
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.13, No.1, pp.116-122 (2023)

http://doi.org/10.11121/ijocta.2023.1283

RESEARCH ARTICLE

The null boundary controllability for the Mullins equation with
periodic boundary conditions

Isil Oner

Department of Mathematics in Faculty of Science, Gebze Technical University, Turkey
ioner@gtu.edu.tr

ARTICLE INFO ABSTRACT

Article History:
Received 27 June 2022
Accepted 4 January 2023
Available 29 January 2023

This paper studies the null controllability of the Mullins equation with a con-
trol acting on the periodic boundary. The main result proves that the system
is controllable for a specific class of initial conditions and also identifies un-
controllable states. Additionally, the existence and uniqueness theorem for the
solution of the backward adjoint system is provided.Keywords:

Null controllability
Mullins equation
Moment method
Periodic boundary condition
One-dimensional fourth order
parabolic equations

AMS Classification 2010:
93B07; 93D30

1. Introduction

In this paper, we study the null controllability
problem for the Mullins equation [1] with peri-
odic boundary conditions. This equation is a lin-
ear analog of the Kuramoto-Sivashinsky equation
and has the form

yt +Byxxxx = 0, (1)

where B is a positive constant known as the
Mullins coefficient. The Mullins equation is a lin-
ear parabolic partial differential equation that is
often used to model the evolution of thin films in
materials science and engineering.

The controllability problems for parabolic equa-
tions have received considerable attention in the
literature (see [2–12]). However, the null con-
trollability of fourth-order parabolic equations
has been studied in a few papers. Firstly, Y.L.
Guo [13] used two well-posed problems to solve
the null boundary controllability problem for a
fourth-order parabolic equation. Later, the null
interior controllability problem for a fourth-order
parabolic equation was solved by Han Yu [14]

using the method based on Lebeau-Rabbino In-
equality. Also, Z. Zhou [15] derived the ob-
servability inequalities for a one-dimensional lin-
ear fourth-order parabolic equation with poten-
tial using establishing global Carleman estimates
and presented null controllability results for the
one-dimensional fourth-order semilinear equation.
More recently, S. Guerrero and K. Kassab ob-
tained the null controllability results for the
higher dimensional fourth-order parabolic equa-
tion in [16]. These studies have mostly focused
on the case of Dirichlet boundary conditions.
This paper, however, explores the null control-
lability problem with periodic boundary condi-
tions. There have been some works on null
controllability for different types of systems us-
ing periodic boundary conditions. For example,
Imanuvilov considered the controllability problem
for the Boussinesq system with periodic bound-
ary conditions [17], Beauchard and Zuazua stud-
ied the null controllability problem of the Kol-
mogorov equation under periodic boundary condi-
tions [18], and Chowdhury and Mitra proved that
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the linearized compressible Navier-Stokes equa-
tions with periodic boundary conditions are null
controllable [19]. More recently, Oner obtained
null controllability results for a heat equation with
periodic boundary conditions [20]. However, to
the best of our knowledge, no work on the control-
lability problem for fourth-order parabolic equa-
tions with periodic boundary conditions has been
published in the literature. This observation mo-
tivated us to consider this problem.

In addition, the above-aforementioned studies
generally preferred the Carleman method to solve
this problem and this method is quite technical.
Here, we used duality and the moment method.
The moment method was developed by Fattorini
and Russell (see [3, 21]), and it allows obtaining
the solution of the problem using the spectral
properties of the system.

The main contributions of this article are as fol-
lows. First of all, the existence and uniqueness
of the solution of the adjoint system have been
proven. Then, with periodic boundary conditions,
it is shown that the system is not always con-
trollable for every initial condition, and a class
containing controllable initial conditions is deter-
mined. Finally, for this admissible initial data
class, the null boundary controllability problem
of the Mullins equation with periodic boundary
conditions has been solved by using the moment
method.

The paper is organized as follows. In Section 2,
we define the problem and give some initial results
by using duality between controllability and ob-
servability. Subsequently, in Section 3, we provide
some spectral results to reduce the null control-
lability problem to a moment problem. In Sec-
tion 4, we focus on the null boundary controlla-
bility problem for the Mullins equation with pe-
riodic boundary conditions. Since the null con-
trollability of the system is not always possible,
we first determine the restricted initial data class
and then show that the system is null controllable
for this initial data class. Finally, in Section 4, we
indicate the conclusion.

2. Problem Formulation

In the present work, we consider the null control-
lability of the following system:

ut + uxxxx + cu = 0, in D

u(π, t)− u(−π, t) = v(t), in (0, T )

ux(π, t)− ux(−π, t) = 0, in (0, T )

uxx(π, t)− uxx(−π, t) = 0, in (0, T )

uxxx(π, t)− uxxx(−π, t) = 0, in (0, T )

u(x, 0) = u0(x), in Ω

(2)

where D = Ω × (0, T ), Ω = (−π, π), u0(x) ∈
L2(Ω), v(t) ∈ L2(0, T ), and c is any positive num-
ber. The system we are considering is not always
controllable. Therefore, we will first identify the
uncontrollable cases and then determine the con-
ditions under which the system is controllable.
Let us call this class F , which will be determined
later. Now, we can define the null controllability.

Definition 1. System (2) is null controllable at
time T if for every initial condition u0 ∈ F ,
there exists a control v(t) ∈ L2(0, T ) such that
u(x, T ) = 0 for all x ∈ Ω.

Now, we can present a lemma that will be used
in the proof of our main result.

Lemma 1. The system (2) is null controllable in
time T > 0 if and only if for any u0 ∈ F there
exists v(t) ∈ L2(0, T ) such that∫ π

−π
u0(x)φ(x, 0)dx+

∫ T

0
v(t)φxxx(π, t)dt = 0

(3)
holds for any φ0 ∈ L2(Ω), where φ(x, t) is a solu-
tion of the backward adjoint problem given in as
follows.

φt − φxxxx − cφ = 0, in D (4a)

φ(π, t)− φ(−π, t) = 0, in (0, T ) (4b)

φx(π, t)− φx(−π, t) = 0, in (0, T ) (4c)

φxx(π, t)− φxx(−π, t) = 0, in (0, T ) (4d)

φxxx(π, t)− φxxx(−π, t) = 0, in (0, T ) (4e)

φ(x, T ) = φ0(x), in Ω (4f)

Proof. Let v be an arbitrary element of L2(0, T ),
and let φ be the solution of (4). By multiplying
(2) by φ and integrating the resulting expression
over D using integration by parts, we obtain

0 =

∫ T

0

∫ π

−π
(ut + uxxxx + cu)φdxdt

=

∫ T

0

∫ π

−π
u(−φt + φxxxx + cφ)dxdt

+

∫ 1

0
uφ

∣∣∣T
0
dx

+

∫ T

0
[φuxxx − φxuxx + φxxux − uφxxx]

∣∣∣π
−π

dt.

Using the given initial condition and boundary
conditions, we have∫ π

−π
u(x, T )φ0(x)dx

−
∫ π

−π
u0(x)φ(x, 0)dx−

∫ T

0
v(t)φxxx(π, t)dt = 0.

(5)
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If equation (3) holds, then it follows that∫ π
−π u(x, T )φ

0(x)dx = 0 for all φ0(x) ∈ L2(Ω)

which means that u(x, T ) = 0 for all x ∈ Ω. As
a result, system (2) is null-controllable. On the
contrary, suppose that system (2) is null control-
lable at time T , that is, for every initial condi-
tion u0 ∈ F , there exists a control v(t) ∈ L2(0, T )
such that u(x, T ) = 0 for all x ∈ Ω. Substitut-
ing u(x, T ) = 0 into (5), we conclude that (3)
holds. □

Above Lemma shows that the system (2) is con-
trollable if and only if equation (3) holds. There-
fore, we need to find a solution for system (4). In
the following section, we will first prove the ex-
istence and uniqueness of the solution for system
(4).

3. Fourier Series representation of
adjoint system

To find solution of system in equation (4), we will
apply the method of separation of variables by
letting φ(x, t) = X(x)T (t). This gives us:

X
′′′′
(x) = (λ− c)X, −π < x < π

X(π)−X(−π) = 0, in (0, T )

Xx(π)−Xx(−π) = 0, in (0, T )

Xxx(π)−Xxx(−π) = 0, in (0, T )

Xxxx(π)−Xxxx(−π) = 0, in (0, T )

which is self adjoint in L2(Ω). Now, we will find
a basis for L2(Ω) formed by the eigenfunctions of
this auxiliary problem. The eigenvalues and nor-
malized eigenfunctions of this auxiliary spectral
problem are λn = n4 + c, n = 0, 1, . . . and

X0(x) =
1√
2π

,

X2n−1(x) =
cos(nx)√

π
,

X2n(x) =
sin(nx)√

π

for n = 1, 2, . . . Then, the solution of (4) can be
expressed as a Fourier series expansion as follows:

φ(x, t) =
β0e

−λ0(T−t)

√
2π

+
∞∑
n=1

e−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√
π

(6)

where βn = (φ(x, T ), Xn(x)) for n = 0, 1, 2, . . .

To prove the existence and uniqueness of the so-
lution of system (4), we need an auxiliary result
that will be presented in the following lemma.

Lemma 2. Assume that function φ0(x) ∈
C4[−π, π] satisfies the following conditions:

φ0(π)− φ0(−π) = 0,

φ0
x(π)− φ0

x(−π) = 0,

φ0
xx(π)− φ0

xx(−π) = 0,

φ0
xxx(π)− φ0

xxx(−π) = 0.

Then, the following inequality holds.
∞∑
n=1

n3(|β2n−1|+ |β2n|)

≤ 2C∥(φ0)′′′′∥L2(−π,π)

(7)

where β2n−1 = (φ0, X2n−1), β2n = (φ0, X2n), and

C =
π√
6
.

Proof. Let φ0(x) ∈ C4[−π, π] satisfy the as-
sumption of lemma. From equation (6), it is seen
that

β2n−1 = (φ0(x), X2n−1) and β2n = (φ0(x), X2n).

Then, we have

n3(β2n−1+β2n) =
1

n
(φ0, n4X2n−1)+

1

n
(φ0, n4X2n).

Since

X ′′′′
2n−1 = n4X2n−1 and X ′′′′

2n = n4X2n,

we can rewrite the equation as follows.

n3(β2n−1 + β2n) =
1

n
(φ0, X ′′′′

2n−1) +
1

n
(φ0, X ′′′′

2n).

Applying integration by part, we obtain

=
1

n
((φ0)′′′′, X2n−1) +

1

n
((φ0)′′′′, X2n).

Using this equation, we get
∞∑
n=1

n3(|β2n−1|+ |β2n|) =
∞∑
n=1

1

n
|(φ0)′′′′, Xn)|

By using Cauchy -Schwartz and Bessel inequali-
ties, we obtain

∞∑
n=1

n3(|β2n−1|+ |β2n|) =
∞∑
n=1

1

n
|((φ0)′′′′, Xn)|

≤
( ∞∑
n=1

1

n2

) 1
2
( ∞∑
n=1

[
|((φ0)′′′′, Xn)|2

) 1
2

≤ C∥(φ0)′′′′∥L2(−π,π)

with C =
(∑∞

n=1

1

n2

) 1
2 =

π√
6
. □

Now, we can prove the existence and uniqueness
of the solution.

Lemma 3. Let φ0(x) satisfy the conditions of
Lemma (2). Then, the system (4) has a unique
solution φ(x, t) ∈ (C4,1(D)∩C3,0(D̄)) of the form
(6).
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Proof. Since Xn(x)n≥0 are bases in L2(Ω),

φ(x, t) can be represented by equation (6). To
prove that φ(x, t) given in (6) is solution of sys-
tem (4), we need to show that the first partial de-
rivative of φ(x, t) with respect to t and the fourth
partial derivative of φ(x, t) with respect to x are
continuous and it satisfies (4a) in Ω for t > 0.
Additionally, the function in equation (6) and its
first, second, and third partial derivatives with re-
spect to spatial variable, as well as its first partial
derivative with respect to time, must be contin-
uous at boundary points. We need to show that
the series

φt(x, t) ∼
β0λ0e

−λ0(T−t)

√
2π

+
∞∑
n=1

λne
−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√

π

(8)

and

φxxxx(x, t)

∼
∞∑
n=1

n4e−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√
π

.

(9)

converge uniformly for T − t ≥ ϵ, where ϵ is an ar-
bitrary positive number. The majorants of these
series are

∞∑
n=1

λne
−λnϵ(|β2n−1|+ |β2n|)√

π

and
∞∑
n=1

n4λne
−λnϵ(|β2n−1|+ |β2n|)√

π
.

By using Lemma (3) and D’Alembert criterion, it
is seen that these two majorant series are conver-
gent. Therefore, the series in equations (8) and
(9) are uniformly convergent for T − t ≥ ϵ > 0.
Also, we conclude from superposition principle
that the function defined by (6) satisfies equa-
tion (4a) for all T > t because t is arbitrary. The
function in equation (6) and its first, second, and
third partial derivatives with respect to spatial
variable and first partial derivative with respect
to time must be continuous at boundary points.
Namely, the series in equation (6) must be con-
tinuous at t = T,

φ(x, T ) =
β0√
2π

+

∞∑
n=1

[β2n−1 cos(nx) + β2n sin(nx)]√
π

and the following functions must be continuous at
boundary points x = −π and x = π:

φxxx(x, t)

∼
∞∑
n=1

n3e−λn(T−t)[β2n−1 sin(nx)− β2n cos(nx)]√
π

,

φxx(x, t)

∼
∞∑
n=1

n2e−λn(T−t)[−β2n−1 cos(nx)− β2n sin(nx)]√
π

.

φx(x, t)

∼
∞∑
n=1

ne−λn(T−t)[−β2n−1 sin(nx) + β2n cos(nx)]√
π

.

By using Weierstrass M-test and Lemma (2), we
see that the following majorant series are uni-
formly convergent.

∞∑
n=1

|β2n−1|+ |β2n|√
π

,
∞∑
n=1

n3|β2n|√
π

∞∑
n=1

n2|β2n−1|√
π

and

∞∑
n=1

n|β2n|√
π

.

Therefore, the above series are continuous at the
boundary points. Finally, we obtain a function
φ(x, t) ∈ (C4,1(D) ∩ C3,0(D̄)) which is a solution
of system (4) given by the Fourier series in equa-
tion (6). This solution is also unique due to the
uniqueness of the Fourier representation of func-
tions. □

4. Null boundary controllability of
Mullins equation

In this section, we will reduce the null controllabil-
ity problem to a moment problem using the spec-
tral properties of the problem. Since {Xn(x)}n≥0

is a basis in L2(Ω), any initial data u0 ∈ L2(Ω)
can be represented as follows.

u0(x) =
η0√
2π

+
∞∑
n=1

[η2n−1 cos(nx) + η2n sin(nx)]√
π

,

(10)
where ηn = (u0(x), Xn(x)) for n = 0, 1, 2, . . . Sub-
stituting equations (6) and (10) into (3), we get

β0η0e
−λ0T +

∞∑
n=1

e−λnT [β2n−1η2n−1 + β2nη2n]

−
∫ T

0

v(t)√
π

∞∑
n=1

n3eλn(T−t)β2n(−1)ndt = 0

(11)
According to Lemma 1, system (2) is null control-
lable in time T > 0 if and only if for any u0 ∈ F
there exists v(t) ∈ L2(0, T ) such that (3) is sat-
isfied. Since {Xn(x)}n≥0 is an orthonormal basis
for L2(Ω), equation (3) is verified if and only if
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it is verified by φ0
m(x) = Xm(x),m = 0, 1, . . . .

Therefore, if in particular φ0
m(x) = Xm(x), then

βn = δm,n, and η0 = 0, η2m−1 = 0 and∫ T

0

v(t)√
π
eλm(T−t)m3(−1)mdt = e−λmT η2m

for m = 1, 2, . . . . Taking v(t) = f(T − t) in the
last equation, we have proven the following theo-
rem, which is the main result of this article. From
above, it is clear that system (2) is not always con-
trollable for all initial data classes. That is why
we need to define the following admissible initial
data classes to make the system null controllable.

F = {u0(x) ∈ L2(Ω)
∣∣η0 = 0 and η2m−1 = 0}.

Now, we are in a position to state the main theo-
rem of this article.

Theorem 1. The system (2) is null controllable
in time T > 0 if and only if for any u0 ∈ F with
Fourier expansion

u0(x) =

∞∑
n=1

η2n
sin(nx)√

π
,

there exists a function f ∈ L2(0, T ) such that∫ T

0
f(t)e−λmtdt =

(−1)mη2m
√
πe−λmT

m3
(12)

for m = 1, 2, · · · .

To have a precise understanding of Theorem 1,
we provide the following example.

Example 1. It is seen that

φn(x, t) =
cos(nx)√

π
e−λn(T−t)

is a solution of (4) with the initial data cos(nx)√
π

for arbitrary fixed positive integer n. Taking into
consideration these values in (5), we have∫ π

−π
u(x, T )

cos(nx)√
π

dx

−
∫ π

−π
u0(x)

e−λnT cos(nx)√
π

dx = 0

the second term of equation is independent of the
control and non-zero unless η2n−1 = 0. This ex-
plains how we choose the initial data classes.

4.1. Moment Problem

We need to find f(t) that satisfies (12) to find con-
trol v(t). This is a moment problem in L2(0, T )
with respect to the family Λ = {e−λmt}m≥0. From
Theorem (1), we see that controllability holds if
and only if the moment problem (12) is solvable.
To solve this moment problem, we can apply the
general theory developed in [21] by Fattorini and

Russell. Suppose that we can construct a se-
quence of functions {Ψn}n≥0 that are biorthog-
onal to the set Λ in L2(0, T ), such that∫ T

0
e−λmtΨn(t)dt = δn,m =

{
1, if n = m

0, if n ̸= m

(13)
for all m,n = 0, 1, 2 . . . . Then, moment problems
(12) have solutions by setting

f(t) =
∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn(t)

Since
∞∑
n=0

1

λn
=

∞∑
n=0

1

n4 + c
< ∞, (14)

Muntz’s Theorem shows that biorthogonal se-
quence {Ψn}n≥0 exists. In addition, the gen-
eral estimations of ∥Ψn∥L2(0,∞) was calculated by
H.O. Fattoroni and D. L. Russell. They showed
in [3] that if the λn are real and satisfy the fol-
lowing asymptotic relationship

λn = K(n+ α)ζ + o(nζ−1) (n → ∞)

whereK > 0, ζ > 1 and α is real, then there exists
constants K̂,Kζ such that

∥Ψn(t)∥L2(0,∞) ≤ K̂ exp[(Kζ + o(1))λ1/ζ
n ] (n ≥ 1)

where o(1) indicates a term tending to zero as n
goes to infinity. The computation of the constant
Kζ is given in [21]. To relate the interval [0,∞]
with the finite interval [0, T], they used results
given in [22]. Since λn = n4 + c, using these re-
sults it can be seen that

∥Ψn(t)∥L2(0,T ) ≤ Keρ for n ≥ 0

where K and ρ are some positive constants. Now,
we can state the following results.

Corollary 1. Given any T > 0, suppose that
there exists a sequence {Ψn(t)}n≥0 in L2(0, T )
biorthogonal to the set Λ such that

∥Ψn∥L2(0,T ) ≤ Kenρ, ∀n ≥ 0 (15)

holds, where K and ρ are two positive constants.
Then, system (2) is null-controllable in time T.

Proof. According to Theorem (1), the system (2)
is null controllable in time T if for any u0 ∈ F
with Fourier expansion

u0(x) =

∞∑
n=1

η2n sin(nx)√
π

,

there exists a function f ∈ L2(0, T ) which holds
(12). Choose

f(t) =

∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn(t) (16)
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Since ∥Ψn∥L2(0,T ) ≤ Kenρ, for all n ≥ 0, we de-
duce that

∥
∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn∥L2(0,T )

≤
∞∑
n=1

|η2n|
√
π

n3
e−λnT ∥Ψn∥L2(0,T )

≤ K
∞∑
n=1

|η2n|
√
π

n3
e−λnT+nρ < ∞

i.e., f(t) converges in L2(0, T ). Hence, (16) im-
plies that f satisfies (12) and the proof fin-
ishes. □

5. Conclusion

In this paper, we studied the null boundary con-
trollability of the Mullins equation with periodic
boundary conditions. We demonstrated that the
system is controllable on a specific admissible ini-
tial data class and solved the null boundary con-
trollability problem by reducing it to a moment
problem using the spectral properties of the sys-
tem. Additionally, we established the existence
and uniqueness of the solution of the system.

As a future direction, we will consider the system
with nonlocal boundary conditions. In this case,
the system is not self-adjoint and will require a
different approach.
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