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1. Introduction

Differential equations are essential for a mathe-
matical description of Nature. Many of the gen-
eral laws of Nature–in physics, chemistry, biol-
ogy, economics, and engineering find their most
natural expression in the language of differential
equation. Differential equation (DE) allows us
to study all kinds of evolutionary processes with
the properties of finite-dimensionality and differ-
entiability. Derivative of arbitrary order arises
from many physical processes, such as a charge
transport in amorphous semiconductors, electro-
chemistry and material science, where they are
described by differential equations of arbitrary or-
der, see [1–4]. Recently, many researchers have
exposed attention in the field of fractional dif-
ferential equations theory, which will be used to
describe phenomena of real-world problems. For

more details; we refer the reader to the papers
[5–18]. On the other hand, hybrid differential
equations have gained extensive attention from
many scholars; see for example [19–21]. Hybrid
differential equations and coupled hybrid systems
involving fractional derivatives have also been in-
vestigated by scientific researchers; see for in-
stance [22–28] and the references cited therein.
In recent years, sequential fractional hybrid dif-
ferential equations have been studied by several
researchers [29–34]. On the other hand, the sta-
bility of solutions of differential equations is im-
portant in physical problems because if slight de-
viations from the mathematical model caused by
unavoidable errors in measurement do not have a
correspondingly slight effect on the solution, the
mathematical equations describing the problem
will not accurately predict the future outcome.
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For example, one of the difficulties in predicting
population growth is the fact that it is governed
by the equation w(t) = ceat, which is an unsta-
ble solution of the equation w′(t) = aw(t). Even
if there are no unfavourable factors, very few in-
accuracies in the initial population count (c) or
breeding rate (a) will result in fairly significant er-
rors in prediction. One of the interesting subjects
in this area, is the investigation of the existence
and stability of solutions, because the study of the
existence of solution of the fractional differential
equation(FDE) became important due to the lack
of a general formula for solving nonlinear FDEs,
see [29, 30, 32, 33]. Recently, Some scholars have
discussed the existence, uniqueness, and different
types of Ulam stability of solutions of fractional
sequential hybrid differential equations [29,32,33]
and the references cited therein. The classical
form of hybrid differential equation [35] is given
by the following differential equation


d

dt

[
w (t)

ψ (t, w (t))

]
= φ (t, w (t)) , 0 ≤ t ≤ T,

w (t0) = w0, w0 ∈ R,

where ψ ∈ C ([0, T ]× R,R− {0}) and φ ∈
C ([0, T ]× R → R). Many scientific researchers
have studied different fractional types of the
above hybrid differential equation. For example
in [36], the authors have discussed the fractional
hybrid differential equations involving Riemann-
Liouville differential operators


RLD

[
w (t)

ψ (t, w (t))

]
= φ (t, w (t)) , 0 ≤ t ≤ T,

w (0) = 0,

where 0 << 1, ψ ∈ C ([0, T ]× R,R− {0}) and
φ ∈ C ([0, T ]× R,R).
In [37], the authors studied the existence and
uniqueness of solutions of coupled hybrid frac-
tional differential equations described by



CD

[
w (t)

ψ1 (t, w (t) , z (t))

]
= φ (t, w (t) , z (t)) ,

CD

[
z (t)

ψ2 (t, w (t) , z (t))

]
= ϕ (t, w (t) , z (t)) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

where t ∈ [0, 1] , 1 <≤ 2, 1 <≤ 2, ψj ∈
C ([0, 1]× R,R− {0}) , j = 1, 2 and φ, ϕ ∈

C ([0, 1]× R,R). The existence and unique-
ness results were obtained by applying Leray-
Schauder’s alternative criterion and Banach’s
contraction mapping principle.

Motivated by above-mentioned works, in this pa-
per, we discuss the existence, uniqueness and
Ulam-Hyers-Rassias stability of solution for se-
quential coupled fractional hybrid system of the
following form



RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
=

k∑
i=1

φi (t, w (t) , z (t)) ,

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
=

k∑
i=1

ϕi (t, w (t) , z (t)) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

(1)

where 0 ≤ t ≤ 1, 0 <,< 1,+ > 1, 0 <,< 1,+ >
1, RLD,∈ {, } and CD,∈ {, } are the Riemann-
Liouville and Caputo fractional derivatives re-
spectively, ψj : [0, 1] × R2 → R − {0} , j = 1, 2
and φi, ϕi : [0, 1]×R2 → R, 1 ≤ i ≤ k, are contin-
uous functions.

We impose the following hypotheses throughout
the paper:

(H1) For each i = 1, 2, ..., k, the functions
φi, ϕi : [0, 1] × R2 → R are contin-
uous and there exist constants πi >
0, ϑi > 0 such that for all t ∈ [0, 1]
and (w1, z1) , (w2, z2) ∈ R2 → R are con-
tinuous and there exist constants πi >
0, ϑi > 0 such that for all t ∈ [0, 1] and
(w1, z1) , (w2, z2) ∈ R2,

|φi(t, w1, z1)− φi(t, w2, z2)|
≤ πi(|w1 − z1|+ |w2 − z2|),

and

|ϕi(t, w1, z1)− ϕi(t, w2, z2)|
≤ ϑi(|w1 − z1|+ |w2 − z2|)

for i = 1, 2, · · · , k,
(H2) For all j = 1, 2, the functions ψj : [0, 1]×

R2 → R − {0} are continuous and there
exist constants Πj > 0 such that

ψ1 (t, w, z) ≤ Π1 and ψ2 (t, w, z) ≤ Π2,

for each t ∈ [0, 1] and (w, z) ∈ R2.
(H3) For each i = 1, 2, ..., k, the functions

φi, ϕi : [0, 1]×R2 → R are continuous and
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there exist constants γi, ωi, γ
′
i, ω

′
i ≥ 0 and

λi > 0, λ
′
i > 0 such that for all t ∈ J and

w, z ∈ R, we have

φi (t, w, z) ≤ λi + γi |w|+ ωi |z| ,
and

ϕi (t, w, z) ≤ λ
′
i + γ

′
i |w|+ ω

′
i |z| .

The rest of the paper is organized in the follow-
ing fashion. In Section 2, we introduce some ba-
sic definitions and lemmas which are useful in our
main results. In Section 3, we establish a criteria
for the existence and uniqueness of solutions to
the boundary value problem (1) by applying the
Leray-Schauder’s alternative fixed point theorem
and the Banach’s contraction mapping principle
in a Banach space. In section 4, we study Ulam-
Hyers-Rassias stability of solutions to the problem
(1). Finally, as an application, we demonstrate
our results with example.

2. Preliminaries

In this section, we introduce some basic defini-
tions and lemmas which are useful for our later
discussions.

Definition 1. [38] The Riemann-Liouville frac-
tional integral of order > 0 for a function f :
(0,∞) → R is defined as

If (t) =
1

Γ()

∫ t

0
(t− s)−1f(s)ds,

provided that the right side is pointwise defined on
(0,∞).

Definition 2. [38] The Riemann-Liouville frac-
tional derivative of order > 0 for a continuous
function f : (0,∞) → R is defined as

Df (t) =
1

Γ(m−)

(
d

dt

)m ∫ t

0

f(s)

(t− s)−m−1
ds,

where m = [] + 1, provided that the right side is
pointwise defined on (0,∞).

Definition 3. [38] For a function f given on
the interval [0,∞), The Caputo derivative of frac-
tional order γ for the function f continuous on
[0,∞) is defined as

CDf (t) =
1

Γ(m−)

∫ t

0
(t− s)m−−1f (m)(s)ds,

m = [] + 1.

Lemma 1. [12] Let , > 0 and h ∈ L1([0, 1]).
Then IIh(t) = I+h(t) and RLDIh(t) = h (t) .

Lemma 2. [12] Let >> 0 and h ∈ L1([0, 1]).
Then RLDIh(t) = I−h(t).

Lemma 3. [12] Let > 0. Then for w ∈ C (0, 1)∩
L1 (0, 1) and RLDw ∈ C (0, 1) ∩ L1 (0, 1) , we have

IRLDw (t) = w (t) + c1t
−1 + c2t

−2 + · · ·+ cnt
−n,

where ci ∈ R, i = 1, 2, ..., n, n = [] + 1.

Lemma 4. [12] Let > 0. Then

I
[
CDw (t)

]
= w (t)+c0+c1t,+c2t

2+...+cn−1t
n−1,

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, n− 1 << n.

Lemma 5. For g, h ∈ C ([0, 1] ,R) and ψj ∈
C(
(
[0, 1]× R2,R− {0}

)
, j = 1, 2, the boundary

value problem



RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
= g(t),

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
= h (t) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

(2)

where 0 ≤ t ≤ 1, 0 <,< 1, + > 1, 0 <,< 1,
+ > 1, has a unique solution

w (t) = ψ1(t, w (t) , z(t))

[ ∫ t

0

(t− s)+−1

Γ(+)
g(s)ds

− t+−1

∫ 1

0

(1− s)+−1

Γ(+)
g(s)ds

]
,

(3)
and

z (t) = ψ2(t, w(t), z(t))

[ ∫ t

0

(t− s)+−1

Γ (+)
g (s) ds

− t+−1

∫ 1

0

(1− s)+−1

Γ (+)
g (s) ds

]
.

(4)

Proof. Using Lemma 3, we can write

w (t)

ψ1 (t, w (t) , z (t))
= Ig (t) + a1t

−1,

z (t)

ψ2 (t, w (t) , z (t))
= Ih (t) + b1t

−1,

where a1, b1 ∈ R. Now by Lemma 4, we have
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w (t) = ψ1(t, w(t), z(t))

[
I+g (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

(5)

z (t) = ψ2(t, w (t) , z (t))

[
I+h (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

(6)

where a2, b2 ∈ R. Using boundary conditions
w (0) = w (1) = z (0) = z (1) = 0, we obtain
a2 = b2 = 0,

a1 = −Γ (+)

Γ ()

∫ 1

0
(1− s)+−1 g (s) ds,

and

b1 = −Γ (+)

Γ ()

∫ 1

0
(1− s)+−1 h (s) ds.

Substituting the values of aj , bj , j = 1, 2 in (5)
and (6), we get (3) and (4). □

3. Existence and uniqueness of
solutions to the sequential coupled
hybrid system

We will use the standard fixed point theorems, to
study the fractional hybrid system (1). In this
regard, we define the space

W× Z = {(w, z) : w, z ∈ C([0, 1] ,R)} ,

endowed with the norm ∥(w, z)∥W×Z = ∥w∥+∥z∥ ,
where ∥w∥ = sup {|w (t)| : t ∈ [0, 1]} . It is clear
that

(
W× Z, ∥.∥W×Z

)
is a Banach space. Define an

operator O : W× Z → W× Z by

O (w, z) (t) = (O1 (w, z) (t) , O2 (w, z) (t)) , t ∈ [0, 1] ,

where

O1 (w, z) (t) = ψ1 (t, w (t) , z (t))N1(t), (7)

in which

N1(t) =
k∑

i=1

∫ t

0

(t− s)+−1

Γ (+)
φi (s, w (s) , z (s)) ds

−
k∑

i=1

∫ 1

0

[t (1− s)]+−1

Γ (+)
φi (s, w (s) , z (s)) ds,

and

O2 (w, z) (t) = ψ2 (t, w (t) , z (t))N2(t), (8)

in which

N2(t) =
k∑

i=1

∫ t

0

(t− s)+−1

Γ (+)
ϕi (s, w (s) , z (s)) ds

−
k∑

i=1

∫ 1

0

[t (1− s)]+−1

Γ (+)
ϕi (s, w (s) , z (s)) ds

]
.

Now, we prove the existence of solutions of the
fractional hybrid system (1) by applying Leray-
Schauder nonlinear alternative [39].

Lemma 6. (Leray-Schauder alternative). Let
F : E → E be a completely continuous opera-
tor (i.e.,a map that restricted to any bounded set
in E is compact). Let

(F ) = {u ∈ E : u = λF (u) for some 0 < λ < 1} .

Then either the set (F ) is unbounded, or F has
at least one fixed point.

Theorem 1. Assume that hypotheses (Hj)j=2,3

are satisfied. Furthermore, assume that

k∑
i=1

(
Π1γi

Γ (+ + 1)
+

Π2γ
′
i

Γ (+ + 1)

)
<

1

2
,

and
k∑

i=1

(
Π1ωi

Γ (+ + 1)
+

Π2ω
′
i

Γ (+ + 1)

)
<

1

2
.

Then the system (1) has at least one solution on
[0, 1].

Proof. In the first step, we show that the opera-
tor O : W×Z → W×Z is completely continuous. By
continuity of the functions ψj , φi, ϕi, j = 1, 2, i =
1, 2, ..., k, it follows that the operator O is contin-
uous.

Let Σ ⊂ W × Z be bounded. Then we can find
positive constants Ai, Bi, i = 1, 2, ..., k such that

|φi (t, w (t) , z (t))| ≤ Ai, |φi (t, w (t) , z (t))| ≤ Bi

for all (w, z) ∈ Σ. Then for any (w, z) ∈ Σ we
have

∥O1 (w, z) ∥

≤Π1

[
1

Γ (+)

k∑
i=1

∫ t

0
(t− s)+−1 |φi (s, w (s) , z (s))| ds

+
t+−1

Γ (+)

k∑
i=1

∫ 1

0
(1− s)+−1 |φi (s, w (s) , z (s))| ds

]

≤
k∑

i=1

2Π1Ai

Γ (+ + 1)
,
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which yields

∥O1 (w, z)∥ ≤
k∑

i=1

2Π1Ai

Γ (+ + 1)
< +∞. (9)

Also,

∥O2 (w, z)∥ ≤
k∑

i=1

2Π2Bi

Γ (+ + 1)
< +∞. (10)

Hence, by (9) and (10), we deduce that the oper-
ator O is uniformly bounded.

Next, we show that O is equicontinuous. For all
0 ≤ t2 < t1 ≤ 1, we have∣∣O1 (w, z)(t1)− O1(w, z)(t2)

∣∣
≤

k∑
i=1

Π1Ai

Γ (+ + 1)

( [
(t1 − t2)

+ +
∣∣t+1 − t+2

∣∣]
+
∣∣t+−1
1 − t+−1

2

∣∣ ), (11)

and

|O2 (w, z)(t1)− O2(w, z)(t2)|

≤
k∑

i=1

Π2Bi

Γ (+ + 1)

([
(t1 − t2)

+ +
∣∣t+1 − t+2

∣∣ ]
+ |t+−1

1 − t+−1
2 |

)
. (12)

From (11) and (12), ∥O (w, z) (t1)− O (w, z) (t2)∥W×Z

→ 0 as t2 → t1. Thus, by using the Arzela-
Ascoli theorem one can conclude that the opera-
tor O : W× Z → W× Z is completely continuous.

Finally, it will be verified that the set

Ψ =
{
(w, z) ∈ W× Z, (w, z) = O (w, z) , 0 ≤≤ 1

}
is bounded. Let (w, z) ∈ Ψ. Then, for each
t ∈ [0, 1] , we can write

w (t) = O1 (w, z) (t) and z (t) = O2 (w, z) (t) .

Then, we have

|w (t)| ≤ Π1|N1(t)|,
and

|z (t)| ≤ Π2|N2(t)|.
From (H3), we obtain

|w (t)| ≤ 2Π1

Γ (+ + 1)
(λ0 + λ1 |w (t)|+ λ2 |z (t)|) ,

and

|z (t)| ≤ 2Π2

Γ (+ + 1)
(γ0 + γ1 |w (t)|+ γ2 |z (t)|) .

Hence, we have

∥w∥ ≤
k∑

i=1

2Π1

Γ (+ + 1)
(λi + γi ∥w∥+ ωi ∥z∥) ,

and

∥z∥ ≤
k∑

i=1

2Π2

Γ (+ + 1)

(
λ′i + γ′i ∥w∥+ ω′

i ∥z∥
)
,

which imply that

∥w∥+ ∥z∥

≤
k∑

i=1

2Π1

Γ (+ + 1)
λi +

k∑
i=1

2Π2

Γ (+ + 1)
λ′i

+

(
k∑

i=1

2Π1

Γ (+ + 1)
γi +

k∑
i=1

2Π2

Γ (+ + 1)
γ′i

)
∥w∥

+

(
k∑

i=1

2Π1

Γ (+ + 1)
ωi +

k∑
i=1

2Π2

Γ (+ + 1)
ω′
i

)
∥z∥ .

Consequently,

∥ (w, z) ∥W×Z ≤
1

G

[ k∑
i=1

2Π1

Γ(+ + 1)
λi

+

k∑
i=1

2Π2

Γ (+ + 1)
λ′i

]
,

for all t ∈ [0, 1], where G = min{d1, d2}, in which

d1 = 1−

(
k∑

i=1

2Π1

Γ (+ + 1)
γi +

k∑
i=1

2Π2

Γ (+ + 1)
γ′i

)
,

and

d2 = 1−

(
k∑

i=1

2Π1

Γ (+ + 1)
ωi +

k∑
i=1

2Π2

Γ (+ + 1)
ω′
i

)
.

This shows that the set Ψ is bounded. Hence all
the conditions of Lemma 6 are satisfied and conse-
quently the operator O has at least one fixed point,
which corresponds to a solution of the system (1).
This completes the proof. □

In the next result, we establish the existence of
uniqueness solutions to the fractional hybrid sys-
tem (1) by using Banach’s fixed point theorem.

Theorem 2. Assume that (Hj)j=1,2 hold and that

k∑
i=1

πi
Γ (+ + 1)

<
1

4Π1
, i = 1, 2, · · · , k,

k∑
i=1

ϑi
Γ (+ + 1)

<
1

4Π2
, i = 1, 2, · · · , k.

(13)

Then the problem (1) has a unique solution on
[0, 1].

Proof. Define supt∈[0,1] |φi (t, 0, 0)| = Λi < ∞
and supt∈[0,1] |ϕi (t, 0, 0)| = ∇i < ∞, i = 1, 2, ..., k

such that max{℘1, ℘2} ≤, i = 1, 2, ..., k, where
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℘1 =

k∑
i=1

Π1Λi

Γ(+ + 1)

[
1

4
−

k∑
i=1

Π1πi
Γ(+ + 1)

]−1

,

and

℘2 =

k∑
i=1

Π2∇i

Γ(+ + 1)

[
1

4
−

k∑
i=1

Π2ϑi
Γ(+ + 1)

]−1

.

Firstly, we show that OB ⊂ B, where B ={
(w, z) ∈ W× Z : ∥(w, z)∥W×Z ≤

}
. For all (w, z) ∈

B and t ∈ [0, 1] , we have

|φi (t, w (t) , z (t))|
≤ |φi (t, w (t) , z (t))− φi (t, 0, 0)|+ |φi (t, 0, 0)|
≤ πi (|w (t)|+ |z (t)|) + Λi ≤ πi (∥w∥+ ∥z∥) + Λi

≤ πi ∥(w, z)∥+ Λi ≤ πi + Λi, i = 1, 2, ..., k.

Similarly, we have

|ϕi (t, w (t) , z (t))|
≤ |ϕi (t, w (t) , z (t))− ϕi (t, 0, 0)|+ |ϕi (t, 0, 0)|
≤ ϑi (|w (t)|+ |z (t)|) +∇i ≤ ϑi (∥w∥+ ∥z∥) +∇i

≤ ϑi ∥(w, z)∥+∇i ≤ ϑi +∇i, i = 1, 2, ..., k,

Using (3), we can write

|O1 (w, z) (t)| ≤Π1 sup
t∈[0,1]

{
N1(t)

}
≤
∑k

i=1 2Π1πi
Γ (+ + 1)

+

∑k
i=1 2Π1∇i

Γ (+ + 1)
,

which implies that

∥O1(w, z)∥

≤
k∑

i=1

Π1πi
Γ (+ + 1)

+
k∑

i=1

Π1Λi

Γ (+ + 1)

≤
4
.

Also, by (3), we have

∥O2 (w, z) ∥

≤
k∑

i=1

Π2ϑi
Γ (+ + 1)

+
k∑

i=1

Π2∇i

Γ (+ + 1)

≤
4
.

From the definition of ∥ · ∥W×Z, we have

∥O (w, z) ∥W×Z

≤
k∑

i=1

(
Π1πi

Γ (+ + 1)
+

Π1ϑi
Γ (+ + 1)

)

+
k∑

i=1

(
Π2Λi

Γ (+ + 1)
+

Π2∇i

Γ (+ + 1)

)
≤

2
,

which implies that OB ⊂ B. Next, for
(w1, z1) , (w2, z2) ∈ B and for each t ∈ [0, 1], we
have

∣∣O1(w1, z1)(t)− O1(w2, z2)(t)
∣∣

≤ Π1 sup
t∈[0,1]

{ k∑
i=1

∫ t

0

(t− s)+−1

Γ (+)
Υ(s)ds

+ t+−1
k∑

i=1

∫ 1

0

(1− s)+−1

Γ (+)
Υ2(s)ds

}
.

where

Υ2(s) = |φi (s, w1 (s) , z1 (s))− φi (s, w2 (s) , z2 (s))| ,
Υ2(s) = |φi (s, w1 (s) , z1 (s))− φi (s, w2 (s) , z2 (s))| .

From (H1), we can write

∥O1 (w1, z1)− O1 (w2, z2) ∥

≤
k∑

i=1

2Π1πi
Γ (+ + 1)

∥(w1 − w2, z1 − z2)∥W×Z .

Similarly, we obtain

∥O2 (w1, z1)− O2 (w2, z2) ∥

≤
k∑

i=1

2Π2ϑi
Γ (+ + 1)

∥(w1 − w2, z1 − z2)∥W×Z .

Consequently, we obtain

∥O (w1, z1)− O (w2, z2) ∥W×Z

= ∥O1 (w1, z1)− O1 (w2, z2)∥
+ ∥O2 (w1, z1)− O2 (w2, z2)∥

≤
[ k∑

i=1

(
2Π1πi

Γ (+ + 1)
+

2Π2ϑi
Γ (+ + 1)

)]
×
∥∥(w1 − w2, z1 − z2)

∥∥
W×Z

.

Thanks to (13), we conclude that O is a contrac-
tion mapping. Hence, by the Banach fixed point
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theorem, there exists a unique fixed point which
is a solution of system (1). This completes the
proof. □

4. Stability in Ulam-Hyers-Rassias
sense

In the following section, we consider the Ulam’s
type stability of the fractional hybrid system (1).
For t ∈ [0, 1] , we give the following inequalities:



∣∣∣∣RLD [CD [ w1 (t)

ψ1 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

φi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d1,∣∣∣∣RLD [CD [ z1 (t)

ψ2 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

ϕi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d2,

(14)

and

∣∣∣∣RLD [CD [ w1 (t)

ψ1 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

φi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d1u (t) ,∣∣∣∣RLD [CD [ z1 (t)

ψ2 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

ϕi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d2u (t) ,

(15)

where dj , j = 1, 2 are positive reals numbers and
u : [0, 1] → R+, is continuous function.

Definition 4. [40] System (1) is Ulam-Hyers
stable if there exists a real number ρφi,ϕi

=
(ρφi , ρϕi

) > 0, i = 1, 2, ..., k such that for each
d = max (d1, d2) > 0 and for each solution
(w1, z1) ∈ W × Z of the inequality (14) there ex-
ists a solution (w, z) ∈ W × Z of the system (1)
with

|(w1 (t)− w (t) , z1 (t)− z (t))| ≤ ρφi,ϕi
d,

for t ∈ [0, 1] , i = 1, 2, ·, k.

Definition 5. [40] System (1) is Ulam-Hyers-
Rassias stable with respect to u ∈ C ([0, 1] ,R) if
there exists a real number ςφi,ϕi,u = (ςφi,u, ςϕi,u) >
0 such that for each d = max (d1, d2) > 0 and for
each solution (w1, z1) ∈ W × Z of the inequality
(15) there exists a solution (w, z) ∈ W × Z of the
system (1) with

|(w1 (t)− w (t) , z1 (t)− z (t))| ≤ ςφi,ϕi,udu (t) ,

for t ∈ [0, 1] , i = 1, 2, ·, k.

Theorem 3. Assume that (Hj)j=1,2 hold. If

k∑
i=1

πi
Γ (+ + 1)

<
1

Π1
,

k∑
i=1

ϑi
Γ (+ + 1)

<
1

Π2
,

(16)

then the problem (1) is Ulam-Hyers stable.

Proof. Let (w1, z1) ∈ W × Z be a solution of the
inequality (14) and let (w, z) ∈ W×Z be the unique
solution of the system

RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
=

k∑
i=1

φi (t, w (t) , z (t)) ,

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
=

k∑
i=1

ϕi (t, w (t) , z (t)) ,

w (0) = w1 (0) , w (1) = w1 (1) ,

z (0) = z1 (0) , z (1) = z1 (1) .

By Lemma 5, we have

w (t) = ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

and

z (t) = ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

such that

gwi (t) = φi (t, w (t) , z (t)) , i = 1, 2, · · · , k,
hzi (t) = ϕi (t, w (t) , z (t)) , i = 1, 2, · · · , k.

Integrating (14), we obtain∣∣∣∣w1 (t)− ψ1(t, w(t), z(t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣
≤ d1t

+

Γ (+ + 1)
≤ d1

Γ (+ + 1)
,
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and ∣∣∣∣z1 (t)− ψ2(t, w(t), z(t))

[ k∑
i=1

I+hzi (t)

+
b3Γ ()

Γ (+)
t+−1 + b4

]∣∣∣∣
≤ d2t

+

Γ (+ + 1)
≤ d2

Γ (+ + 1)
.

From (Hj)j=1,2, we have

|w1 (t)− w (t) |

≤
∣∣∣∣w1 (t)− ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣
+ |ψ1 (t, w (t) , z (t))|

k∑
i=1

I+ |gw1
i (t)− gwi (t)|

≤ d1
Γ (+ + 1)

+
k∑

i=1

Π1I
+ |gw1

i (t)− gwi (t)| ,

this implies that

|w1 (t)− w (t) |

≤ d1
Γ (+ + 1)

+
k∑

i=1

Π1πi
Γ (+ + 1)

[
|w1 (t)− w (t)|

+ |z1 (t)− z (t)|
]
.

Similarly, we get

|z1 (t)− z (t) |

≤ d2
Γ (+ + 1)

+
k∑

i=1

Π2ϑi
Γ (+ + 1)

[
|w1 (t)− w (t)|

+ |z1 (t)− z (t)|
]
.

Thus,

|(w1(t), z1(t))− (w (t) , z (t)) |

≤

1

Γ (+ + 1)
+

1

Γ (+ + 1)

min {x1, x2}
d := ρφi,ϕi

d,

where

x1 =
1

Π1
−

k∑
i=1

πi
Γ (+ + 1)

,

x2 =
1

Π2
−

k∑
i=1

ϑi
Γ (+ + 1)

.

Hence the system (1) is Ulam-Hyers stable. □

Theorem 4. Assume that (Hj)j=1,2 and (16)

hold. Suppose there exist υ1u > 0, υ2u > 0 such
that

I+u (t) ≤ υ1uu(t), I
+u (t) ≤ υ2uu(t), t ∈ [0, 1] ,

(17)

where u ∈ C([0, 1] ,R+) is nondecreasing. Then
the system (1) is Ulam-Hyers-Rassias stable.

Proof. Let (w1, z1) ∈ W×Z is a solution of the in-
equality (15) and let us assume that (w, z) ∈ W×Z

is a solution of system (1). Thus, we have

w (t) =ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

z (t) =ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

From inequality (15), we have

∣∣∣∣w1 (t) − ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣ ≤ d1I
+u(t),

and ∣∣∣∣z1 (t) − ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b3Γ ()

Γ (+)
t+−1 + b4

]∣∣∣∣ ≤ d2I
+u(t).

Now, using (Hj)j=1,2 and (17), we get

|w1 (t)− w (t) |

≤ d1υ1uu(t) +
k∑

i=1

Π1πi
Γ (+ + 1)

(|w1 (t)− w (t)|

+ |z1 (t)− z (t)|),
and

|z1 (t)− z (t) |

≤ d2υ2uu(t) +
k∑

i=1

Π2ϑi
Γ (+ + 1)

(|w1 (t)− w (t)|

+ |z1 (t)− z (t)|).
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Consequently,

|(w1(t), z1(t))− (w (t) , z (t)) | ≤ υ1u + υ2u
min {k1,k2}

du(t)

:= ςφi,ϕi,udu(t),

where

k1 = 1−
k∑

i=1

Π1πi
Γ (+ + 1)

,

and

k2 = 1−
k∑

i=1

Π2ϑi
Γ (+ + 1)

.

Hence the system (1) is stable in Ulam-Hyers-
Rassias sense. □

5. Application

To illustrate our main results, we treat the follow-
ing example.

Example 1. Consider the following fractional
hybrid system:



RLD
4
5

[
CD

2
3

[
w (t)

sinw(t)+1
15 + 1 + 1

13e
−t2 cos z (t)

]]

=
cos (2πw (t))

60π
+

|z (t)|
30 (1 + |z (t)|)

+ arctan
(
t2 + 2t+ 1

)
+

|w (t)|
32 (et + 3

√
π) (1 + |w (t)|)

+
sin2 z (t)

16 (5t2 + 2 (1 + 3
√
π))

+
ln (1 + t)

3
,

RLD
5
6

CD 3
4

 z (t)

3
7 t cosw (t) +

1

7 + z (t)




=
cos (w (t) + z (t))

19 (ln (1 + t) + 2
√
π)

+

(
1 + 2e1+t

)
2

+
|w (t)|

3 (πt+ 3)2 (1 + |w (t)|)
+

tan−1 z (t)

27
+ sinh

(
1 + 13et

)
,

w(0) = w(1) = 0, z(0) = z(1) = 0,

(18)
and the following inequalities

RLD
4
5

[
CD

2
3

[
w (t)

ψ1 (t, w (t) , z (t))

]]
−

2∑
i=1

φi (t, w (t) , z (t)) ≤ d1,

RLD
5
6

[
CD

3
4

[
z (t)

ψ2 (t, w (t) , z (t))

]]
−

2∑
i=1

ϕi (t, w (t) , z (t)) ≤ d2,

and 

RLD
4
5

[
CD

2
3

[
w (t)

ψ1 (t, w (t) , z (t))

]]
−

2∑
i=1

φi (t, w (t) , z (t)) ≤ d1u (t) ,

RLD
5
6

[
CD

3
4

[
z (t)

ψ2 (t, w (t) , z (t))

]]
−

2∑
i=1

ϕi (t, w (t) , z (t)) ≤ d2u (t) ,

where

φ1 (t, w, z) =
cos (2πw)

60π
+

|z|
30 (1 + |z|)

+ arctan
(
t2 + 2t+ 1

)
,

φ2 (t, w, z) =
|w|

32 (et + 3
√
π) (1 + |w|)

+
ln (1 + t)

3

+
sin2 z

16 (5t2 + 2 (1 + 3
√
π))

,

ϕ1 (t, w, z) =
cos (w + z)

19 (ln (1 + t) + 2
√
π)

+

(
1 + 2e1+t

)
2

,

ϕ2 (t, w, z) =
|w|

3 (πt+ 3)2 (1 + |w|)
+

tan−1 z

27

+ sinh
(
1 + 13et

)
,

and

ψ1 (t, w, z) =
1

5
(sinw + 1) + 1 +

1

13
e−t2 cos z,

ψ2 (t, w, z) =
2

7
t cosw +

1

7 + z
.

For (wi, zi) ∈ R2, i = 1, 2 and t ∈ [0, 1] , we have

|φ1 (t, w1, z1)− φ1 (t, w2, z2) |

≤ 1

30
(|w1 − w2|+ |z1 − z2|) ,

|φ2 (t, w1, z1)− φ2 (t, w2, z2) |

≤ 1

32 (1 + 3
√
π)

(|w1 − w2|+ |z1 − z2|) ,

|ϕ2 (t, w1, z1)− ϕ2 (t, w2, z2) |

≤ 1

38
√
π
(|w1 − w2|+ |z1 − z2|) ,

|ϕ1 (t, w1, z1)− ϕ2 (t, w2, z2) |

≤ 1

27
(|w1 − w2|+ |z1 − z2|) ,

and

|ψ1 (t, w, z)| ≤
27

65
, |ψ2 (t, w, z)| ≤

3

7
.

So, we take π1 = 1
30 , π2 = 1

32 , ϑ1 =
1

32(1+3
√
π)
, ϑ2 = 1

38
√
π
, Π1 = 27

65 and Π2 = 3
7 .
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Hence, we obtain

2∑
i=1

πi
Γ (+ + 1)

= 4.972 2×10−2 <
1

4Π1
= 0.103 85,

and
2∑

i=1

ϑi
Γ (+ + 1)

= 1.401 9×10−2 <
1

4Π2
= 0.107 14.

By Theorem 1, we conclude that the system (18)
has a unique solution. And from Theorem 3 we
deduce that (18) is Ulam-Hyers stable with

|(w2 (t) , z2 (t))− (w1 (t) , z1 (t))| ≤ 0.365 68d,

for t ∈ [0, 1] , d > 0. Let u (t) = t
√
5

2 , then

I
4
5
+ 2

3u1 (t) = I
4
5
+ 2

3 t
√

5
2 ≤

Γ
(√

5+2
2

)
Γ
(√

5
2
+ 37

15

) t√5
2 = υ1uu (t),

and

I
5
6
+ 3

4u2 (t) = I
5
6
+ 3

4 t
√

5
2 ≤

Γ
(√

5+2
2

)
Γ
(√

5
2
+ 31

12

) t√5
2 = υ2uu (t).

Thus, the condition (17) of Theorem 4 is satis-

fied with u (t) = t
√
5

2 and υ1u = 0.289 01, υ2u =
0.252 74. Hence from Theorem 4, the system (18)
is Ulam-Hyers-Rassias stable with

|(w1 (t) , z1 (t))− (w (t) , z (t))| ≤ 0.948 04dt
√

5
2 ,

for t ∈ [0, 1] , d > 0.

Remark 1. One can easily figure out that prob-
lem (18) is not commented by any of the relevant
existing results in the literature.
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