(i, x̃)|| = z0(i, x̃), ||z∗(i, x)|| = z0(i, x).
(10)

Consequently,

0.5||z∗(i, x̃) + z∗(i, x)|| = 0.5z0(i, x̃) + 0.5z0(i, x)

= 0.5||z∗(i, x̃)||+ 0.5||z∗(i, x)||.
The equality

||z∗(i, x̃) + z∗(i, x)|| = ||z∗(i, x̃)||+ ||z∗(i, x)||
obtained above can be rewritten as follows:

(z∗(i, x̃) + z∗(i, x))
⊤(z∗(i, x̃) + z∗(i, x)) =

||z∗(i, x̃)||2 +2||z∗(i, x̃)||·||z∗(i, x)||+||z∗(i, x)||2,
wherefrom we obtain

z∗(i, x̃)
⊤z∗(i, x) = ||z∗(i, x̃)|| · ||z∗(i, x)||.

Taking into account the latter equality and the
well-known relation a⊤b = cos(φ)||a|| · ||b||, where
φ is the angle between the vectors a and b,
we obtain that the cosine of the angle between
vectors z∗(i, x) and z∗(i, x̃) is equal to 1, and,
hence, these vectors are collinear. This implies
that

z∗(i, x) = αiz∗(i, x̃) with some αi ≥ 0. (11)

It follows from (10) and (11) that

z0(i, x) = ||z∗(i, x)|| = αi||z∗(i, x̃)|| = αiz0(i, x̃).

The equality obtained, z0(i, x) = αiz0(i, x̃),
together with (11) imply that relations (9) hold
true for i ∈ I0 and x ∈ X. 2

Let us fix a minimally active feasible solution x̃
of the problem (SOCP) and denote

γ(i) := z(i, x̃) ∀i ∈ I0.

Then it follows from Proposition 1 that for an
immobile index i ∈ I0 and for a feasible solution
x ∈ X, the non-linear condition

z(i, x) ∈ SOC(i) ⇐⇒ ||z∗(i, x)|| ≤ z0(i, x)

can be replaced by (mi + 1) linear equalities
z(i, x) = αiz(i, x̃) with one additional variable
αi ≥ 0. Based on this, it is easy to show that
X = X̄, where

X̄ := {x ∈ Rn : z(i, x) ∈ SOC(i) ∀i ∈ I \ I0,
z(i, x) = αiγ(i) with some αi ≥ 0 ∀i ∈ I0}.
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It follows from the considerations above that the
problem (SOCP) is equivalent to the following
one:

P∗ : max b⊤x

s.t. Aix+ c(i) = z(i), z(i) ∈ SOC(i) ∀i ∈ I \ I0;
Aix+ c(i) = αiγ(i), αi ≥ 0 ∀i ∈ I0,

where the decision variables are vector x ∈ Rn

and numbers αi, i ∈ I0.

Notice that in the problem (P∗), there is a finite
number of equality and inequality constraints

Aix+ c(i) = αiγ(i), αi ≥ 0 ∀i ∈ I0,

that are linear w.r.t. x ∈ Rn and αi ∈ R, i ∈ I0.
Moreover, there exists a feasible solution x̃ of the
problem (SOCP) such that the feasible solution

x̃, α̃i = 1, i ∈ I0, z̃(i) = z(i, x̃), i ∈ I \ I0,
of the problem (P∗) satisfies the following strict
inequalities:

α̃i > 0, i ∈ I0, ||z̃∗(i)|| < z̃0(i), i ∈ I \ I0.
Hence, the constraints of this problem satisfy the
generalized Slater condition (see [31]), and one
can use the classical KKT optimality conditions
for testing optimality of its feasible solution
(x0, α0

i , i ∈ I0).

Taking into account the equivalence of the
problems (SOCP) and (P∗), we obtain the
following result.

Theorem 3. [Optimality criterion 1] A feasible
solution x0 ∈ X of the problem (SOCP) is
optimal in this problem iff there exist vectors
y(i) ∈ Rmi+1, i ∈ I, such that the following
relations hold true:

∑
i∈I

A⊤
i y(i) = −b, z(i, x0)⊤y(i)=0 ∀i ∈ I; (12)

y(i) ∈ SOC(i) ∀i ∈ I \ I0;

y(i)⊤γ(i) ≥ 0 ∀i ∈ I0.
(13)

Conditions (12), (13) are similar to the KKT
conditions (1) but simpler than them. The
difference is as follows: the conic conditions
y0(i) ∈ SOC(i), i ∈ I0, in (1) are replaced by the
linear ones y(i)⊤γ(i) ≥ 0, i ∈ I0, in (12), (13).
Therefore, finding a solution to system (12), (13)
is no more difficult than finding a solution to the
KKT system (1).

It is evident that if I0 = ∅, then conditions (12),
(13) coincide with (1).

It should be noted here that the optimality
criterion in the form of Theorem 3 does not use
any additional conditions on the feasible set of
the problem (SOCP) and is therefore an CQ-free
optimality criterion. The only possible difficulty

in its application is the need to know the set of
immobile indices I0.

In the next section, we will demonstrate an
alternative CQ-free optimality criterion that does
not explicitly rely on any knowledge of I0.

4. An alternative CQ-free optimality
criterion for the second-order cone
programming

The optimality criterion presented in this section
is based on the following idea used in literature for
convex optimization problems (see, for example
[22]).

For a given convex problem, at the first step,
one attempts to obtain an exact extended dual
problem (EEDP) explicitly formulated in terms
of the data of the original primal problem (see
[32–35]). The exact (strong) duality property
entails that when the primal problem and its
corresponding dual are consistent, their optimal
values are equal, and the dual problem attains its
optimal value.

The dual problem (EEDP) has an extended
set of dual decision variables compared to the
Lagrangian dual. Note that some regularization
procedure is necessary to justify the exactness of
this dual problem.

At the second step, taking into account
the exactness of the extended dual problem
(EEDP), attempts are made to formulate CQ-free
optimality conditions for a feasible solution to the
original primal problem using an optimal solution
to this dual problem.

Below, we utilize this idea to derive an CQ-free
optimality criterion for the problem (SOCP).
Taking into account the specific nature of the
problem under consideration, we are able to
formulate the optimality conditions without an
explicit representation of the corresponding exact
extended dual problem. The regularization
procedure associated with this formulation is
implicitly embedded within the proof of the
criterion.

It is worth noting that the KKT optimality
conditions (see Theorem 2) are also based on
a similar idea: these conditions are formulated
using the set of vectors y0(i), i ∈ I, (the KKT
multipliers for a given optimal solution) which,
in fact, represents an optimal solution of the
Lagrangian dual problem (SOCD). However, in
the formulation of these conditions, this fact is
not explicitly mentioned.

We commence by formally introducing a set of
vectors that, in essence, constitutes a feasible
solution of the exact extended dual problem.
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Having fixed i ∈ I and k0 ∈ N, 0 ≤ k0 ≤ |I|,
consider the following set of vectors:

{π(k, i) ∈ Rmi+1, k = 0, 1, . . . , k0}. (14)

If π(k, i) ̸≡ 0 for all k = 0, 1, . . . , k0, denote

qi = min{k : 0 ≤ k ≤ k0, π(k, i) ̸= 0}.

We say that for a given i ∈ I, the set of vectors
(14) satisfies Condition (A) if one of the following
conditions is true:

A1) π(k, i) ≡ 0 for all k = 0, 1, . . . , k0;
A2) π(qi, i) ∈ SOC(i), π(k, i)⊤Riπ(qi, i) ≥ 0

for all k = qi + 1, . . . , k0.

Here and in what follows, the set of indices {k =
q, q + 1, . . . , s} is assumed to be empty if s < q.

Let us prove a technical proposition.

Proposition 2. Suppose that i ∈ I and that the
set of vectors (14) satisfies Condition (A). Then
for any z ∈ SOC(i), there exists θ̄ = θ̄(z) > 0
such that

k0∑
k=0

θk0−kz⊤π(k, i) ≥ 0 ∀θ ≥ θ̄. (15)

Proof. If π(k, i) ≡ 0 for all k = 0, 1, . . . , k0, then
inequalities (15) are trivially satisfied with any
θ̄ > 0.

Suppose that π(k, i) ̸≡ 0 for k = 0, 1, . . . , k0. In
this case, we have

k0∑
k=0

θk0−kz⊤π(k, i) =

k0∑
k=qi

θk0−kz⊤π(k, i), (16)

where z⊤π(qi, i) ≥ 0 since z ∈ SOC(i) and
π(qi, i) ∈ SOC(i).
If z⊤π(qi, i) > 0, then evidently, the inequalities
(15) hold true for a sufficiently large θ̄ > 0.

Suppose that z⊤π(qi, i) = 0. Since z ∈ SOC(i),
we can distinguish the following three cases:

1) z = 0, 2) z ∈ intSOC(i), and 3) z ∈ bd+ SOC(i).

In case 1), relations (15) are trivially satisfied with
any θ̄ > 0.

In case 2), the equality z⊤π(qi, i) = 0 implies
π(qi, i) = 0 that contradicts the assumption
π(qi, i) ̸= 0. Therefore, this case is impossible.

In case 3), the equality z⊤π(qi, i) = 0 and the
inequality π(qi, i) ̸= 0 imply z = αi(z)Riπ(qi, i)
with some αi(z) > 0. Hence, taking into account
the latter relations and Condition A2), we obtain
the following inequalities:

z⊤π(k, i) = αi(z)π(k, i)
⊤Riπ(qi, i) ≥ 0,

for all k = qi + 1, . . . , k0. These inequalities
together with equalities (16) and z⊤π(qi, i) = 0,

ensure that relations (15) are satisfied for any
θ̄ > 0. 2

For a given x ∈ X, introduce an index set

Ia(x) := {i ∈ I : ||z∗(i, x)|| = z0(i, x)}.

Theorem 4. [Optimality Criterion 2] A vector
x0 ∈ X is an optimal solution of the problem
(SOCP) iff there exist an integer number k0,
0 ≤ k0 ≤ |Ia(x0)|, and the sets of vectors

{π(k, i) ∈ Rmi+1, k = 0, 1, . . . , k0}, i ∈ Ia(x
0),
(17)

satisfying Condition (A) for all i ∈ Ia(x
0), such

that∑
i∈Ia(x0)

A⊤
i π(k, i) = 0 ∀k = 0, . . . , k0 − 1;

∑
i∈Ia(x0)

A⊤
i π(k0, i) = −b,

(18)

and

z(i, x0)⊤π(k, i) = 0

∀k = 0, 1, . . . , k0, ∀i ∈ Ia(x
0).

(19)

Proof. Sufficiency. Suppose that there exists a
set of vectors (17) satisfying Condition (A) and
relations (18) and (19). Then it follows from (19)
that

0 =
∑

i∈Ia(x0)

z(i, x0)⊤π(k, i)

=
∑

i∈Ia(x0)

[Aix
0 + c(i)]⊤π(k, i)

=
∑

i∈Ia(x0)

c(i)⊤π(k, i) + x0
⊤ ∑

i∈Ia(x0)

A⊤
i π(k, i),

for all k = 0, 1, . . . , k0. From these equalities and
(18), we obtain∑

i∈Ia(x0)

c(i)⊤π(k, i) = 0 ∀k = 0, . . . , k0 − 1,

∑
i∈Ia(x0)

c(i)⊤π(k0, i) = b⊤x0.
(20)

It follows from Proposition 2 that for any x ∈ X,
there exists θ̄ = θ̄(x) > 0 such that

k0∑
k=0

θ̄k0−kz(i, x)⊤π(k, i) ≥ 0 ∀i ∈ Ia(x
0). (21)
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For x ∈ X, taking into account (18) - (20), let us
calculate

b⊤x = −
∑

i∈Ia(x0)

x⊤A⊤
i π(k0, i)

= −
∑

i∈Ia(x0)

x⊤A⊤
i

k0∑
k=0

θ̄k0−kπ(k, i)

= −
∑

i∈Ia(x0)

z(i, x)⊤
k0∑
k=0

θ̄k0−kπ(k, i)

+
∑

i∈Ia(x0)

c(i)⊤
k0∑
k=0

θ̄k0−kπ(k, i)

= −
∑

i∈Ia(x0)

k0∑
k=0

θ̄k0−kz(i, x)⊤π(k, i) + b⊤x0.

These relations together with (21), permit one to
conclude that b⊤x ≤ b⊤x0 for all x ∈ X. Hence
x0 ∈ X is an optimal solution of the problem
(SOCP).

Necessity. Let x0 ∈ X be an optimal solution
to the problem (SOCP). Let us construct a set
of vectors (17) satisfying the Condition (A) and
relations (18), (19). We will do this iteratively by
performing the following iterations.

Iteration # 0. Consider the problem

P-0 : max µ,

s.t. Aix+ c(i)− e0(i)µ = z(i),

z(i) ∈ SOC(i) ∀i ∈ I,

where e0(i) = (1, 0, . . . , 0)⊤ ∈ Rmi+1, i ∈ I.

The constraints of this problem satisfy the Slater
condition. In fact, for any x ∈ X, the vector
(x, µ = −1, z(i), i ∈ I)⊤ with
z(i) = (z0(i) = z0(i, x) + 1, z∗(i) = z∗(i, x)), i ∈ I,
is a feasible solution of the problem (P-0)
satisfying the strict inequalities

||z∗(i)|| < z0(i) ∀i ∈ I.

If this problem admits a feasible solution
(x̄, µ̄, z̄(i), i ∈ I) with µ̄ > 0, then set k0 = 0
and go to the Final Step.

Otherwise, for any x ∈ X, the vector

(x, µ = 0, z(i) = z(i, x), i ∈ I) (22)

is an optimal solution of the problem (P-0).
Since the constraints of this problem satisfy the
Slater condition, applying the classical KKT
optimality conditions to its optimal solution (22),
we conclude that there exist vectors

y0(i) =

(
y00(i)
y0∗(i)

)
∈ Rmi+1,

y0∗(i) ∈ Rmi , i ∈ I,

(23)

such that the following relations hold true for any
x ∈ X: ∑

i∈I
A⊤

i y
0(i) = 0,

∑
i∈I

y00(i) = 1, (24)

z(i, x)⊤y0(i) = 0, y0(i) ∈ SOC(i) ∀i ∈ I.(25)

Consider the index set

∆I1 := {i ∈ I : y00(i) > 0}.
It follows from (24) that ∆I1 ̸= ∅. Let us show
that

||z∗(i, x)|| = z0(i, x) ∀i ∈ ∆I1, ∀x ∈ X, (26)

and consequently, the indices in ∆I1 are
immobile.

Suppose the contrary: there exist i0 ∈ ∆I1
and x̄ ∈ X such that ||z∗(i0, x̄)|| < z0(i0, x̄).
Then from the equality in (25) with i = i0
and the conditions z(i0, x̄) ∈ SOC(i0), y0(i0) ∈
SOC(i0), we can conclude that y0(i0) = 0. But
this contradicts the inequality y00(i0) > 0 that is
fulfilled by construction. Hence equalities (26) are
satisfied. Remind here that relations (24), (25)
are valid for all x ∈ X.

Let us show that for all i ∈ ∆I1 and x ∈ X, the
following is true:

∃αi(x) ≥ 0 such that z(i, x) = αi(x)Riy
0(i). (27)

Let i ∈ ∆I1 and x ∈ X. If y0(i) ∈ intSOC(i),
then it follows from the equality in (25) and the
condition z(i, x) ∈ SOC(i), that z(i, x) = 0.
Hence, in this case, relations (27) are satisfied
with αi = 0. If y0(i) ∈ bd+ SOC(i), then it follows
from (25) and the inclusion z(i, x) ∈ SOC(i),
that z(i, x) = αi(x)Riy

0(i) with some αi(x) ≥ 0.
Consequently, the equality in (27) holds true in
this case as well. Taking into account that y0(i) ̸=
0 for i ∈ ∆I1, we conclude that relations (27) are
proved.

It follows from (27) that for an immobile index
i ∈ ∆I1 and for a feasible solution x ∈ X, the
non-linear condition

z(i, x) ∈ SOC(i) ⇐⇒ ||z∗(i, x)|| ≤ z0(i, x)

can be replaced by (mi + 1) linear equalities
z(i, x) = αiRiy

0(i) with one additional variable
αi ≥ 0. Based on this, it is easy to see that
X = X0, where

X0 :={x ∈ Rn : z(i, x) ∈ SOC(i), i ∈ I \ I1;
z(i, x) = αiγ̄(i) with some αi ≥ 0, i ∈ I1},

I1 := ∆I1,

γ̄(i) := Riy
0(i) ∈ SOC(i) ∀i ∈ ∆I1.

(28)

In fact, if x ∈ X0, then it is evident that z(i, x) ∈
SOC(i) for all i ∈ I. Hence, x ∈ X, and
consequently, X0 ⊂ X. Now suppose that x ∈ X.
Then it follows from (27) and (28) that x ∈ X0
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and hence, X ⊂ X0. The equality X = X0 is
proved.

The set of vectors (23) constructed above satisfies
the conditions

y0(i) = 0 ∀i ∈ I \ I1;
y0(i) ∈ SOC(i), y0(i) ̸= 0 ∀i ∈ I1.

(29)

Go to the next Iteration #1 with the data (28).

Iteration # k (k ≥ 1). At the beginning of this
iteration, we have the following set and vectors:

Ik = ∆I1 ∪ · · · ∪∆Ik, γ̄(i) = Riy
s(i) ∈ SOC(i),

γ̄0(i) ̸= 0, i ∈ ∆Is+1, s = 0, 1, . . . , k − 1.

Consider the problem

P-k : max µ,

s.t. Aix+ c(i)− e0(i)µ = z(i) ∀i ∈ I \ Ik,
Aix+ c(i) = αiγ̄(i) ∀i ∈ Ik,

z(i) ∈ SOC(i) ∀i ∈ I \ Ik, αi ≥ 0 ∀i ∈ Ik.

The constraints of this problem satisfy the
generalized Slater condition (see [31]).

If the problem (P-k) admits a feasible solution
(x̄, µ̄, z̄(i), i ∈ I \ Ik, ᾱi, i ∈ Ik) with µ̄ > 0, then
set k0 = k and go to the Final Step.

Otherwise, for any x ∈ X, the vector

(x, µ = 0, z(i, x), i ∈ I \ Ik;
αi(x) = z0(i, x)/γ̄0(i), i ∈ Ik)

(30)

is an optimal solution to the problem (P-k).
Taking into account that the constraints of this
problem satisfy the generalized Slater condition
and applying the KKT optimality conditions to
its optimal solution (30), we conclude that there
exist vectors

yk(i) =

(
yk0 (i)
yk∗ (i)

)
∈ Rmi+1,

yk∗ (i) ∈ Rmi , i ∈ I,

(31)

such that the following relations hold true:∑
i∈I

A⊤
i y

k(i) = 0,
∑

i∈I\Ik
yk0 (i) = 1, (32)

z(i, x)⊤yk(i) = 0 ∀i ∈ I;

yk(i) ∈ SOC(i) ∀i ∈ I \ Ik; (33)

γ̄(i)⊤yk(i) ≥ 0∀i ∈ Ik.

Consider the index set

∆Ik+1 := {i ∈ I \ Ik : yk0 (i) > 0}.
It follows from (32) that

∆Ik+1 ̸= ∅. (34)

Similar to how it was done on the initial Iteration
# 0, one can show that

||z∗(i, x)|| = z0(i, x) ∀i ∈ ∆Ik+1, ∀x ∈ X, (35)

z(i, x) = αi(x)Riy
k(i),

αi(x) ≥ 0 ∀i ∈ ∆Ik+1, ∀x ∈ X.
(36)

Set
Ik+1 = Ik ∪∆Ik+1 = ∆I1 ∪∆I2 ∪ · · · ∪∆Ik+1,

γ̄(i) = Riy
k(i), i ∈ ∆Ik+1.

It follows from (36) that X = Xk, where

Xk := {x ∈ Rn : z(i, x) ∈ SOC(i), i ∈ I \ Ik+1;

z(i, x) = αiγ̄(i) with some αi ≥ 0, i ∈ Ik+1}.
(37)

The set of vectors defined in (31)-(33), satisfies
the following relations:

yk(i) = 0 ∀i ∈ I \ Ik+1, (38)

yk(i) ∈ SOC(i), yk0 (i) ̸= 0 ∀i ∈ ∆Ik+1; (39)

yk(i)⊤Riy
s−1(i) = yk(i)⊤γ̄(i) ≥ 0

∀i ∈ ∆Is, s = 1, . . . , k.
(40)

Go to the next Iteration # (k + 1) using the set
Ik+1 and vectors γ̄(i), i ∈ Ik+1, ys(i), i ∈ I,
s = 0, 1, . . . , k found above.

Final Step. It follows from condition (34) that
after a finite number of iterations, we will get to
the Final Step with some k0, 0 ≤ k0 ≤ |I0|, where
I0 is the set of immobile indices of the constraints
of the problem (SOCP) (see (3)).

From (26) and (35) we have:

Ik0 = ∆I1 ∪ · · · ∪∆Ik0 ⊂ I0. (41)

By construction, a number k0 is such that for
k = k0, the problem (P-k) has a feasible solution

(x̄, µ̄, z̄(i), i ∈ I \ Ik0 , ᾱi, i ∈ Ik0)

with µ̄ > 0. Hence, x̄ ∈ Xk0−1 = X, where Xk0−1

is defined in (37) with k = k0 − 1, and

||z∗(i, x̄)|| < z0(i, x̄) ∀i ∈ I \ Ik0 . (42)

Notice that for k0 = 0, the set Ik0 is empty.

Taking into account (41) and (42), one can
conclude that Ik0 = I0.

Consider the following problem:

P-R : max b⊤x,

s.t. Aix+ c(i) = z(i), z(i) ∈ SOC(i) ∀i ∈ I \ Ik0 ,
Aix+ c(i) = αiγ̄(i), αi ≥ 0 ∀i ∈ Ik0 .

It follows from (42) that the constraints of this
problem satisfy the generalized Slater condition.
Since X = Xk0−1, the optimality of the solution
x0 in the problem (SOCP) implies the optimality
of the solution

(x0, z0(i) = z(i, x0), i ∈ I \ Ik0 ,
α0
i = z0(i, x

0)/γ̄0(i), i ∈ Ik0)

in the problem (P-R). Applying the KKT
optimality conditions to the problem (P-R) and
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its optimal solution, one can conclude that there
exist vectors yk0(i), i ∈ I, such that

yk0(i) ∈ SOC(i) ∀i ∈ I \ Ik0 ;

yk0(i)⊤γ̄(i) = yk0(i)⊤Riy
s−1(i) ≥ 0

∀i ∈ ∆Is, ∀ s = 1, . . . , k0,∑
i∈I

A⊤
i y

k0(i) = −b,

z(i, x0)⊤yk0(i) = 0 ∀i ∈ I.

(43)

From the relations above, we get

yk0(i) = 0 ∀i ∈ I \ Ia(x0). (44)

Notice that by construction, we have Ik0 = I0,
and, consequently, I0 ⊂ Ia(x

0) for all x ∈ X.
Taking into account this inclusion, (44), and (38)
(with k = 0, . . . , k0 − 1), we conclude that the
vectors yk(i), i ∈ I, k = 0, 1, . . . , k0, constructed
here, satisfy the equalities

yk(i) = 0 ∀i ∈ I \ Ia(x0), ∀k = 0, 1, . . . , k0.

It follows from the equalities above and relations
(39), (40) (with k = 0, . . . , k0 − 1), together with
(43) that the sets of vectors

{π(k, i)=yk(i), k=0, . . . , k0}, ∀i ∈ Ia(x
0), (45)

satisfy Condition (A) and relations (18)-(19). 2

Remark 1. In the theorem, it is affirmed that the
integer k0 is less than or equal to |Ia(x0)|. In fact,
the inequalities k0 ≤ |I0| ≤ |Ia(x0)| hold true and
in the statement of the theorem, one can replace
the inequality k0 ≤ |Ia(x0)| by a tighter estimate
k0 ≤ |I0|. However, we prefer to leave here the
inequality k0 ≤ |Ia(x0)| since in a general case,
one cannot expect to have any knowledge about the
set I0. Notice that if the set I0 is known, one can
use a more simple form of optimality conditions,
namely Criterion 1.

Considering the problems (P∗) and (P-R), one
can see that they are similar but at the same time
there are some differences between them.

It was mentioned above that Ik0 = I0. Let us
introduce a subset

I00 = {i ∈ I0 : z0(i, x) = 0 ∀x ∈ X}.
For i ∈ I0 \ I00, we have γ(i) = βiγ̄(i) with
βi = γ0(i)/γ̄0(i) > 0, i.e. the vectors γ(i) and
γ̄(i) coincide up to a positive nonzero factor.

For i ∈ I00, we have γ(i) = 0 and γ̄(i) ̸= 0.

In the problem (P∗), for x ∈ X, the corresponding
variables αi, i ∈ I0 \ I00, are uniquely determined
by the rule αi = z0(i, x)/γ0(i), i ∈ I0\I00, and we
can choose any non-negative values for αi, i ∈ I00.

In the problem (P-R), for x ∈ X, the formulas
αi = z0(i, x)/γ̄0(i), i ∈ I0, uniquely define the
corresponding variables αi, i ∈ I0.

4.1. A short discussion

It was mentioned earlier that Criterion 2 proved
in this section, is based on the utilization of
an optimal solution to the exact extended dual
problem (EEDP). In fact, the set (45) constitutes
a part of an optimal solution

{yk(i), k = 0, . . . , k0}, i ∈ I, (46)

to the problem (EEDP). The vectors in (46)
serve as a generalization of the vectors of KKT
multipliers for a given optimal solution x0.
However, unlike the vectors of KKT multipliers,
which may not exist for some problems, an
optimal solution to the exact extended dual
problem always exists provided that the optimal
value of problem (SOCP) is finite.

It follows from the iterative nature of the proof of
Theorem 4 that testing the optimality criterion
is not much more difficult than checking the
KKT system. In fact, to construct generalized
multipliers (46), one has to test sequentially,
for k = 0, . . . , k0, the classical KKT optimality
conditions in the second-order programming
problem (P-k) for the feasible solution (x̄, µ =
0, z(i) = z(i, x̄), i ∈ I) with a fixed x̄ ∈ X,
and one time in the second-order programming
problem (P-R) for the feasible solution (x0, α0

i =
z0(i, x

0)/γ̄0(i), i ∈ I0).

Note here the following:

• The number k0 satisfies the inequality k0 ≤ |I0|
and hence, it is finite. One may expect the
number k0 to be less than |I0|, since |I0| =
k0∑
k=1

|∆Ik| and, as a rule, |∆Ik| > 1 for k =

1, . . . , k0.

• The constraints of all second-order problems
(P-k), k = 0, . . . , k0, and the problem (P-R)
satisfy the Slater condition.

• For k = 1, . . . , k0, the KKT system for the
problem (P-k) is simpler than the KKT system
for the problem (P-(k-1)), and the KKT system
for the problem (P-R) is the simplest among
them.

If I0 = ∅, then k0 = 0. It is easy to see that in this
case, conditions (18), (19) coincide with the KKT
conditions (1), where y0(i) = π(0, i) for i ∈ Ia(x

0)
and y0(i) = 0 for i ∈ I \ Ia(x0). Hence the KKT
conditions (1) are a particular case of conditions
(18), (19) with k0 = 0.

In case I0 ̸= ∅, conditions (18), (19) are more
complex than the KKT conditions, since to test
them, one has to find an extended dual optimal
solution. But notice that the KKT conditions are
useless if, for the problem under consideration,
the dual gap is positive or/and the corresponding
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Lagrangian dual problem has no solution. In
such situations, the KKT conditions can never be
satisfied.

In contrast to the KKT conditions, Criterion 2
can always recognize the optimality of a given
feasible solution, as an optimal generalized dual
solution exists and there is no duality gap. This
represents the main and significant advantage
of conditions (18), (19) compared to the KKT
conditions.

As mentioned earlier, verifying sequential
optimality conditions requires finding sequences
of vectors {xk} and {yk} associated with
primal and dual variables, and checking certain
conditions in the form of limits of functions
constructed on the basis of these sequences. It
is important to note that if certain CQs are
not satisfied, the sequence {yk} may become
”irregular” (or not well-defined), since ||yk|| → ∞
as k → ∞. This irregularity may pose challenges
in numerical methods for constructing such
sequences and in verifying conditions in the form
of limits.

In contrast, to test the optimality Criterion 2, one
needs to find a finite set (46) of concrete vectors
which are ”well defined” and check a finite set of
equality and inequality conditions.

One drawback of our approach is the requirement
to know the set I0 in order to apply the optimality
Criterion 1. This can pose a challenge, as
identifying this set may take additional effort or
computational resources. However, it is worth
noting that if we do know this set, our optimality
conditions offer advantages over traditional KKT
conditions, providing a practical framework for
solving optimization problems.

The second drawback of our approach is that
when applying the optimality Criterion 2, we need
to construct an extended (generalized) vector of
Lagrange multipliers. Despite this, the criterion
offers the advantage of being CQ-free.

It is known that the violation of CQs can lead
to difficulties in implementation of numerical
methods of the primal-dual type using the
classical KKT optimality conditions. This
difficulty arises from the non-existence of classical
Lagrange multipliers. It can be overcome by
utilizing (iteratively and in an approximate form)
of some CQ-free optimality conditions, in either
sequential or ordinary form. Since the optimality
conditions obtained in the paper are CQ-free,
they can be used for this purpose as well as the
CQ-free optimality conditions in sequential form
as in [18–20] et al.

5. Examples

Example 1. Consider the problem (SOCP) with
the following data: n = 6, I = {1, 2, 3}, m1 = 3,
m2 = 3, m3 = 2,

A1=


0 1 0 0 0 0
0 −1 2 3 0 1
0 1 0 0 0 0
1 0 1 −1 0 1

 ,

A2=


0 0 0 0 0 0
0 1 2 1 0 1

−1 0 1 −1 −1 0
1 −1 0 0 1 0

 ,

A3=

 1 1 −1 0 1 0
2 1 0 0 1 −1
0 1 0 1 0 1

 ,

c(1) = (0, 6, 0, 0)⊤; c(2) = (0, 4, 6,−2)⊤;

c(3) = (−4,−2,−2)⊤, b = (4, 2,−1,−3, 2,−5)⊤.

Set x0 = (2, 1,−3, 0, 1, 1)⊤ and calculate
z(i, x0) = Aix

0 + c(i), i ∈ I. In this example,
we have:

z(1, x0) = (1, 0, 1, 0)⊤, z(2, x0) = (0, 0, 0, 0)⊤,

z(3, x0) = (3, 3, 0)⊤.

Consequently, x0 is a feasible solution of this
problem and Ia(x

0) = I.

Set k0 = 1, and consider the following vectors:
π(0, 1) = (1, 0,−1, 0)⊤, π(0, 2) = (1, 0, 0, 0)⊤,
π(0, 3) = (0, 0, 0)⊤, π(1, 1) = (−2, 2, 2, 1)⊤,
π(1, 2) = (3,−1, 1,−1)⊤, π(1, 3) = (3,−3, 0)⊤.

It is easy to check that the vectors π(k, i), k = 0, 1,
satisfy Condition (A) for all i ∈ I = Ia(x

0)
and conditions (18), (19). Hence, according to
Theorem 4 the vector x0 is an optimal solution in
the problem under consideration.

Now, suppose that in this example, the set I0 is
known: I0 = {1, 2}. Using this information, let us
test the optimality of the solution x0 by applying
Theorem 3.

Set x̃ = (1.0, 0.8,−3.4,−0.2, 1.8, 2.2)⊤ and
calculate

z(1, x̃) = (0.8, 0, 0.8, 0)⊤, z(2, x̃) = (0, 0, 0, 0)⊤,

z(3, x̃) = (3, 0.4, 0.8)⊤.

It is easy to see that the vector x̃ is a minimally
active feasible solution and hence, we can choose
γ(i) = z(i, x̃) for i ∈ I0.

Set:

y(1) = (1, 2,−1, 1)⊤, y(2) = (−1,−1, 1,−1)⊤,

y(3) = (3,−3, 0)⊤.

It is easy to check that these vectors and x0

satisfy conditions (12) and (13). Hence we have
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illustrated that the conditions of Theorem 3 are
fulfilled as well.

Now, let us show that for the optimal solution
x0, the (classical) KKT optimality conditions
formulated in Theorem 2, are not satisfied.

Suppose that in this example, for the optimal
solution x0, there exist vectors y0(i), i ∈ I,
satisfying (1). Then it follows from the conditions

y0(i) ∈ SOC(i), z(i, x0) ∈ SOC(i),

y0(i)⊤z(i, x0) = 0 for i = 1 and i = 3

that y0(1) = (α, 0,−α, 0)⊤, y0(3) = (β,−β, 0)⊤

with some α ≥ 0 and β ≥ 0.

This implies

A⊤
1 y

0(1) = 0, A⊤
3 y

0(3) = β(−1, 0− 1, 0, 0, 1)⊤.

Consequently,∑
i∈I

A⊤
i y

0(i) = −b ⇐⇒

A⊤
2 y

0(2) + β(−1, 0− 1, 0, 0, 1)⊤ = −b.

It is easy to check here that there are no y0(2) ∈
R4 and β satisfying the latter linear system. Thus
we have shown that there do not exist vectors
y0(i), i ∈ I, satisfying (1).

Let us show that in this example the duality gap
is zero. In fact, one can check directly that for
all sufficiently small ε > 0, the vectors y(1, ε) =
(4ε + 1

ε , 2 + 3
2ε, −1

ε , 1)
⊤, y(2, ε) = (10, −1 −

5
2ε, 1+3ε, −1+2ε)⊤, and y(3, ε) = (3+ε, −3, ε)⊤

satisfy the following conditions:

3∑
i=1

A⊤
i y(i, ε) = −b, y(i, ε) ∈ SOC(i) ∀i = 1, 2, 3;

3∑
i=1

c⊤(i)y(i, ε) = 10 + 7ε.

Hence, these vectors form a feasible solution to
the dual problem (SOCD) and the corresponding
value of the dual cost function is equal to 10+7ε ≥
b⊤x0 = 10. Consequently, in this example, we
have the equality val(SOCP) = val(SOCD),
but the dual problem has no optimal solution.

Thus in this example, despite the zero duality gap,
the KKT optimality conditions do not allow to
test the optimality of x0.

Example 2. Now, we will analyze a problem
(SOCP) with a positive duality gap. Let us
consider a problem from subsection 2.2 in [27].
This problem can be formulated as problem
(SOCP) with the following data:

A1 =

1 0
1 0
0 1

 , A2 =

(
1 0
−1 1

)
,

c(1) = (0, 0, −1)⊤, c(2) = (0, 0)⊤, b = (0, −1)⊤,
I = {1, 2}, m1 = 2, m2 = 1, n = 2.

It has been shown in [27] that vector x0 =
(0.5, 1)⊤ is an optimal solution to the primal
problem, the corresponding Lagrangian dual
problem also possesses an optimal solution, but
a duality gap is positive and equals to 1.
In this scenario, it becomes evident that the
optimality of the given optimal solution can not
be verified using the KKT optimality conditions.
However, we will demonstrate that the optimality
conditions derived in this paper, allow us to
address this issue.

First, we will apply Theorem 3. In this example,
I0 = {1} and x̃ = (1, 1)⊤ is a minimally
active feasible solution. Consequently, we obtain:
z(1, x0) := A1x

0 + c(1) = (0.5, 0.5, 0)⊤, γ(1) :=
A1x̃ + c(1) = (1, 1, 0)⊤, z(2, x0) := A2x

0 +
c(2) = (0.5, 0.5)⊤. One can easily verify that
x0 is a primal feasible solution, and it and the
vectors y(1) = (0, 0, 1)⊤, y(2) = (0, 0)⊤ satisfy
conditions (12), (13). Hence, due to Theorem
3 we conclude that, indeed, the vector x0 is an
optimal solution to the problem (SOCP) under
consideration.

One can check that the conditions of Theorem 4
are satisfied with π(0, 1) = (1, −1, 0)⊤, π(1, 1) =
(0, 0, −1)⊤, π(0, 2) = π(1, 2) = (0, 0)⊤.

6. Optimality conditions for SOCP
based on a lexicographic approach

In paper [21], for convex programming problems
in the form

CP : min f0(x), s.t. fi(x) ≤ 0, i ∈ I,

where x ∈ Rn, fi : Rn → R, i ∈ I ∪ {0}, are
given convex functions, an optimality criterion
was proposed based on another approach, namely
the lexicographical separations approach.

Like the optimality criteria 1 and 2 proved
in sections 3 and 4 for the problem (SOCP)
(Theorems 3 and 4, respectively), this criterion
does not require the fulfillment of any additional
conditions for the constraints of the original
problem. In this section, we will apply the
optimality criterion from [21] to the problem
(SOCP) and compare the result with the criteria
proven in the previous sections.

It is evident that the problem (SOCP) can be
formulated in the form (CP) with the following
convex functions:

f0(x) := −b⊤x,

fi(x) := ||z∗(i, x)|| − z0(i, x), i ∈ I,
(47)
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where, as before, z(i, x) := Aix + c(i) ∈ Rmi+1,
z(i, x)⊤ = (z0(i, x), z

⊤
∗ (i, x)), z0(i, x) ∈ R,

z∗(i, x) ∈ Rmi , i ∈ I.

Then the criterion from [21] can be reformulated
as follows.

Theorem 5. [Optimality criterion 3] A feasible
solution x0 of the problem (CP) with the
functions defined by formula (47), is optimal if
and only if there exist an integer number s, 0 ≤
s ≤ |Ia(x0)|, a vector λ = (λi, i ∈ I), and an
ordered partition

∆I0, ∆I1, . . . ,∆Is, (48)

of the index set I satisfying

(a) the nonnegativity condition λi ≥ 0, i ∈ I,
(b) the complementary slackness condition

λifi(x
0) = 0, i ∈ I;

(c) the minimum conditions∑
i∈∆Ik

λifi(x
0) = min

x∈Qk

∑
i∈∆Ik

λifi(x),

k = 0, 2, ..., s− 1,

(49)

and

f0(x
0) +

∑
i∈∆Is

λifi(x
0)

= min
x∈Qs

(
f0(x) +

∑
i∈∆Is

λifi(x)
)
,

(50)

where Q0 = Rn and

Qk+1 = {x ∈ Qk :
∑

i∈∆Ik

λifi(x
0) =

∑
i∈∆Ik

λifi(x)},

k = 0, . . . , s− 1.

Notice that the functions fi(x), i ∈ I, defined in
(47) are convex but not smooth.

Let us compare the optimality criteria 2 and 3.

Criterion 3 looks simpler than Criterion 2,
because it requires less input data for its testing.
Indeed, in Criterion 3, we need to know the
number s, the partition (48), and |I|-vector λ
while in Criterion 2, we need to know the number
k0 and the set of vectors (17).

However, Criterion 2 is more constructive (since
it is explicit) than Criterion 3. To apply Criterion
3, it is necessary to check whether the partition
(48) and the |I|-vector λ satisfy conditions (49),
(50). These conditions have an implicit form,
since to check them, it is necessary to sequentially
solve the optimization problems (49), (50) and
construct (explicitly) their optimal solution sets
Qk, k = 0, . . . , s. At the same time, to apply
Criterion 2, one just needs to check whether the
vectors in (17) satisfy conditions (18) and (19),
which are explicit and can be easy verified.

Note that based on the explicit criterion 2, for
the problem (SOCP), it is easy to formulate an
implicit criterion, close in form to Criterion 3.

Theorem 6. [Optimality criterion 4] A feasible
solution x0 ∈ X is an optimal solution of the
problem (SOCP) if and only if there exists an
integer number s, 0 ≤ s ≤ |Ia(x0)|, a vector
λ = (λi, i ∈ I) and an ordered partition (48) of
the index set I satisfying the following conditions:

(a) λi > 0, i ∈ ∆Ik ̸= ∅, k = 0, . . . , s − 1;
λi ≥ 0, λifi(x

0) = 0, i ∈ ∆Is;
(b) the minimum conditions (49), (50), where

Q0 = Rn, Qk+1 = {x ∈ Qk : fi(x) = 0, i ∈ ∆Ik},
k = 0, . . . , s− 1.

The main difference between Theorems 5 and 6 is
the way the sets Qk, k = 1, . . . , s, are defined.

7. Conclusions

Despite the fact that the second-order cone
problems have been sufficiently studied, most
of optimality conditions for these problems
are formulated with some CQ. Constraint
qualifications, while useful in many optimization
problems, can impose restrictive assumptions on
the problem structure and hinder the applicability
of optimality conditions. By seeking optimality
conditions that do not rely on such qualifications,
researchers and practitioners can achieve a more
robust and flexible framework for solving SOCPs.

The novelty of the paper consists in new
optimality conditions for the second-order cone
problems, namely Criteria 1 and 2. These
optimality criteria are obtained using the
approach based on the concept of immobile
index set of the constraints of the problem and
allow to detect optimality of a given feasible
solution without any CQs. The absence of
constraint qualifications in these criteria enhances
the applicability of the theory to a broader range
of optimization problems.

The findings presented in the paper enable us
to conclude that the approach to optimality
conditions, which is based on immobile indices
and was developed in our earlier works, can be
applied to the optimization of second-order cone
problems.

It is worth mentioning here that there exist
different formulations of exact dual problems. In
the paper, we used one of them. Alternatively,
it is possible to apply the same approach to
other exact dual formulations and develop new
optimality conditions that may have distinct
properties and other ways of implementation. In
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the future, we will apply our approach to different
classes of optimization problems.

In conclusion, it is important to recognize that all
known optimality conditions for conic problems,
in general, and SOCP problems, in particular,
have their drawbacks and favorable properties.
Nevertheless, by familiarizing oneself with a
wide spectrum of optimality conditions, one can
gain a more comprehensive understanding of the
problem and its inherent characteristics. This
empowers users to make informed decisions and
select the most suitable method according to their
specific requirements and preferences.
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