A study on the approximate controllability results of fractional stochastic integro-differential inclusion systems via sectorial operators

Kalimuthu Kaliraj a*, Kothandapani Muthuvel a,b

a Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600 005, Tamil Nadu, India
b Department of Mathematics, Guru Nanak College, Chennai 600 042, Tamil Nadu, India
kaliraj@unom.ac.in, muthuvel1729@gmail.com

The study deals with the findings of the outcome of the approximate controllability results of inclusion type fractional stochastic system in Banach space with the order of the fractional system $\varrho \in (1, 2)$. At first, we implement Bohnenblust-Karlin’s fixed point technique to deduce the required conditions on which the fractional system with initial conditions is approximately controllable, and thereby, we postulate the sufficient conditions for extending the obtained results to the system with nonlocal conditions.

The study deals with the findings of the outcome of the approximate controllability results of inclusion type fractional stochastic system in Banach space with the order of the fractional system $\varrho \in (1, 2)$. At first, we implement Bohnenblust-Karlin’s fixed point technique to deduce the required conditions on which the fractional system with initial conditions is approximately controllable, and thereby, we postulate the sufficient conditions for extending the obtained results to the system with nonlocal conditions.

1. Introduction

The recent development in the area of fractional theory plays an important role in mathematics. It is well understood by physical interpretation of differential equations that many of the realistic systems are better modeled by fractional order derivatives than integer order. Hence, there has been a huge growth in the fractional research field. The progress of this particular theory has a wide range of application in electro-magnetic, viscoelasticity, image processing, signal processing, control theory, diffusion, porous media, fluid flow and other fields. For more noteworthy contributions of fractional field the readers are referred to the books [1-5] and the research papers [6-14]. Moreover fractional integro-differential equations are used in various scientific domains such as control theory, medicine, biology and ecology etc. In the following research articles the above discussed concepts are well explained [6,10,11,15,16].

Inclusion type differential equation establishes a relation of the type $\dot{x} \in F(x)$ in such a way that the map F assigns any point $x \in \mathbb{R}^n$ to a set $F(x) \subset \mathbb{R}^n$. To put in simple terms, the generalization of the differential function $\dot{x} = F(x)$ is termed as differential inclusion. In 1995, El-Sayed and Ibrahim extended the theory of integer order differential inclusion to fractional order [17]. Differential inclusion of fractional order acts as a key technique in analyzing differential equation with discontinuous right hand side which basically arises while modelling dynamical system which involves friction and impact problem. A sectorial operator is a type of linear operator that maps functions from one Banach space to another. It is a type of operator that is widely used in the study of partial differential equations and their associated boundary value problems. Sectorial
operators play an important role in the analysis of differential calculus, especially in the study of well-posedness and stability of boundary value problems. They are also used in the theory of semigroups of operators and in the study of evolution equations. In [18] Kazufumi Ito et. al. analyzed the various secorial properties of Caputo derivative of order $\varrho \in (1, 2)$. In [19] JinRong Wang et. al. investigated the existence of piece wise mild solutions of nonlocal impulsive fractional differential inclusions with fractional sectorial operator on Banach spaces. The readers can refer to [12, 20, 24] for present qualitative research topics in differential equations of inclusion type. In [13, 14, 25, 26] the authors studied the existence and solvability of mild solution for various fractional order systems with sectorial operator of the type $(P, \eta, \varrho, \gamma)$.

In general, while dealing with complicated differential systems such as growth modeling, economics, biology and quantum field theory the random noise or stochastic perturbation is unavoidable. Therefore there are numerous ongoing research in analyzing the existence and uniqueness of stochastic control models using various fixed point methods. The concept of stochastic fractional control system has been well developed with the help of different kinds of fixed point approaches in [6, 13, 27, 28]. The weaker notion of control theory is called as approximate controllability. This type of controllable system ensures that the system is steered to any random small neighborhood of the final state. Recently, the approximate controllability of control systems defined by impulsive functional inclusions and neutral integro-differential systems are well discussed in the research publications [6, 8, 10, 12, 20, 32].

Very recently the authors in [10] investigated the following existence results for Caputo fractional mixed Volterra Fredholm-type integro differential inclusions of order $\varrho \in (1, 2)$ with sectorial operators. Further in the past few years the application of nonlocal condition in fractional differential equations has emerged as a magnificent area of investigation since it describes the evolution of the system in an efficient way. Therefore we extend out theoretical result of the Caputo fractional stochastic integro-differential inclusions system to nonlocal conditions with sectorial operators.

\[
\frac{CD^\varrho_\zeta z(\zeta)}{d\zeta} \in Az(\zeta) + G\left(\zeta, z(\zeta), \int_0^\zeta f(\zeta, \nu, z(\nu))d\nu\right), \quad \zeta \in V = [0, T],
\]

being motivated by the above works, in this paper we establish the sufficient conditions for the approximate controllability of Caputo fractional stochastic integro-differential inclusions with sectorial operators of the form

\[
\frac{dW(\zeta)}{d\zeta} + \mathbb{B}x(\zeta), \quad \zeta \in V = [0, T],
\]

where $\varrho \in (1, 2)$, the sectorial operator A is a mapping from $\mathcal{D}(A) \subset X$ to X of type $(P, \eta, \varrho, \gamma)$ in Banach space X. $W(\zeta)$ be a standard cylindrical Wiener process in X defined on a stochastic space $(\Omega, \mathcal{F}, \{\mathcal{F}_\zeta, \zeta \in V\}, \mathbb{P})$. The nonempty, closed, convex and bounded multivalued function $G : V \times X \times X \to 2^X \setminus \{\emptyset\}$ and f be a mapping from $V \times V \times X$ into X, $x \in L^2(V, \mathcal{H})$, where \mathcal{H} stand for Banach space. In addition, the linear operator $\mathbb{B} : \mathcal{H} \to X$ is bounded.

The article contains the following parts:

Part 2 : Consists of the preliminaries and definitions.

Part 3 : The controllability results for the chosen fractional inclusion systems (1) are derived by using fixed point technique.

Part 4 : The outcome of approximate controllability results derived for system (1) is extended to fractional nonlocal system.

Part 5: Appropriate illustrations for the obtained results have been established.

Part 6: Conclusion and future works of the presented system are discussed.

2. Preliminaries

Consider the Hilbert spaces X, \mathbb{K} and the complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ outfitted with a normal filtration $\{\mathcal{F}_\zeta, \zeta \in V\}$ satisfies the regular conditions $(3)_{\zeta}$ is a increasing right continuous family such that $3_{\zeta} \subseteq 3$, 3_0 contains all \mathbb{P}-null set. Let $E(.)$ denotes the expectation with respect to the measure \mathbb{P}. Let $\{e_j\}_{j=1}^\infty$ be a complete orthonormal basis of \mathbb{K}. Suppose that $W = (W_\zeta)_{\zeta \geq 0}$ is a cylindrical \mathbb{K}-valued Wiener process defined on the CPS $(\Omega, \mathcal{F}, \mathbb{P})$ with covariance operator $Q \geq 0$, such that $Trace(Q) = \sum_{j=1}^\infty \lambda_j = \lambda < \infty$, and $Qe_j = \lambda_j e_j$. Then

\[
W(\zeta) = \sum_{j=1}^\infty \sqrt{\lambda_j} W_j(\zeta), \text{ with } W_j(\zeta), j = 1 \text{ to } \infty
\]
are mutually independent one-dimensional standard Wiener processes. We consider that $\mathcal{F}_t = T\{W(s) : 0 \leq s \leq t\}$ is the sigma algebra generated by W and $\mathcal{F}_t = \mathcal{F}$. Let $L(\mathbb{R}, \mathcal{F})$ be a bounded linear operator space with the usual operator norm $\| \cdot \|$. For $\varphi \in L(\mathbb{R}, \mathcal{F})$ we define $\| \varphi \|^2 = \text{Trace}(\varphi Q \varphi^*) = \sum_{j=1}^{\infty} \|\sqrt{\lambda_j} \varphi e_j\|^2$. If $\| \varphi \|^2 < \infty$ then φ is called Q–Hilbert-Schmidt operator and the space of such operators is denoted by $L_Q(\mathbb{R}, \mathcal{F})$. The completion $L_Q(\mathbb{R}, \mathcal{F})$ of $L(\mathbb{R}, \mathcal{F})$ w.r.t the topology induced by the norm $\| \cdot \|_Q$ where $\| \varphi \|^2_Q = (\varphi, \varphi)$ is a Hilbert space with the above norm topology.

The Banach space $L_2(\Omega, \mathcal{F}, \mathcal{X})$ is the collection of all square-integrable, strongly measurable, \mathcal{F}_t–adapted, \mathcal{X}–valued random variables. Also take

$$C(V, L_2(\Omega, \mathcal{F}, \mathcal{X})) = \{ z : V \to L_2(\Omega, \mathcal{F}, \mathcal{X}) \mid z \text{ continuous and } \sup_{\zeta \in V} E\|z(\zeta)\|^2 < \infty \}$$

be a Banach space. Finally, we define the set

$$\mathcal{C} = \{ z \in C(V, L_2(\Omega, \mathcal{F}, \mathcal{X})) \mid z \text{ is measurable, } \mathcal{F}_t \text{–adapted } \mathcal{X} \text{–valued functions} \}$$

be a closed subspace of $C(V, L_2(\Omega, \mathcal{F}, \mathcal{X}))$ with norm $\| z \| = \sup_{\zeta \in V} E\|z(\zeta)\|^2$, E determine the integration w.r.t the probability measure.

Definition 1. [3] The Riemann-Liouville fractional integral of order β having the lower limit 0 for a function g mapping $[0, \infty)$ into \mathbb{R}^+ is defined as

$$I^\beta g(\zeta) = \frac{1}{\Gamma(\beta)} \int_0^\zeta \frac{g(\nu)}{(\zeta - \nu)^{1-\beta}} d\nu, \quad \zeta > 0, \ \beta \in \mathbb{R}^+.$$

Definition 2. [3] The Riemann-Liouville fractional derivative of order β employing the lower limit 0 for a function g is defined as

$$RL D^\beta g(\zeta) = \frac{1}{\Gamma(1 - \beta)} \frac{d}{d\zeta} \int_0^\zeta g^{(j)}(\nu)(\zeta - \nu)^{-\beta - 1} d\nu,$$

$\zeta > 0, \ j - 1 < \beta < j, \ \beta \in \mathbb{R}^+, \ j \in \mathbb{N}$.

Definition 3. [3] Caputo fractional derivative of order β employing the lower limit 0 for a function g is defined as

$$C D^\beta g(\zeta) = L D^\beta \left(g(\zeta) - \sum_{i=0}^{j-1} \frac{g^{(i)}(0)}{i!} \zeta^i \right), \quad \zeta > 0, \ j - 1 < \beta < j, \ \beta \in \mathbb{R}^+, \ j \in \mathbb{N}.$$

Definition 4. [14] The closed and linear operator A mapping from D into X is called sectorial operator of type $(P, \eta, \varphi, \gamma)$ provided that there exist γ belongs to \mathbb{R}, η belongs to $(0, \frac{\pi}{2})$ and $P > 0$ such that the η-resolvent of A exists outside the sector

$$\gamma + S_\eta = \{ \eta + \mu^\rho : \mu \in C(V, X), \ |\text{Arg}(-\mu^\rho)| < \eta \}$$

$$\|(-\mu^\rho I - A)^{-1}\| \leq \frac{P}{|\mu^\rho - \gamma|}, \ \mu^\rho \notin \gamma + S_\eta.$$

Further, throughout the paper we assume that A is a sectorial operator of type $(P, \eta, \varphi, \gamma)$, hence it is easy to establish that A stands for infinitesimal generator of a φ-resolvent family $\{W_\varphi(\zeta)\}_{\zeta \geq 0}$ which belongs to Banach space where

$$W_\varphi(\zeta) = \frac{1}{2\pi i} \int_c e^{\mu^\rho \varphi(\mu^\rho, A)} d\mu.$$

Definition 5. [14] Let $G : V \times \Omega \to L(\mathbb{R}, \mathcal{F})$ be the strongly measurable mapping such that $\int_0^T E\|G(\zeta)|^p_{L(\mathbb{R}, \mathcal{F})} d\zeta < \infty$ then $E\|\int_0^T G(\nu)dW(\nu)|^p_{L(\mathbb{R}, \mathcal{F})} \leq L_2 \int_0^T E\|G(\nu)|^p_{L(\mathbb{R}, \mathcal{F})} d\nu$, for all $\zeta \in J$ and $p \geq 2$, where L_2 is a constant.

Definition 6. [14] A function z belongs to $C(V, \mathcal{X})$ is called mild solution of (1) provided that it fulfills the operator equation

$$z(\zeta) = K_\varphi(\zeta)z_0 + Q_\varphi(\zeta)z_1 + \int_0^\zeta W_\varphi(\zeta - \nu)g(\nu)dW(\nu) + \int_0^\zeta W_\varphi(\zeta - \nu)B(\nu)dv.$$

In the above

$$K_\varphi(\zeta) = \frac{1}{2\pi i} \int_c e^{\mu^\rho \varphi(\mu^\rho, A)} d\mu, \quad Q_\varphi(\zeta) = \frac{1}{2\pi i} \int_c e^{\mu^\rho \varphi(\mu^\rho, A)} d\mu,$$

$$W_\varphi(\zeta) = \frac{1}{2\pi i} \int_c e^{\mu^\rho \varphi(\mu^\rho, A)} d\mu,$$

with c being a suitable path such that $\mu^\rho \notin \gamma + S_\eta$ for φ belongs to C.

Theorem 1. [14] If A is a sectorial operator then the following hold on $\|K_\varphi(\zeta)\|$:

(i) Take $\gamma \geq 0$ and $0 < \chi < \pi$, then

$$\|K_\varphi(\zeta)\| \leq M_1(\eta, \chi) Pe^{-\frac{\pi \sin(\frac{\chi}{2})}{\sin(\chi - \eta)}}.$$
Let \((\mathcal{X}, d)\) be a metric space. The following expressions are used in this article:

- \(\mathcal{N}(\mathcal{X}) = \{H \in \mathcal{P}(\mathcal{X}) : H \neq \emptyset\}\),
- \(\mathcal{N}_{cl}(\mathcal{X}) = \{H \in \mathcal{N}(\mathcal{X}) : H \text{ closed}\}\),
- \(\mathcal{N}_b(\mathcal{X}) = \{H \in \mathcal{N}(\mathcal{X}) : H \text{ bounded}\}\),
- \(\mathcal{N}_{cp}(\mathcal{X}) = \{H \in \mathcal{N}(\mathcal{X}) : H \text{ compact}\}\),
- \(\mathcal{N}_c(\mathcal{X}) = \{H \in \mathcal{N}(\mathcal{X}) : H \text{ convex}\}\).

For the multivalued map \(\mathcal{K} : \mathcal{C} \to 2^\mathcal{C} \setminus \{\emptyset\}\) the following definition holds. Additional information on multivalued maps can be found in the books \([34]\).

Definition 7. \([35]\) If for all \(z \in \mathcal{C}\), \(\mathcal{K}(z)\) is closed(convex) then the map \(\mathcal{K}\) is closed(convex).

For every bounded set \(C\) of \(\mathcal{C}\), \(\mathcal{K}(C) = \bigcup_{z \in C} \mathcal{K}(z)\) is bounded in \(\mathcal{C}\) then \(\mathcal{K}\) is bounded on bounded sets.

Definition 8. \([35]\) \(\mathcal{K}\) is known as upper semi continuous (u.s.c) on \(\mathcal{C}\) if the following conditions holds:

(i) For all \(z_0 \in \mathcal{C}\) the set \(\mathcal{K}(z_0) \neq \emptyset\) and it is closed.

(ii) For all open set \(C \subset \mathcal{C}\) such that \(C \supset \mathcal{K}(z_0)\) then there exist an open neighborhood \(\mathcal{K}(W) \subset C\).

Definition 9. \([35]\) If \(\mathcal{K}(C)\) is a relatively compact, for all bounded subset \(C\) of \(\mathcal{C}\) then \(\mathcal{K}\) is completely continuous.

Definition 10. \([35]\) If the completely continuous map \(\mathcal{K}\) has a nonempty values then \(\mathcal{K}\) is u.s.c if and only if \(\mathcal{K}\) has a closed graph i.e., \(z^k \to z^*\), \(u^k \to u^*\), \(u_k\) such that \(\mathcal{K}(z^k)\) signify \(u^*\) in \(\mathcal{K}(z^*)\). Moreover, if there exists \(z \in \mathcal{Y}\) such that \(z \in \mathcal{K}(z)\) then \(\mathcal{K}\) has a fixed point.

An u.s.c function \(\mathcal{K} : \mathcal{X} \to \mathcal{X}\) is said to be condensing if for all bounded subset \(\mathcal{C} \subset \mathcal{X}\) having \(\nu(\mathcal{C}) \neq 0\), where \(\nu\) stands for the Kuratowski measure of non compactness, we get

\[\nu(\mathcal{K}(\mathcal{C})) < \nu(\mathcal{C})\].

Definition 11. \([35]\) G mapping from \(V \times \mathcal{X} \times \mathcal{X}\) into \(\mathcal{N}_{bcl}(L(K, X))\) is called \(L^1\)-Caratheodory provided that

(i) \(\zeta \to G(\zeta, z, x, y)\) is measurable for all \(z, x, y\) belongs to \(\mathcal{X}\).

(ii) \((z, x, y) \to G(\zeta, z, x, y)\) is u.s.c for all \(\zeta\) belongs to \(V\).

(iii) For all \(p > 0\), there exist \(j_p\) belongs to \(L^1(V, \mathbb{R}^+\) such that

\[E\|G(\zeta, z, x, y)\|^2 \leq \sup\{E\|g\|^2 : g \in G(\zeta, z, x, y)\}\]

\[\leq j_p(\zeta), \text{ for all } \zeta \in V\].

For further information on multivalued functions refer the books \([34]\). Detail analysis in multivalued maps are presended in this work. The following are two suitable operators and their underlying assumptions:

\[\Gamma^T_0 = \int_0^T \mathcal{W}_0(\zeta - \nu) \mathbb{B}^* \mathcal{W}_0^* (\zeta - \nu) d\nu : \mathcal{X} \to \mathcal{X}\]

\[\mathcal{R}(h, \Gamma^T_0) = (hI + \Gamma^T_0)^{-1} : \mathcal{X} \to \mathcal{X}\].
In the above $W^p(\xi - \nu)$ and B^* stands for adjoints of $W^p(\xi - \nu)$ and B respectively and Clearly Γ_0^T is the bounded linear operator.

To begin, evaluate the below assumptions:

$$(H_1)$$ The functions $g(\xi, s, \cdot), h(\xi, s, \cdot) : X \to X$ are continuous for all $(\xi, s) \in \Delta$ and for all $z \in X$ the function $g(\cdot, z), h(\cdot, z) : \Delta \to X$ are strongly measurable.

$$(H_2)$$ The functions $g(\xi, s, \cdot), h(\xi, s, \cdot) : X \to X$ are continuous for all $(\xi, s) \in \Delta$ and for all $z \in X$ the function $g(\cdot, z), h(\cdot, z) : \Delta \to X$ are strongly measurable.

$$(H_3)$$ The multivalued map $G : X \to X \to N_{b, c, l}(L(K, X))$ is an L^2- caratheodory function such that for all $\xi \in X$, the function $G(\xi, \cdot) : X \to N_{b, c, l}(L(K, X))$ is u.s.c and for all $(s, z) \in X \times X$ the set

$$S_{G,z} = \left\{ \int_0^T f(\xi, \nu, z(\nu))d\nu \right\}$$

is nonempty.

$$(H_4)$$ There exists a function $L_{g,p} : X \to R^+$ such that

$$\sup \left\{ E\|g\|^2 : g(\xi) \in G(\xi, z(\xi)), \int_0^T f(\xi, \nu, z(\nu))d\nu \right\} \leq L_{g,p}(\xi),$$

for almost every $\xi \in V$.

$$(H_5)$$ The function $\nu \mapsto (\xi - \nu)\nu^{-1}L_{g,p}(\xi) \in L^1(V, R^+)$ such that there exist $\varphi > 0$ such that

$$\lim_{p \to -\infty} \inf \int_0^\xi \nu^{-1}L_{g,p}(\xi)d\nu = \varphi < +\infty.$$

$$(H_6)$$ If $g : C([0, T], X) \to X$ is continues then there exists some constant M_9 such that $E\|g(x)\|^2 \leq \|x\|^2$.

Now, we can show that the system $[1]$ is controllable approximately on the given interval. That is there exist a mild solution $z \in C$ satisfies the requirements of approximate controllability, where $z(\xi) = K_8(\xi)z_0 + Q_8(\xi)z_1$

$$\begin{align*}
&\quad + \int_0^\xi W_8(\xi - \nu)g(\nu)dW(\nu) \\
&\quad + \int_0^\xi W_8(\xi - \nu)Bx(\nu)d\nu, \ g \in S_{G,z},
\end{align*}$$

$$x(\xi) \in B^*W_8^*(\xi - \nu)\mathcal{D}(h, \Gamma_0^T)q(z(\cdot)).$$

In the above

$$q(z(\cdot)) = z_T - K_8(T)z_0 - Q_8(T)z_1$$

$$- \int_0^T W_8(\xi - \nu)g(\nu)dW(\nu).$$

Theorem 3. On considering the hypothesis $(H_0) - (H_6)$ are fulfilled then $[1]$ contains at least one mild solution on V if

$$4\tilde{P}^2 \left[1 + \frac{(\tilde{P}P_\delta)^4}{\bar{h}} \right] \varphi < 1.$$
with $P_2 = \|B\|$.

Proof. The main aim of this theorem is to find conditions for solvability of system \([1]\) to be resolvable for $h > 0$. Now we prove that the mapping Φ from C into 2^C given by

$$\Phi(z) = \begin{cases} z \in C, \ m(\zeta) = K_\varepsilon(\zeta)z_0 + Q_\varepsilon(\zeta)z_1 \\ + \int_0^\zeta W_\varepsilon(\zeta - \nu)Bg(\nu)dW(\nu) \\ + \int_0^\zeta W_\varepsilon(\zeta - \nu)B^*W_\varepsilon^*(\zeta - \nu)A(h, \Gamma_0^T) \\ \times \left[z^T - K_\varepsilon(T)z_0 - Q_\varepsilon(T)z_1 \\ - \int_0^T W_\varepsilon(T - \tau)g^p(\tau)d\tau \right](\nu)dv, \quad g \in S_{G,z} \end{cases}$$

has a fixed point.

Step 1: For all $h > 0$, $\Phi(z)$ is convex for all z belongs to C. Let $m_1, m_2 \in C$, then there exists g_1, g_2 belongs to $S_{G,z}$ such that ζ belongs to V, we obtain

$$m_i(\zeta) = K_\varepsilon(\zeta)z_0 + Q_\varepsilon(\zeta)z_1$$

and

$$m^p(\zeta) = K_\varepsilon(\zeta)z_0 + Q_\varepsilon(\zeta)z_1$$

$$+ \int_0^\zeta W_\varepsilon(\zeta - \nu)g^p(\nu)dW(\nu)$$

$$+ \int_0^\zeta W_\varepsilon(\zeta - \nu)B^*W_\varepsilon^*(\zeta - \nu)A(h, \Gamma_0^T)$$

$$\times \left[z^T - K_\varepsilon(T)z_0 - Q_\varepsilon(T)z_1$$

$$- \int_0^T W_\varepsilon(T - \tau)g^p(\tau)d\tau \right](\nu)dv.$$

for some g^p belongs to $S_{G,z}$.

By referring (H$_3$), we get

$$E\|x^p(\zeta)\|^2 = E\left[\|B^*W_\varepsilon^*(T - \tau)A(h, \Gamma_0^T) \right.$$

$$\left. z^T - K_\varepsilon(T)z_0 - Q_\varepsilon(T)z_1$$

$$- \int_0^T W_\varepsilon(T - \tau)g^p(\tau)d\tau \right\|^2$$

$$\leq E\|B^*\|^2E\|W_\varepsilon^*(T - \tau)\|^2E\|A(h, \Gamma_0^T)\|^2$$

$$\times E\left[z^T - K_\varepsilon(T)z_0 - Q_\varepsilon(T)z_1$$

$$- \int_0^T W_\varepsilon(T - \tau)g^p(\tau)d\tau \right\|^2$$

$$\leq \tilde{P}^2\tilde{P}^2 \frac{1}{h} \left[4E\|z_T\|^2$$

$$+ 4E\|K_\varepsilon(T)z_0\|^2 + 4E\|Q_\varepsilon(T)z_1\|^2$$

$$+ 4Lg \int_0^T E\|W_\varepsilon(T - \tau)g^p(\tau)\|^2d\tau \right]$$

$$\leq \tilde{P}^2\tilde{P}^2 \frac{1}{h} \left[4E\|z_T\|^2 + 4\tilde{P}^2E\|z_0\|^2 + 4\tilde{P}^2E\|z_1\|^2$$

$$+ 4\tilde{P}^2Lg \int_0^T E\|g^p(\tau)\|^2d\tau \right].$$

Now for $h > 0$,

$$p < E\|(\Phi x^p)(\zeta)\|^2 \leq 4E\|K_\varepsilon(\zeta)z_0\|^2$$

$$+ 4E\|Q_\varepsilon(\zeta)z_1\|^2$$

$$+ 4Lg \int_0^\zeta E\|W_\varepsilon(\zeta - \nu)g^p(\nu)\|^2d\nu$$

$$+ 4\tilde{P}^2E\|z_0\|^2$$

$$+ 4\tilde{P}^2Lg \int_0^\zeta E\|g^p(\nu)\|^2d\nu$$

For $h > 0$, our assumption is there exist $p > 0$ such that

$$\Phi(B_p) \subset B_p.$$

If not, then for all $p > 0$, there exist z^p belongs to B_p, but $\Phi(z^p) \notin B_p$, i.e.,

$$\|\Phi(z^p)\|_C = \sup \{ \|m^p\|_C : m^p \in \Phi(z^p) \} > p,$$
\[
\begin{align*}
\leq 4\hat{P}^2 E\|z_0\|^2 + 4\hat{P}^2 E\|z_1\|^2 \\
+ 4\hat{P}^2 L_g \int_0^\zeta L_{g,p}(\nu) d\nu \\
+ 4\hat{P}^2 \int_0^\zeta \left(\frac{\hat{P}^2 P_0^2}{h} \left[E\|z_T\|^2 + \hat{P}^2 E\|z_0\|^2 \right] \\
+ \hat{P}^2 E\|z_1\|^2 + \hat{P}^2 L_g \int_0^T L_{g,p}(\tau) d\tau \right) d\nu \\
\leq 4\hat{P}^2 E\|z_0\|^2 + 4\hat{P}^2 E\|z_1\|^2 \\
+ 4\hat{P}^2 L_g \int_0^\zeta L_{g,p}(\nu) d\nu \\
+ 4 \left(\frac{\hat{P}^2 P_0^2}{h} \right) \left[4 E\|z_T\|^2 + 4\hat{P}^2 E\|z_0\|^2 \right] \\
+ 4\hat{P}^2 E\|z_1\|^2 + \hat{P}^2 L_g \int_0^T L_{g,p}(\tau) d\tau .
\end{align*}
\]

Dividing the above equation by \(p \) and as \(p \to \infty \) we obtain
\[
4\hat{P}^2 \left[1 + 4 \left(\frac{\hat{P}^2 P_0^2}{h} \right) \right] \varphi \geq 1,
\]
which contradicts to our assumption.

Step 3: We check that \(\{ \Phi(z) : z \in B_p \} \) is equicontinuous.

For all \(m \) belongs to \(\Phi(z) \) and \(z \) belongs to \(B_p \), there exist \(g \in S_{G,z} \) such that
\[
m(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^\zeta W_0(\zeta - \nu) g(\nu) d\nu + \int_0^\zeta W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\]

Suppose \(0 \leq \zeta_1 < \zeta_2 \leq T \). In addition,
\[
E\|m(\zeta_2) - m(\zeta_1)\|^2 = E\|K_0(\zeta)z_0 + Q_0(\zeta)z_1 \\
+ \int_0^{\zeta_2} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
+ \int_0^{\zeta_2} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu - K_0(\zeta)z_0 - Q_0(\zeta)z_1 E\|m(\zeta) - m(\zeta')\|^2 = E\|W_0(\zeta - \nu) g(\nu) dW(\nu) \\
+ \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\]

Hence, for all \(z \) belongs to \(B_p \), we get
\[
\begin{align*}
0 < \epsilon < \zeta, \ & m(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^{\zeta} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
& + \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\end{align*}
\]

For all fixed \(\zeta \) belongs to \(V \). Assume that \(0 < \epsilon < \zeta \), \(z \) belongs to \(B_p \) and introduce the operator \(m' \) by
\[
m'(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^{\zeta} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
+ \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\]

Step 4: We show that \(\mathcal{H}(\zeta) = \{ m(\zeta) : m \in \Phi(B_p) \} \) is relatively compact belongs in \(X \). For \(\zeta = 0 \), result is trivial, hence \(\mathcal{H}(\zeta) = \{ z_0 \} \). Further, all \(z \) belongs to \(B_p \), we get
\[
\begin{align*}
0 < \epsilon < \zeta, \ & m'(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^{\zeta} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
& + \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\end{align*}
\]

For all fixed \(\zeta \) belongs to \(V \). Assume that \(0 < \epsilon < \zeta \), \(z \) belongs to \(B_p \) and introduce the operator \(m' \) by
\[
m'(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^{\zeta} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
+ \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\]

For all fixed \(\zeta \) belongs to \(V \). Assume that \(0 < \epsilon < \zeta \), \(z \) belongs to \(B_p \) and introduce the operator \(m' \) by
\[
m'(\zeta) = K_0(\zeta)z_0 + Q_0(\zeta)z_1 + \int_0^{\zeta} W_0(\zeta - \nu) g(\nu) dW(\nu) \\
+ \int_0^{\zeta} W_0(\zeta - \nu) \mathbb{E}x(\nu) d\nu.
\]
Clearly, we see that $E\|m(\zeta) - m^\epsilon(\zeta)\|^2 \to 0$ as $\epsilon \to 0^+$. Thus there exist relatively compact set and it is arbitrarily close to $\mathcal{H}(\zeta) = \{m(\zeta) : m \in \Phi(B_r)\}$ and the set $\mathcal{H}(\zeta)$ is relatively compact in X for all $\zeta \in [0,T]$. At $\zeta = 0$ it is compact, hence $\mathcal{H}(\zeta)$ is relatively compact belongs to X for all $\zeta \in [0,T]$.

Step 5: Φ has a closed graph.

Consider $z^n \to z^*$ and $m^n \to m^*$ as $n \to \infty$. We will prove $m^* \in \Phi(z^*)$. Since $m^n \in \Phi(z^n)$, such that g^n belongs to $S_{G;z^n}$ such that $m^n(\zeta) = \mathcal{K}_e(\zeta)z_0 + \mathcal{Q}_e(\zeta)z_1$

$+ \int_0^\zeta \mathcal{W}_e(\zeta - \nu)g^n(\nu)dW(\nu)$

$+ \int_0^\zeta \mathcal{W}_e(\zeta - \nu)BB^*\mathcal{W}_e^*(\zeta - \nu)\mathcal{D}(h, \Gamma^T_0)\zeta

\times \left[z_T - \mathcal{K}_e(T)z_0 - \mathcal{Q}_e(T)z_1

- \int_0^T \mathcal{W}_e(T - \tau)g^n(\tau)dW(\tau) \right] (\nu)d\nu.$

We need to show there exist g^* belongs to $S_{G;z^*}$ such that for all ζ belongs to V,

$m^*(\zeta) = \mathcal{K}_e(\zeta)z_0 + \mathcal{Q}_e(\zeta)z_1$

$+ \int_0^\zeta \mathcal{W}_e(\zeta - \nu)g^*(\nu)dW(\nu)$

$+ \int_0^\zeta \mathcal{W}_e(\zeta - \nu)BB^*\mathcal{W}_e^*(\zeta - \nu)\mathcal{D}(h, \Gamma^T_0)\zeta

\times \left[z_T - \mathcal{K}_e(T)z_0 - \mathcal{Q}_e(T)z_1

- \int_0^T \mathcal{W}_e(T - \tau)g^*(\tau)dW(\tau) \right] (\nu)d\nu.$

Clearly,

$E\left[\left(m^n(\zeta) - \mathcal{K}_e(\zeta)z_0 - \mathcal{Q}_e(\zeta)z_1

- \int_0^\zeta \mathcal{W}_e(\zeta - \nu)BB^*\mathcal{W}_e^*(\zeta - \nu)\mathcal{D}(h, \Gamma^T_0)\zeta

\times \left[z_T - \mathcal{K}_e(T)z_0 - \mathcal{Q}_e(T)z_1

- \int_0^T \mathcal{W}_e(T - \tau)g^n(\tau)dW(\tau) \right] (\nu)d\nu

- \left(m^*(\zeta) - \mathcal{K}_e(\zeta)z_0 - \mathcal{Q}_e(\zeta)z_1 \right) \right] \to 0$ as $n \to \infty$.

We can conclude that the operator $T \circ S_{G;z}$ is a closed graph by using Lemma. Then, in view of T we can see that

$$\left(m^n(\zeta) - \mathcal{K}_e(\zeta)z_0 - \mathcal{Q}_e(\zeta)z_1

- \int_0^\zeta \mathcal{W}_e(\zeta - \nu)BB^*\mathcal{W}_e^*(\zeta - \nu)\mathcal{D}(h, \Gamma^T_0)\zeta

\times \left[z_T - \mathcal{K}_e(T)z_0 - \mathcal{Q}_e(T)z_1

- \int_0^T \mathcal{W}_e(T - \tau)g^n(\tau)dW(\tau) \right] (\nu)d\nu$$

$\in T(S_{G;z^n})$.

Since $g^n \to g^*$, as n tends to zero, it follows that for all ζ belongs to V, we obtain

$$\left(m^*(\zeta) - \mathcal{K}_e(\zeta)z_0 - \mathcal{Q}_e(\zeta)z_1

- \int_0^\zeta \mathcal{W}_e(\zeta - \nu)BB^*\mathcal{W}_e^*(\zeta - \nu)\mathcal{D}(h, \Gamma^T_0)\zeta

\times \left[z_T - \mathcal{K}_e(T)z_0 - \mathcal{Q}_e(T)z_1

- \int_0^T \mathcal{W}_e(T - \tau)g^*(\tau)dW(\tau) \right] (\nu)d\nu$$

$\in T(S_{G;z^*})$.

As a result, Φ is a closed graph.

Thus Φ is multivalued map which is completely continuous and hence as a result of the previous steps and Ascoli-Arzelà theorem it is easily see that Φ is u.s.c. As a result, which has a fixed point $z(\zeta)$ on B_p and by referring to Lemma 2 which is the mild solution of (1).
Further there exist for some such that Theorem 4. Suppose \(\mathcal{S} \) belongs to \(L^1(V, [0, +\infty)) \) such that \(\sup_{z \in V} \|G(\zeta, z(\zeta), f(\zeta, \nu, z(\nu))d\nu) \| \leq \mathcal{S}(\zeta) \) for a.e. \(\zeta \) belongs to \(V \). In addition, \(\mathcal{S} \) is approximately controllable.

Proof. Let \(z^0(.) \in B_\rho \) be a fixed point of the operator \(\Phi \), by Theorem 3.1 any fixed point of \(\Phi \) is a mild solution of \((1)\). This means that there is \(z^0 \in \Phi(z^0) \), i.e. by the Fubini theorem there is \(z^0 \in S_{G,z^0} \) such that for all \(\zeta \in V \):

\[
z^0(\zeta) = K_\nu(\zeta)z_0 - Q_\nu(\zeta)z_1 - \int_0^\zeta W_\nu(\zeta - \nu)\mathbb{E}^{\nu}W_\nu^*(\zeta - \nu)\mathcal{S}(h, \Gamma_0^T)z_1 + z_T - K_\nu(T)z_0 - Q_\nu(T)z_1 - \int_0^T W_\nu(T - \tau)g^*(\tau)dW(\tau) \Big(\nu)d\nu.
\]

Define

\[
P(g^0) = z_\alpha - K_\nu(T)z_0 - Q_\nu(T)z_1 - \int_0^T W_\nu(T - \nu)g^*(\nu)dW(\nu),
\]

for some \(g^0 \in S_{G,z^0} \).

Noting that \(I - \Gamma_0^T \mathcal{S}(h, \Gamma_0^T) = \alpha \mathcal{S}(h, \Gamma_0^T) \), i.e we get \(z^0(b) = z_T - \alpha \mathcal{S}(h, \Gamma_0^T)P(g^0) \).

By assumption (H7),

\[
E\left\| \int_0^T g^0(\nu)dW(\nu) \right\|^2 \leq L_3^2 T \int_0^T E\|g^0(\nu)\|^2 d\nu \leq L_3^2 I_r(\zeta)T \leq L_3^2 I_r T.
\]

Subsequently, the sequence \(\{g^0\} \) is uniformly bounded in \(L^2(V, X) \). Hence we can find a subsequence of \(\{g^0\} \) which is still denoted by \(\{g^0\} \) that converges weakly to \(g \in L^2(V, X) \). Denoting \(h = z_T - K_\nu(T)z_0 - Q_\nu(T)z_1 - \int_0^T W_\nu(T - \nu)g^*(\nu)dW(\nu) \).

We see that

\[
E\|P(g^0) - h\|^2 = E\left\| \int_0^T W_\nu(T - \nu)g^*(\nu) - g(\nu)dW(\nu) \right\|^2
\]

\[
\leq L_2^2 \int_0^T E\|W_\nu(\zeta - \nu)g^*(\nu) - g(\nu)\|^2 d\nu \leq \sup_{0 \leq \nu \leq T} \int_0^\zeta E\|W_\nu(\zeta - \nu)g^*(\nu) - g(\nu)\|^2 d\nu.
\]

Using Ascoli-Arzela theorem, we can see that the linear operator, \(\int_0^\zeta \mathbb{E}^{\nu}W_\nu(\zeta - \nu)g(\nu)d\nu : L^2(V, X) \to C(V, X) \) is compact. Therefore, we get \(E\|P(g^0) - h\|^2 \to 0 \) as \(\alpha \to 0 \).

Hence,

\[
E\|z^0(b) - z_T\|^2 = E\|\mathcal{S}(\alpha, \Gamma_0^T)P(g^0)\|^2 \leq 2E\|\mathcal{S}(\alpha, \Gamma_0^T)(h)\|^2 + 2E\|\mathcal{S}(\alpha, \Gamma_0^T)(P(g^0) - h)\|^2 \leq 2E\|\mathcal{S}(\alpha, \Gamma_0^T)(h)\|^2 + \|\|P(g^0) - h\|^2 \to 0 \text{ as } \alpha \to 0^+.
\]

This proves the approximate controllability of system \((1)\). \(\square \)

4. Nonlocal conditions

The idea of nonlocal initial conditions of the differential systems were inspired by physical concerns. The result pertaining to approximate controllability is extended to Hilbert space in [37]. In contrary, to local conditions Byszewski et. al [38] interrogated the abstract Cauchy with nonlocal conditions in Banach spaces. For more details on nonlocal conditions refer [13, 14, 39, 40]. Consider the fractional systems of order \(\frac{1}{\rho} \in (1, 2) \) with nonlocal conditions:

\[
\begin{align*}
C\partial_t^\rho z(\zeta) &\in Az(\zeta) + G(\zeta, z(\zeta), f(\zeta, \nu, z(\nu))d\nu) + \mathbb{E}^{\nu}x(\zeta), \quad \zeta \in V = [0, T],
\end{align*}
\]

\[
z(0) = z_0 + w_1(z), \quad z'(0) = z_1 + w_2(z).
\]

In the above, \(w_1, w_2 \) is appropriate functions and it is mapping from \(V \times X \) into \(X \) which fulfill the subsequent condition:

\[
(H_8) \quad \text{The completely continuous functions } w_1, w_2 \text{ belongs to } C(V, X) \text{ and there exists } c, d, e, k > 0 \text{ such that}
\]

\[
E\|w_1(z)\|^2 \leq cE\|z\|^2 + d,
\]

\[
E\|w_2(z)\|^2 \leq cE\|z\|^2 + k, \quad \text{for all } z \in Y.
\]
Definition 13. A function z belongs to C is called a mild solution of \(\text{[2]} \) provide that
\[
\begin{align*}
z(\zeta) &= K_\varphi(\zeta)[z_0 - w_1(z)] + Q_\varphi(\zeta)[z_1 - w_2(z)] \\
&+ \int_0^\zeta W_\varphi(\zeta - \nu)g(\nu)dW(\nu) \\
&+ \int_0^\zeta W_\varphi(\zeta - \nu)\mathbb{B}x(\nu)d\nu.
\end{align*}
\]

Theorem 5. Provide that \((H_0)-(H_8)\) are fulfilled and if
\[
\bar{F}^2 \left[1 + \left(\frac{\bar{P}^2 P_B}{h} \right)^2 \right] \varphi + \bar{F}^2 (c + e) \\
\times \left[1 + \left(\frac{\bar{P}^2 P_B}{h} \right)^2 \right] \varphi < 1
\]
where $P_B = \|B\|$ then \(\text{[2]} \) has at least one mild solution on \([0, T]\) and is approximately controllable.

Proof. Since the theoretical proof of the theorem much similar to that of Theorem \(\text{[3]} \) we neglect the proof. \(\square \)

5. Application

To illustrate our finding we consider the following fractional integro-differential system
\[
\begin{align*}
\begin{cases}
\frac{\partial^\beta}{\partial^\beta t} z(\zeta, s) & \in \frac{\partial^\beta}{\partial^\beta t} z(\zeta, s) + \mathcal{J}(\zeta, z(\zeta, s)), \\
\int_0^\zeta e(\zeta, \nu, z(\nu, s))d\nu & \frac{dw(\nu)}{d\nu} + w(\zeta, s), \\
z(\zeta, 0) & = z(\zeta, 1) = 0, \quad \zeta \in V, \\
z(0, s) & = z_0(s), \\
z'(0, s) & = z_1(s), \quad s \in [0, \pi].
\end{cases}
\end{align*}
\]

In the above the order of fractional system $\varphi = \frac{3}{2}$, $\mathcal{J} : [0, 1] \times X \times X \to 2^X \setminus \{\emptyset\}$ and the continuous function e mapping from $[0, 1] \times [0, 1] \times X$ into X. Let us consider $X = \mathcal{H} = L^2([0, \pi])$ and let $W(\zeta)$ be a standard cylindrical Wiener process in X defined on a stochastic space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{\zeta \geq 0}, \mathbb{P})$, $D^\beta z = \frac{\partial^\beta}{\partial^\beta t} z$ is the Caputo fractional derivative of order $1 < \beta < 2$.

$D(A) = \{z \in X : z, z' \text{ are absolutely continuous,}
\]
\[
\begin{align*}
z'' & \in X, \\
z(0) & = z(\pi) = 0.
\end{align*}
\]

Now there exist a sequence $\{e_j\}_{j \geq 1}$ of eigenvectors of A such that $\{e_j\}_{j \geq 0}$ is a complete orthonormal and $e_j(y) = \sqrt{\frac{\lambda_j}{\pi}} \sin y$. Furthermore A is dense in X and A is the infinitesimal generator of a resolvent family $\{W(\zeta), \zeta \geq 0\}$ belonging to X, according to \(\text{[14]} \).

Put $z(\zeta) = z(\zeta, \cdot)$, ζ belongs to $[0, 1]$ and $x(\zeta) = \omega(\zeta, \cdot)$. The linear bounded operator $\mathbb{B} : \mathcal{H} \to X$

defined by $\mathbb{B}x(\zeta)(s) = w(\zeta, s)$. Then
\[
e(\zeta, \nu, z)(s) = f(\zeta, \nu, z(s)),
\]
and
\[
G(\zeta, z, \nu_1)(s) = \mathcal{J}(\zeta, z(s), \nu_1(s))
\]
for ζ, ν belongs to $[0, 1]$, z, ν_1 belongs to X and s belongs to $[0, \pi]$. The above mentioned fractional partial differential system \(\text{[3]} \) can be consider as the exact representation of the problem \(\text{[1]} \) with the functions our preferred choices. Then it can be easily viewed that all the requirements of the Theorem \(\text{[3]} \) satisfied and hence we can ensure the approximate controllability of \(\text{[5]} \) on $[0, T]$.

6. Conclusion

The findings of this research analyze the outcome results of approximate controllability of Stochastic fractional integro-differential equation considered in Banach space. Bohemblust-Karlin’s fixed point technique is used as the key factor to establish the required conditions for our chosen fractional system \(\text{[1]} \) to be controllable approximately. The above mentioned procedure to establish the approximate controllability is extended to fractional nonlocal system. In future the present work can be extended by analysing the controllability results of stochastic integro fractional differential inclusion system with impulsive conditions.

References

A study on the approximate controllability results of fractional stochastic integro-differential equations...

Kalimuthu Kaliraj working as an Assistant Professor of Mathematics at Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai, Tamil Nadu State, INDIA. His area of research topics are fractional calculus, Mathematical Biology, Control problems, and Mathematical Modeling. He completed his Ph. D. from Anna University, Chennai. He has published more than 40 research papers in Scopus/SCI-indexed journals.

Kothandapani Mathewel received the B.Sc. and M.Sc. degree in mathematics from the University of Madras, Chennai in 2005 and 2007, respectively. He completed his M.Phil., degree in mathematics in 2009 at Ramanujan Institute for Advanced Study in Mathematics, University of Madras. Since 2013, he has been working as an assistant professor at the Department of Mathematics, Guru Nanak College, Chennai, India. His research interests focus on the relative controllability of the dynamical systems in fractional calculus.

An International Journal of Optimization and Control: Theories & Applications (http://www.ijocta.org)