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1. Introduction

Singular systems are widely connected to various
applications such as power systems, electrical net-
works, and robotics. However, it has some ex-
ceptional features like regular and impulse free
that do not exist in normal state-space systems.
These exceptional characteristics may cause some
challenges upon studying the singular systems.
Further, because of the singularity matrix E, it
is not easy to formulate easy-to-check conditions
for analysis and synthesis problems. Due to the
above justifications, the study of singular sys-
tems has been scrutinized more attention over
the past decades [1]. The past two decades have
spotted an important development on the the-
ory of singular differential systems (SDSs), and
many basic and most significant concepts have

been favorably examined including stability anal-
ysis, stabilization, guaranteed cost control, filter-
ing, observer design, sliding mode control and so
on [2, 3]. The main target is to show the lat-
est developments in the analysis and synthesis of
SDSs. Since the system is chronicled by algebraic
and differential equations, the SDSs may disclose
instability behavior and thus poor performance
may be raised on the basis of presence of time
delay. Hence the investigation of stability char-
acter of SDSs becomes compulsory. By apply-
ing various methods and ideas, several authors
have studied the SDS. In [4], the author stud-
ied the delay-dependent stability criteria by using
Writinger-based inequality. The delay-dependent
robust stability norms for two classes of SDSs with
norm-bounded uncertainties are discussed in [5].
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In [6] the exponential stability problems of singu-
lar impulsive switched systems was investigated.
Impulsive stabilization problem for a class of lin-
ear singular systems with time-delays can be seen
in [7]. The problem of exponential stability anal-
ysis for a class of singular systems with inter-
val time-varying discrete and distributed delays is
discussed in [8]. The stability problem of singu-
lar systems with time-varying delay by first trans-
forming it into a neutral system with time-varying
delay and constructing an appropriate Lyapunov-
Krasovskii functional, is studied in [9]. In [10]
the control problem of switched singular systems
was investigated aiming to compress their incon-
sistent state jumps when switch occurs between
two different singular subsystems. In [11] we can
see a definition of a transform that reformulates
the system with delays into a singular linear sys-
tem of differential equations whose coefficients are
non-square constant matrices where the number
of their columns is greater than the number of
their rows. Further, in engineering applications,
the complexity increases mean accuracy will not
be described by linear singular systems. To over-
come this type of problem, we need generalized
nonlinear singular systems to solve the problem.
Very few authors have studied the nonlinear sin-
gular system models [6,12–15] and the references
therein. Moreover, The problem of sliding mode
control with torpidity of a class of uncertain non-
linear SDSs had been discussed in [16]. Many
other valuable results are obtained for stability
and stabilization for SDSs, see [7, 17–26] and the
references therein.

Stability is a condition in which a slight distur-
bance in a system does not generate too disrupt-
ing effect on that system. The dynamics of SDS
are by a mixture of differential- algebraic equa-
tions, so the study of E-exponential stability (E-
ES) was first introduced by [12]. In [3,6], the au-
thors analyzed the connection between the expo-
nential stability (ES) and the E-ES for linear and
non-linear singular impulsive differential systems
and they claimed that the E-ES is nearly equal to
its ES. Hence it is essential to speak about the
exponential stability of random impulsive non-
linear SDSs. On the other hand, impulsive sys-
tems stand up when dynamics generate discon-
tinuous trajectories. Discontinuities arise when
movements of states occur over a small inter-
lude that simulates a point-mass measure. There
are several works contributed to study the im-
pulses at fixed point (see the monograph [27, 28]
and [29–35]). The significant concepts of impul-
sive control have been disputed with a wide field
of uses in analysis and control of complex systems

in [36]. Some stability criteria for impulsive differ-
ential systems had been discussed in [37]. Global
ES for impulsive system with infinite distributed
delay based on flexible impulse frequency are dis-
cussed in [38]. In [39], impulse control is used to
study nonlinear systems with partial unmeasur-
able states. Very few research have been carried
for random impulsive systems. When the reac-
tions of the impulse drawn at random time points,
the results follow as a stochastic process. Random
impulses are different from fixed-time impulse ef-
fects. Recently in [40], the authors studied the
exponential stability based on fixed and random
time effect of the impulses while they proved the
robust mean square stability for random impul-
sive control systems in [41]. Then, by consider-
ing the impulse moments at random time points
in [42], the authors proved the stability results
for differential systems. Moreover and to the best
of authors’ knowledge, we like to point out that
there is no paper about the investigation of the
ES on the random impulsive SDSs. For further
information the reader can refer to [43–48].

Inspired by the above discussion, in this paper,
we generalized the E-ES result for pth moment
and also proved the equivalence to ES for a non-
linear singular system. Further, we address new
sufficient conditions to develop the exponential
stability criteria (E-ES and ES) for random impul-
sive nonlinear SDSs. The waiting time between
two consecutive impulses is considered to follow
an exponential distribution when the effects of
the impulses taken at random time points. By
employing the effect of impulses and Lyapunov-
function approach, we achieve the desired perfor-
mance. The rest of this paper follows through
some definitions and lemmas in Section 2. In
Section 3, we prove the E-ES and ES results for
random impulsive SDSs by using the Lyapunov-
function approach. In Section 4, three numerical
examples are discussed, the last of which involves
the usage of matrices with complex entries and
finally in Section 5 a conclusion is given.

Notations: Let ℜ indicate the set of all real
numbers, ℜ+ the set of all positive real numbers
and Z+ the set of all positive integers. Let ℜn

be the Euclidean space provided with norm ∥·∥,
and (Ω,F ,P) be a probability space. We use
PC ([t0, T ] ,ℜn), to indicate the set of all piece-
wise right continual real-valued random variables
φ : [t0, T ] → ℜn, with the norm is described by
E∥φ∥p = sup

θ∈[t0,T ]
E∥φ(θ)∥p. Furthermore, AT rep-

resents the transpose of A where the maximum
and minimum eigenvalues of the matrix indicated
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by λmax(·), and λmin(·). Then E[·], indicates the
expectation operator with respect to the given
probability P.

2. Model description and essential
preliminaries

Let {χ′
m}∞m=0 be the non-decreasing sequence of

random variables and {τ ′
m}∞m=1 is a sequence

of an independent exponentially distributed ran-
dom variable with parameter γ defined on sample
space Ω. Note that χ

′
0 = t0, where t0 ≥ 0 is a

fixed point and χ
′
m = χ

′
m−1+τ

′
m for m = 1, 2, · · · ,

where τ
′
m define the delay (waiting) time between

two consecutive impulses where
∞∑

m=1
τ

′
m = ∞ with

probability 1.
Consider, the random impulsive non-linear SDSs:


E ẋ(t) = Ax(t) + f(x(t), t), χ

′
m < t < χ

′
m+1,

x(χ
′+
m ) = Cm(τ

′
m)x(χ

′−
m ),m ∈ Z+

xt0 = x0,

(1)

where t ≥ t0, x(t) ∈ ℜn, A ∈ ℜn×n is system

matrix, Cm(τ
′
m) is the jump altitude and the ma-

trix E ∈ ℜn×n is singular with rank E = k ≤ n.
f(x(t), t) : ℜn×ℜ+ → ℜn×n are piecewise contin-
ual vector-valued functions assuring the existence
and uniqueness of solutions for systems (1) with
f(0, t) ≡ 0 and satisfies the Lipschitz condition
for all (x, t), (x∗, t) ∈ ℜn ×ℜ+

∥f(x(t), t)− f(x∗(t), t)∥ ≤ ∥F (x(t)− x∗(t))∥, (2)

where F is a constant matrix with an appropriate
dimension. Consequently, from (2), we have

∥f(x(t), t)∥ ≤ ∥Fx(t)∥. (3)

Remark 1. Let {χm}∞m=0 be non-decreasing se-
quence of points, where χm are values of the cor-
related random variables χ

′
m,∀ m = 1, 2, · · · , and

{τm}∞m=1 be a sequence of points, where τm are ar-

bitrary values of the random variable τ
′
m,∀ m =

1, 2, · · · . For satisfaction, we define χ0 = t0 and
χm = χm−1+τm, ∀ m = 1, 2, · · · , where τm repre-
sents the value of the delay (waiting) time. Then
system (1) becomes
E ẋ(t) = Ax(t) + f(x(t), t), t ̸= χm, t ≥ t0,

x(χ+
m) = Cm(τm)x(χ−

m),m ∈ Z+

xt0 = x0.

(4)

The solutions of the system (4) are controlled not
only by the initial condition but also by the mo-
ments of impulses χm, m = 1, 2, · · · . That is,
the result depends on the selected arbitrary values

τm of the random variable τ
′
m, ∀ m = 1, 2, · · · . We

will assume x(χm) = lim
t→χm−0

x(t).

Moreover, the set of all solutions of system (4),
is known as a sample path solution of system (1).
Thus, the sample path solution produces a stochas-
tic process. We can assure that it is a solution of
the system (1).

Lemma 1. [41, 42], When there will be exactly
m impulses until the time t, t ≥ t0, and the wait-
ing time between two consecutive impulses follow
an exponential distribution with parameter γ, then
the probability

P(I
[χ′

m,χ
′
m+1)

(t)) =
γm(t− t0)

m

m!
e−γ(t−t0),

where the events

I
[χ′

m,χ
′
m+1)

(t) = {ω ∈ Ω : χ
′
m(ω) < t < χ

′
m+1(ω)},

m = 1, 2, · · · .

Remark 2. [41, 42], Let x(t) be the solution of
the random impulsive differential equations then
the expected value of x(t) satisfies

E[∥x(t)∥p] =
∞∑

m=0

E[∥x(t)∥p|I
[χ′

m,χ
′
m+1)

(t)]

P(I
[χ

′
m,χ

′
m+1)

(t)),

where χ
′
m is the impulse moments.

Definition 1. [6], The pair (E , A) is called reg-
ular if det(sE −A) is not identical zero. The pair
(E , A) is called impulse free if deg(det(sE −A)) =
rank(E).

Definition 2. [6,12], System (1) is said to have
a Lyapunov-like property if there exists a matrix
P such that ETP = P TE ≥ 0 and [Ax(t) +
f(x(t), t)]TPx+ xTP [Ax(t) + f(x(t), t)] < 0.

Remark 3. [6,12] For a nonlinear system, it is
sufficient that the solution exists and is unique on
[0,∞), if there exists a matrix P satisfying defi-
nition 2.

From [6, 36], we have that the pair (E , A) is reg-
ular and impulse free, then we have that there
exists matrices G1 ∈ ℜr×n,G2 ∈ ℜ(n−r)×n,Q1 ∈
ℜn×r,Q2 ∈ ℜn×(n−r), such that G = col(G1,G2)
and Q = row(Q1,Q2) ∈ ℜn×n are two non-
singular matrices and the following standard de-
composition holds

GEQ = diag{Ir, 0},GAQ = diag{A1, In−r}

where r = Rank(E), A1 ∈ ℜr×r. Non-singularity
of G implies that G2 is full-row and then G2(G2)

T

is positive definite. Without loss of generality, we
always assume that ∥G2∥ ≤ 1.
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Lemma 2. [6], Let V ∈ ℜn×n be a positive-
definite matrix, then

λmin(V)xTx ≤ xTVx ≤ λmax(V)xTx, ∀ x ∈ ℜn.

Lemma 3. [49] For any constant ϵ > 0, and
vectors x, y ∈ ℜn, then we have

xT y + yTx ≤ ϵ−1xTx+ ϵyT y, holds.

Definition 3. System (1) is said to be pth mo-
ment E-ES, if there exist two positive numbers
λ > 0,M > 0 such that, the solution x of sys-
tem (1) satisfies

E ∥Ex(t)∥p ≤ ME[∥Ex0∥p]e−λ(t−t0), t ≥ t0.

Definition 4. System (1) is said to be pth mo-
ment ES, if there exist two positive numbers λ >
0,M > 0 such that, the solution x of the system
(1), satisfies

E ∥x(t)∥p ≤ ME[∥Ex0∥p]e−λ(t−t0), t ≥ t0.

If p = 2, then it is mean square exponential stable.

3. Main results

Theorem 1. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) satisfies a Lyapunov-like
property and there exists an invertible matrix P ,
and positive constants κ > 0, ωm > 0, such that
E[ωm] ≤ κ, ζ < 0 be a negative real number,
ϵ > 0, exponential distribution parameter γ and
the following conditions hold,

(ATP + P TA) + λmax(
1
ϵF

TF + ϵP TP )I

< ζETP,

Γ = (Cm(τm)TETPCm(τm)− ωmETP ) (5)

≤ 0

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment E-ES.

Proof. Let x be the sample path solution of sys-
tems (4). For convenience we take V (x(t)) =
V (t, x(t)), and consider the Lyapunov function

V (x(t)) = xT (t)ETPx(t). (6)

Taking the derivative of V (x(t)) along the so-
lution of system (4) at the continuous interval
[χm−1, χm),m ∈ Z+, then we have

V̇ (x(t))

= ẋT (t)ETPx(t) + xT (t)P TE ẋ(t), (7)

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t).

From condition (5), we have

V̇ (x(t))

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t),

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t),

≤ xT (t)(ATP + P TA)x(t)

+xT (t)(
1

ϵ
F TF + ϵP TP )Ix(t)

≤ xT (t)ζETPx(t)

≤ ζV (x(t)).

Hence we have,

V̇ (x(t))− ζV (x(t)) ≤ 0, (8)

or

V̇ (x(t)) ≤ ζV (x(t)), t ∈ [χm−1, χm),m ∈ Z+. (9)

Note that for any m ∈ Z+, at instant t = χm, we
have

V (χm
+)− ωmV (χm

−)

= xT (χm
+)ETPx(χm

+)− ωmxT (χm
−)ETPx(χm

−)

= [Cm(τm)x(χm
−)]TETP [Cm(τm)x(χm

−)]

−ωm[x(χm
−)]TETP [x(χm

−)] (10)

= [xT (χm)Cm(τm)T ]ETP [Cm(τm)x(χm)]

−ωm[xT (χm)]ETP [x(χm)]

= xT (χm)(Cm(τm)TETPCm(τm)− ωmETP )x(χm)

= xT (χm)Γx(χm)

≤ 0.

Therefore, from (4) and by using simple induc-
tion, from (9) and (10), we have

V (x(t)) ≤ V (x0(t))
m∏
i=1

ωie
ζ(t−t0),∀m ∈ Z+. (11)

By the Lyapunov-like property, there exists a
positive definite symmetric matrix L such that
ETP = ETLE . Then, we have

λmin(L) ∥Ex(t)∥p

≤ V (x(t))

≤ V (x0(t))

m∏
i=1

ωie
ζ(t−t0). (12)

Hence, we obtain

∥Ex(t)∥p ≤ λmax(L)

λmin(L)
∥Ex(t0)∥p

m∏
i=1

ωie
ζ(t−t0),

≤ λmax(L)

λmin(L)
∥Ex0∥p

m∏
i=1

ωie
ζ(t−t0),

where t ∈ [χm−1, χm),m ∈ Z+. This equation
generates a stochastic process and it is defined by

∥Ex(t)∥p ≤ M∥Ex0∥p
m∏
i=1

ωie
ζ(t−t0), χ

′
m−1 < t < χ

′
m,
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where M = λmax(L)
λmin(L)

. Taking expectation, by us-

ing Lemma 1, and remark 2, we get

E [∥Ex(t)∥p]

=

∞∑
m=0

E[∥Ex(t)∥p|I
[χ′

m,χ
′
m+1)

(t)]

P(I
[χ

′
m−1,χ

′
m)
(t)),

≤ ME[∥Ex0∥p]
∞∑

m=0

m∏
i=1

E [ωi] e
ζ(t−t0)

P(I
[χ

′
m−1,χ

′
m)
(t))

= ME[∥Ex0∥p]
∞∑

m=0

m∏
i=1

E [ωi] e
ζ(t−t0)

γm(t− t0)
m

m!
e−γ(t−t0),

= ME[∥Ex0∥p]eζ(t−t0)
∞∑

m=0

[γκ]m(t− t0)
m

m!

e−γ(t−t0),

Hence,

E [∥Ex(t)∥p] ≤ ME[∥Ex0∥p]e[ζ+γ(κ−1)](t−t0), (13)

where ζ + γ(κ − 1) is the convergent rate. This
implies that the trivial solution of (1) is E-
exponentially stable. □

Corollary 1. For system (1), its pth moment
E-exponentially stability is equivalent to its pth

moment exponential stability and its satisfies
1− 2p−1E∥FQ2∥p > 0.

Proof. The pair (E , A) is regular and impulse
free, we introduce the coordinate transformation

x(t) = Q col(x1, x2). (14)

It follows that system (1) is equivalent to

ẋ1 = A1x1 + G1f(x(t), t), (15)

χ
′
m < t < χ

′
m+1, t ≥ t0,

0 = x2 + G2f(x(t), t), (16)

χ
′
m < t < χ

′
m+1, t ≥ t0

x(χ
′+
m ) = Cmx(χ

′−
m ),m ∈ Z+ (17)

xt0 = x0,

where x1 ∈ ℜr, x2 ∈ ℜn−r and
G = col(G1,G2),G1 ∈ ℜr×n,G2 ∈ ℜ(n−r)×n,
Q = row(Q1,Q2) ∈ ℜn×n,Q1 ∈ ℜn×r,

Q2 ∈ ℜn×(n−r). Hence,

GEx(t) = GEQ col(x1, x2)

= diag(Ir, 0)col(x1, x2)

= col(x1, 0) (18)

From (13) and (18), we have

E∥x1∥p = E∥GEx∥p

≤ ∥G∥pE∥Ex∥p

≤ ∥G∥pME[∥Ex0∥p]e[ζ+γ(κ−1)](t−t0).
(19)

Here we understood that the solution of the sys-
tem (1) is pth moment globally exponentially sta-
ble.

Now, It is necessary to prove that that x2 is also
exponentially stable. It follows from equation (3)
and (17) that

∥x2∥ ≤ ∥G2∥∥f(x(t), t)∥ ≤ ∥f(x(t), t)∥
≤ ∥Fx(t)∥ = ∥FQ1 x1 + FQ2 x2∥
≤ ∥FQ1 x1∥+ ∥FQ2 x2∥
≤ ∥FQ1∥∥x1∥+ ∥FQ2∥∥x2∥.

Thus, taking expectation and the pth moment on
both sides, we get

(1− 2p−1E∥FQ2∥)E∥x2∥p ≤ 2p−1E∥FQ1∥E∥x1∥p,
where Q is non singular matrix can be suitably
taken to satisfy 1−2p−1E∥FQ2∥p > 0. Therefore
from (19),

E∥x2∥p ≤ 2p−1E∥FQ1∥p

1− 2p−1E∥FQ2∥p
E∥x1∥p

≤ 2p−1E∥FQ1∥p

1− 2p−1E∥FQ2∥p
∥G∥pME[∥Ex0∥p]

e[ζ+γ(κ−1)](t−t0).

From (19) and the above equation, we conclude
that the trivial solution of (1) is pth moment ex-
ponentially stable. The proof is completed. □

When f(x(t), t) = 0, then the system (1) becomes
a linear SDSs with random impulses. In this case,
the following corollary can be easily obtained.

Corollary 2. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) with f(x(t), t) = 0 satis-
fies a Lyapunov-like property and there exists an
invertible matrix P , and there exists positive con-
stant κ > 0, ωm > 0, such that E[ωm] ≤ κ, ζ < 0,
exponential distribution parameter γ and the fol-
lowing conditions hold,

(ATP + P TA) < ζETP, (20)

Γ = (Cm(τm)TETPCm(τm)− ωmETP ) ≤ 0

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment E-ES.

The proof is similar to the proof of Theorem 1
and hence it is omitted.

When E = In, then the system (1) becomes a non-
linear state-space system with random impulses.
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In this case, the following corollary can be easily
obtained.

Corollary 3. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) with E = In satisfies a
Lyapunov-like property and there exists a positive
definite matrix P , and there exists positive con-
stant κ > 0, ωm > 0, such that E[ωm] ≤ κ, ζ < 0,
ϵ > 0, exponential distribution parameter γ and
the following conditions hold,

(ATP + P TA) + λmax(
1

ϵ
F TF + ϵP TP )I < ζP,

Γ = (Cm(τm)TPCm(τm)− ωmP ) ≤ 0 (21)

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment ES.

The proof is similar to the proof of Theorem 1
and hence it is omitted.

Remark 4. From the condition (5) and ETP =
P TE ≥ 0, different matrices P can be chosen
based on the matrices E, A and F .

Remark 5. We carried out the following four
conditions from the convergent rate ζ + γ(κ− 1),
in Theorem 1,

(i) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the impulsive strength
κ ∈ ( 0, 1) and the arrival rate of impulses
do not necessarily satisfy any condition.

(ii) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the system does not
have an arrival rate of impulses when the
impulsive strength κ = 1 .

(iii) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the arrival rate of im-
pulses must be satisfied with this condition
γ < −ζ

κ−1 , where the impulsive strength
κ > 1.

4. Applications

In this section, numerical examples are discussed
to support the proposed results. We illustrate the
results by graphs to support the results.

Example 1. Consider system (1) where

E =

1 0 0
0 1 0
0 0 0

 , A =

−0.3 0.1 0.1
−1 −3 1
−0.6 −1.5 −2.5

 ,

x0 =

−0.1
0.1
0.2

 , f(x(t), t) =


1

10
√
3
tanhx1(t)

1
10

√
3
tanhx2(t)

1
10

√
3
tanhx3(t) ,

 ,

Cm(τm) =

0.5 0 0
0 0.5 0
0 0 0.5

 .

It is easy to verify that ETP = P TE ≥ 0 with
P = I3 and f(x(t), t) satisfies the Lipschitz con-
dition with F = 1

10
√
3
I.

Here, ζ = −3, ϵ = 0.05 with impulse arrival rate

γ = 25, κ = 0.5 and τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
=

0.026, then the conditions (5) in Theorem 1 are
satisfied. Hence system (1) is E-ES. Figure 1 il-
lustrates the graphical behaviour of the solution.
When there are no impulses, then the above sys-
tem is unstable.

Figure 1. E- Exponential stability.

Example 2. Consider system (1) where

E =

[
4 0
2 0

]
, A =

[
−2 1
1 −2

]
,

Cm(τm) =

[
−0.7 0
0 −0.5

]
, x0 =

[
−0.1
0.1

]
,

f(x(t), t) =

[
sinx1( t)

4
√
3

sinx2( t)

4
√
3

]
.

It is easy to verify that ETP = P TE ≥ 0 with

P =

[
1 −0.5
0 1

]
and f(x(t), t) satisfies the Lips-

chitz conditions with F = 1
4
√
3
I.
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Choose p = 2, G =

[
0.2 0.1
−0.4 0.8

]
,

Q =

[
1 0
0.8 −0.5

]
, such that GEQ =

[
1 0
0 0

]
, and

GAQ =

[
−0.3 0
0 1

]
.

Hence, it is easy to verify that ∥G2∥ ≤ 1 and
1− E∥FQ2∥2 > 0.

Figure 2. Exponential stability.

Then the singular system (1) becomes

ẋ1(t) = −0.3x1(t) + 0.0404
sinx1( t)

4
√
3

−0.0072
sinx2( t)

4
√
3

,

χ
′
m < t < χ

′
m+1, t ≥ t0,

and

0 = x2(t) + 0.0346
sinx1( t)

4
√
3

− 0.0577
sinx2( t)

4
√
3

,

χ
′
m < t < χ

′
m+1, t ≥ t0,

x(χ+
m) = Cm(τm)x(χ−

m),m ∈ Z+.

Choose ζ = −2, γ= 4, and ϵ = 0.05 such
that (ATP + P TA) + λmax(

1
ϵF

TF + ϵP TP ) −
ζETP < 0. Further, take κ = 1.5 and τ

′
=

max
m∈Z+

{
ξ
′
m − ξ

′
m−1

}
= 0.026, then conditions (5)

in Theorem 1 are satisfied. Hence system (1) is
mean square ES. Figure 2 demonstrates the graph-
ical behaviour of the solution. When there are no
impulses, then the above system is unstable.

Example 3. Consider system (1) where

E =

1 + i 0 0
0 1 + i 0
0 0 0

 , x0 =

−0.5 + 0.1i
−0.4 + 0.2i

0.2 + i

 ,

A =

 −0.5 + i 0.2− 0.3i 0.1 + 0.3i
0.2 + 0.5i −1− 0.5i −0.1− i
−1.2 + i −0.4− 0.3i −0.2− 0.5i

 ,

f(x(t), t) =

1
2 (|x1(t) + 1| − |x1(t)− 1|)
1
2 (|x2(t) + 1| − |x2(t)− 1|)
1
2 (|x3(t) + 1| − |x3(t)− 1|)

 ,

Cm(τm) =

0.25 + 0.1i 0 0
0 0.25 + 0.1i 0
0 0 0.25 + 0.1i

 .

It is easy to verify that ETP = P TE ≥ 0 with
P = I3 and f(x(t), t) satisfies the Lipschitz con-
dition with F = 1

2I.

Here, ζ = −5, ϵ = 0.01 with impulse arrival rate

γ = 10, κ = 0.7 and τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
=

0.005, then the conditions (5) in Theorem 1 are
satisfied. Hence system (1) is E-ES.

Remark 6. In the above example, we have proved
that the results hold true even when the matrices
involved have complex entries. However, the func-
tion f involved is still a real valued function.

5. Conclusion

In this paper, we consider the exponential stabil-
ity of random impulsive nonlinear singular differ-
ential system. It is worth mentioning that the
system under consideration involves random im-
pulses which may cause some technical difficul-
ties comparing with systems with fixed impulses.
Less restrictive conditions are established for the
E-ES and ES of the system. To support the the-
oretical findings, we give two numerical examples
along with their graphical representations. We il-
lustrate that the obtained results are consistent
with the main theorem. We have additionally
proved the truth of the results in case of matri-
ces involving complex entries as well, while the
function involved still remains real-valued. Prov-
ing the results true for complex valued functions
could be considered to be a future problem. More-
over, as done in [11], we can consider analyzing a
system with delay by reformulating it into a sin-
gular linear system of differential equations, as a
future work. We believe that the results of this
paper are of great significant for relevant commu-
nity and can be used for instance to investigate
switched singular time delay systems.
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