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 In this article, we demonstrated the study of the time-fractional nonlinear Sharma-

Tasso-Olever (STO) equation with different initial conditions. The novel 

technique, which is the mixture of the q-homotopy analysis method and the new 

integral transform known as Elzaki transform called, q-homotopy analysis Elzaki 

transform method (q-HAETM) implemented to find the adequate approximated 

solution of the considered problems. The wave solutions of the STO equation play 

a vital role in the nonlinear wave model for coastal and harbor designs. The 

demonstration of the considered scheme is done by carrying out some examples 

of time-fractional STO equations with different initial approximations. q-HAETM 

offers us to modulate the range of convergence of the series solution using ℏ, called 

the auxiliary parameter or convergence control parameter. By performing 

appropriate numerical simulations, the effectiveness and reliability of the 

considered technique are validated. The implementation of the new integral 

transform called the Elzaki transform along with the reliable analytical technique 

called the q-homotopy analysis method to examine the time-fractional nonlinear 

STO equation displays the novelty of the presented work. The obtained findings 

show that the proposed method is very gratifying and examines the complex 

nonlinear challenges that arise in science and innovation. 
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1. Introduction 

Fractional calculus (FC) is an incipient tool in the field 

of mathematics with strong execution in the diverse 

areas of science and engineering. FC is defined as the 

generalization of the classical calculus where we study 

the integral and differential operators of fractional 

order, even can be lengthened to a complex set. In the 

past few decades, many mathematical minds have 

strengthened this concept and designed various 

fractional differential and integral operators [1, 2]. The 

progressive functioning of the demonstration of the 

classical derivatives is done using the nonlocality of the 

fractional operators. Fractional operators are 

undeniably used to define sophisticated memory and a 

range of objects that may be studied using normal 

mathematical methods such as classical differential 

calculus. Latterly, fractional operators with nonlocality 

have been demonstrated and foreseen in the absence of 

a singular kernel. However, we are still at the initial 

stage of implementing the concept of FC in various 

areas of research. Nowadays, FC is a very promising 

tool due to its larger applications in the dynamics of 

complex nonlinear phenomena. 

The idea of fractional calculus has its origin in the 

correspondence between L’hospital and Leibniz. 

Additionally, it was shown that FC is much more 

suitable to handle most complex real-world issues than 

classical calculus. Fractional calculus's richness in 

applied research has grown over time. Several studies 

have now proved its potential to deal with a variety of 

issues., particularly in the fields of science domains like 

robotics [3], viscoelasticity [4], image processing [5], 

http://www.ams.org/msc/msc2010.html
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biological population models [6], and several more [7-

27]. Compare to the integer-order differential 

equations, fractional counterparts are much more 

reserved to get adequate exact solutions for highly 

nonlinear problems. For this purpose, many numerical 

and analytical techniques are developed to solve this 

category of problems. 

Along with the development of the classical theory in 

physics, the concept of fractional calculus and its 

operators has dragged much attention due to its 

importance in applied physics such as plasma physics, 

chemical kinematics, fluid mechanics,  optical fibres, 

probability, statistics, etc. Although it has a long 

history, in recent decades, scientists have been attracted 

to fractional differential equations (FDE) due to its 

extensive applications in wide areas of science and 

engineering upon which few systems which are 

inherently nonlinear in nature are much studied by 

physicists, mathematicians, engineers, meteorologists, 

etc. 

Nonlinear fractional differential equations (NLFDEs) 

which describe the change in the variables over time 

was difficult to solve and unpredictable and are most 

commonly approximated by linear equations. The basic 

common approach to solve NLFDEs is either to change 

the variables so that, the solution for the equation will 

become simpler like the linear equation or transform 

the problem that can result in a linear equation. 

Sometimes, the problem will be converted into one or 

more ordinary differential equation(s) which may or 

may not be solvable further. For example, weather 

forecasting is one of the non-linear behaviour systems 

in which, some parameters are complete of random 

behaviour, where simple changes in one part of the 

system produce complex results throughout the system. 

Resulting in difficulty with accurate long-term weather 

forecasts even with current advanced technology. 

Therefore, the investigation of the exact solutions for 

NLFDEs plays an important role in the study of a 

nonlinear system of equations such as Navier–Stokes 

equations of fluid dynamics, Nonlinear optics, 

Nonlinear Schrödinger equation, Boltzmann equation, 

General relativity, Van der Pol oscillator, etc. 

The inquisition of soliton results of complex nonlinear 

evolution equations has great significance in the 

examination of the nonlinear field. These solutions are 

very informative towards the essential nonlinear 

science aspects. In this article, we are investigating the 

nonlinear time-fractional STO equation [28] given as 

follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1, 
(1) 

where 𝑎 is the random real constant, 𝑢 is the dependent 

variable, 𝑡 and 𝑥 are the temporal and spatial variables 

respectively. The STO equation is similar to the KdV 

equation which can describe evolutionary physics 

phenomena and interaction with nonlinear waves, like 

continuum mechanics, fluid dynamics, solitons and 

turbulence, aerodynamics, etc. The STO equation 

incorporates the double nonlinear term and linear 

dispersive term. The solution of the STO equation has 

been acquired by numerous methods. The Backlund 

transformation and Hirota’s direct method have been 

implemented to get the fusion and fission of the solitary 

wave solutions. It’s been revealed that the fission of 

solutions is obtained for 𝑎 < 0 and when 𝑎 > 0 waves 

depict only the fusion of solutions [29]. The potential 

symmetries and the generalized symmetries of the STO 

equation are studied in [30, 31]. Furthermore, to 

examine the soliton solutions of nonlinear PDEs are 

analyzed by numerous effective methods so far, like 

Hirota’s method [32], Scattering transformation [33], 

the First integral method [34, 35], Kudryashov method 

[36], Extended homoclinic test function method [37,  

38], Functional variable method [39], Ansatz method 

and simplest equation approach [40-42], and others. 

Various researchers across the globe have given many 

methods and approaches to solve the nonlinear 

differential equations among which, Sharma–Tasso–

Olver equation which is popularly known as the STO 

equation has not been much investigated. With this 

motivation, this work highlights the new generalized 

novel approach for the nonlinear time-fractional 

Sharma-Tasso-Olever equation using the Elzaki 

transform. 

To solve linear and nonlinear problems, a semi-

analytical tool, known as the homotopy analysis 

method (HAM) is a very efficient scheme 

recommended and demonstrated by Liao [43-45]. 

Further, for solving nonlinear problems, the q-

homotopy analysis method (q-HAM) as a furnished 

concept of HAM was introduced by El-Tavil and 

Hussain [46, 47]. Latterly, the combination of the semi-

analytical schemes with the Laplace transform is hired 

to scrutinize nonlinear equations such as Abel integral 

equation [48], nonlinear fractional shock wave 

equation [49], nonlinear boundary value problem on the 

semi-infinite domain [50], two-dimensional Burger’s 

equation [51], class of nonlinear differential equations 

[52], nonlinear fractional Zakharov-Kuznetsov 

equation [53], fractional Klein-Gordon-Schrödinger 

equations [54], fractional coupled Burger’s equations 

[55],  and so on. 

The study of the nonlinear STO equation using various 

numerical and analytical techniques is covered in a 

large body of literature. The innovative aspect of the 

current study is the investigation of the nonlinear time-

fractional Sharma-Tasso-Olever equation utilizing a 

powerful analytical tool known as the q-homotopy 

analysis Elzaki transform method. The primary goal of 

this work is to use the new integral transform known as 

the Elzaki transform to investigate the fractional 

behaviour of the problem under consideration. The 

presented work has not been performed before using 

the considered algorithm. 

In the present work, we investigate the reliability and 

effectiveness of the q-homotopy analysis Elzaki 

transform method (q-HAETM) [56] for solving the 
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time-fractional nonlinear STO equation. The 

considered technique is the amalgamation of the Elzaki 

transform (ET) scheme and the q-homotopy analysis 

method (q-HAM). The Elzaki transform is the new 

integral transform obtained by the classical Fourier 

integral, which was presented by Tarig Elzaki [57] to 

alleviate the procedure of addressing the solutions for 

ordinary and partial differential equations. The 

combination of an Elzaki transform with the 

decomposition algorithm is applied to solve the 

numerous nonlinear partial differential equations [58], 

ADM Elzaki and VIM Elzaki [59], homotopy 

perturbation Elzaki transform method [60], the 

nonlinear regularized long-wave models are studied 

with the help of Elzaki transform in [61], and so on. The 

benefits of the q-HAETM include not requiring 

discretization, linearization, perturbations, or any rigid 

assumptions, significantly reducing the complexity of 

complex computations, promising a wide convergence 

region, offering a non-local effect, and not requiring 

complex polynomials, integrations, or physical 

parameter calculations. To limit the convergence zone 

and frequent convergence of the obtained solution to a 

minimum tolerable region, the studied approach is also 

natured by auxiliary and homotopy parameters. It 

produces more digestible outcomes for the identical 

grid point and series solution sequence. Additionally, 

the technology under consideration preserves greater 

accuracy despite requiring less time, making it 

incredibly efficient and trustworthy. The feasibility and 

optimism of the considered strategy are demonstrated 

by its capacity to provide highly precise precision, a 

large convergence range, and a straightforward solution 

technique. 

The rest of the work is organized as follows: Section 2 

covers prefaces of the fractional integral in Reimann-

Liouville sense, ET, and Caputo fractional derivative. 

The fundamental notion of the investigated 

methodology is explained in Section 3, and the results 

for the time-fractional STO equation are discussed in 

Section 4. Plots are used to explain the responsiveness 

and pattern of the acquired fractional-order findings. 

The numerical simulations of the results obtained using 

q-HAETM are cited in comparison with ADM, HPM, 

and OHAM. The final section contains comments on 

the findings obtained. 

 

2. Preliminaries 

Here we present some basic notions of Fractional 

operators and the Elzaki transform: 

Definition 1. The fractional Riemann-Liouville 

integral of a function 𝑓(𝑡) ∈ 𝐶𝜇(𝜇 ≥ −1), is presented 

[1] by 

𝐽𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝜗)𝛼−1𝑓(𝜗)𝑑𝜗
𝑡

0
, 

𝐽0𝑓(𝑡) = 𝑓(𝑡). 

(2) 

(3) 

 

 

Definition 2. The derivative with fractional order 𝛼 

of 𝑓 ∈ 𝐶−1
𝑛  in the Caputo sense [1] is: 

𝐷𝑡
𝛼𝑓(𝑡)

=

{
 
 

 
 𝑑

𝑛𝑓(𝑡)

𝑑𝑡𝑛
,                                                         𝛼 = 𝑛 ∈ ℕ,                     

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜗)𝑛−𝛼−1𝑓(𝑛)(𝜗)𝑑𝜗,   𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ ℕ.
𝑡

0

 
  (4) 

 

Definition 3. The Elzaki transform (ET) of a function 

𝑓(𝑡) is demarcated as follows [57]: 

𝐸{𝑓(𝑡)} = 𝑓(𝑠) = 𝑠 ∫ 𝑒−
𝑡

𝑠
∞

0
𝑓(𝑡)𝑑𝑡.  

The ET of some basic functions are given below [57] 

𝐸{𝑡𝑛} = 𝑛! 𝑠𝑛+2 , where 𝑛 = 0,1,2,3, … 

𝐸{𝑒𝑎𝑡} =
𝑠2

1−𝑎𝑠
 , 

𝐸{sin(𝑎𝑡)} =
𝑎𝑠3

1+𝑎2𝑠2
 , 

𝐸{cos(𝑎𝑡)} =
𝑎𝑠2

1+𝑎2𝑠2
 , 

𝐸{sinh(𝑎𝑡)} =
𝑎𝑠3

1−𝑎2𝑠2
 , 

𝐸{cosh(𝑎𝑡)} =
𝑎𝑠2

1−𝑎2𝑠2
 . 

 

 

Definition 4. The ET of a derivative in Eq. (4) is 

presented as [60] 

𝐸[𝐷𝑡
𝛼𝑓(𝑡)] =

�̃�(𝑠)

𝑠𝛼
−∑ 𝑠2−𝛼+𝑟𝑛−1

𝑟=0 𝑓(𝑟)(0), 

(𝑛 − 1 < 𝛼 ≤ 𝑛), 
(5) 

where 𝑓(𝑠) denote the ET of the function 𝑓(𝑡). 
 

3. The basic concept of the q-homotopy analysis 

Elzaki transform method (q-HAETM) 

Consider the following nonlinear fractional PDE 

involving linear (𝑁) and nonlinear (𝑅) operators to 

illustrate the basic principle of the considered method: 

𝐷𝑡
𝛼  𝒰(𝑥, 𝑡) + 𝑅 𝒰(𝑥, 𝑡) + 𝑁 𝒰(𝑥, 𝑡) =

𝑓(𝑥, 𝑡),    0 < 𝛼 ≤ 1, 
(6) 

where 𝐷𝑡
𝛼𝒰(𝑥, 𝑡)is the Liouville-Caputo fractional 

derivative of  𝒰(𝑥, 𝑡), 𝑓(𝑥, 𝑡) is the source term. 

Currently, hiring the ET on Eq. (6) leads to 
1

𝑠𝛼
𝐸[𝒰(𝑥, 𝑡)] − ∑ 𝑠2−𝛼+𝑘𝒰(𝑘)(𝑥, 0)𝑛−1

𝑘=0 +

𝐸[𝑅𝒰(𝑥, 𝑡)] + 𝐸[𝑁𝒰(𝑥, 𝑡)] = 𝐸[𝑓(𝑥, 𝑡)], 
(7) 

By reducing Eq. (7), we get 

𝐸[𝒰(𝑥, 𝑡)] − 𝑠𝛼 ∑ 𝑠2−𝛼+𝑘𝒰𝑘(𝑥, 0)𝑛−1
𝑘=0 +

𝑠𝛼{𝐸[𝑅𝒰(𝑥, 𝑡)] + 𝐸[𝑁𝒰(𝑥, 𝑡)] −

𝐸[𝑓(𝑥, 𝑡)]} = 0. 

(8) 
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The nonlinear operator N is defined under the 

homotopy analysis approach as follows 

𝑁[𝜑(𝑥, 𝑡; 𝑞)]

= 𝐸[𝜑(𝑥, 𝑡; 𝑞)]

− 𝑠𝛼∑𝑠𝛼−𝑘−1𝜑(𝑘)(𝑥, 𝑡; 𝑞)(0+)

𝑛−1

𝑘=0

 

    + 𝑠𝛼{𝐸[𝑅𝜑(𝑥, 𝑡; 𝑞)] + 𝐸[𝑁𝜑(𝑥, 𝑡; 𝑞)] −

         𝐸[𝑓(𝑥, 𝑡)]}, 

(9) 

where 𝐸 is the Elzaki transform and 𝜑(𝑥, 𝑡; 𝑞) is a real 

function of 𝑥, 𝑡, and 𝑞(embedding parameter) ∈

[0,
1

𝓃
] (𝑛 ≥ 1). 

The homotopy is defined as: 

(1 − 𝑛𝑞)𝐸[𝜑(𝑥, 𝑡; 𝑞) − 𝒰0(𝑥, 𝑡)] =

ℏ𝑞𝐻(𝑥, 𝑡)𝑁[𝜑(𝑥, 𝑡; 𝑞)], 
(10) 

where  𝒰0(𝑥, 𝑡) is an initial guess of 𝒰(𝑥, 𝑡),ℏ ≠ 0 is 

an auxiliary parameter. For 𝑞 = 0 and 𝑞 = 1/𝑛, 

respectively we have: 

𝜑(𝑥, 𝑡; 0) = 𝒰0(𝑥, 𝑡),  

𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝒰(𝑥, 𝑡). 

(11) 

As a result, by changing q from 0 to 
1

𝑛
, the solution 

𝜑(𝑥, 𝑡; 𝑞) converges from 𝒰0(𝑥, 𝑡) to 𝒰(𝑥, 𝑡). The 

function 𝜑(𝑥, 𝑡; 𝑞) can then be enlarged with the 

utilization of the Taylor theorem across 𝑞. 

𝜑(𝑥, 𝑡; 𝑞) = 𝒰0(𝑥, 𝑡) + ∑ 𝒰𝑚(𝑥, 𝑡)𝑞
𝑚∞

𝑚=1 , (12) 

with 

𝒰𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0. (13) 

The series (12) joins at 𝑞 =
1

𝑛
, resulting in the 

fundamental nonlinear equation, and it's one of the 

solutions of the type, by selecting the𝑛 and ℏ (auxiliary 

parameter) the initial guess 𝒰0(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) 
properly. 

𝒰(𝑥, 𝑡) = 𝒰0(𝑥, 𝑡) + ∑ 𝒰𝑚(𝑥, 𝑡)(
1

𝓃
)
𝑚∞

𝑚=1 . (14) 

Then divide by 𝑚! by differentiating Eq. (10) 𝑚 times 

with respect to 𝑞. Finally, we derive the deformation 

equation of order 𝑚 as follows for q=0. 

𝐸[𝒰𝑚(𝑥, 𝑡) − 𝐾𝑚𝒰𝑚−1(𝑥, 𝑡)] = 

ℏ𝐻(𝑥, 𝑡)ℜ𝑚(�⃗� 𝑚−1). 

(15) 

and the vectors considered in the form as 

�⃗� 𝑚 = {𝒰0(𝑥, 𝑡), 𝒰1(𝑥, 𝑡), … ,𝒰𝑚(𝑥, 𝑡)}. (16) 

 

Eq. (15) is the recursive equation that may be 

represented by the effect of the inverse Elzaki 

transform 

𝒰𝑚(𝑥, 𝑡) = 𝐾𝑚𝒰𝑚−1(𝑥, 𝑡) +

ℏ𝐸−1[𝐻(𝑥, 𝑡)ℜ𝑚(�⃗� 𝑚−1)], 
(17) 

where 

ℜ𝑚(�⃗� 𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝜑(𝑥,𝑡;𝑞)]

𝜕𝑞𝑚−1
|𝑞=0. (18) 

and 

𝐾𝑚 =  {
0,   𝑚 ≤ 1,
𝑛,   𝑚 > 1.

 (19) 

Finally, we find the component-wise q-HAETM series 

solution using Eq. (17). 

 

4. Solution for nonlinear Sharma-Tasso-Olever 

equation of fractional order 

The investigation of the following examples witnesses 

the efficacy and resolution of the contemplated scheme. 

4.1. Example 1 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0. 
(20) 

with the starting solution 

𝑢(𝑥, 0) =
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
. (21) 

Introduce ET on Eq. (20) along with the starting 

solution in (21), which leads to 

𝐸[𝑢(𝑥, 𝑡)] − 𝑠2 {
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
} +

𝑠𝛼𝐸{3𝑎𝑢𝑥
2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥} = 0. 

(22) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] −

𝑠2 {
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
} + 𝑠𝛼𝐸 {3𝑎

𝜕𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑2(𝑥, 𝑡; 𝑞)
𝜕𝜑(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑(𝑥, 𝑡; 𝑞)
𝜕2𝜑(𝑥,𝑡;𝑞)

𝜕𝑥2
+ 𝑎

𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(23) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)] =

ℏℜ𝑚[�⃗� 𝑚−1], 
(24) 

where 
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(a) 

 

 

(b) 

 

 
(c) 

Figure 1. 3D plots of (a) q-HAETM solution (b) Exact 

solution (c) Absolute error= |𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑝𝑝.| at 𝛼 = 1, 𝑛 =

1, 𝑎 = 1, 𝑘 = 1,𝑤 = 0.5, and ℏ = −1. 

 

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] − (1 −

𝐾𝑚

𝑛
) 𝑠2 {

2𝑘(tanh(𝑘𝑥)+𝑤)

w tanh(𝑘𝑥)+1
} +

𝑠𝛼𝐸 {3𝑎 ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥
+𝑚−1

𝑖=0

3𝑎 ∑ ∑ 𝑢𝑖𝑢𝑖−𝑗
𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0

𝑚−1
𝑖=0 +

(25) 

3𝑎 ∑ 𝑢𝑖
𝑚−1
𝑖=0

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
+ 𝑎

𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

Apply inverse ET on Eq. (24), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡) +

ℏ𝐸−1{ℜ𝑚[�⃗� 𝑚−1]}, 
(26) 

From Eq. (26), we arrive at: 

𝑢0(𝑥, 𝑡) =
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
, 

𝑢1(𝑥, 𝑡) =
8𝑎𝑘4(𝑤2−1)ℏ𝑡𝛼

𝛤 (𝛼+1)(𝑤 sinh (𝑘𝑥)+cosh (𝑘𝑥))2
, 

𝑢2(𝑥, 𝑡) =
8𝑎𝑘4(𝑤2−1)ℏ(𝑛+ℏ)𝑡𝛼

𝛤(𝛼+1)(w sinh(𝑘𝑥)+cosh(𝑘𝑥))2
  

             +
8𝑎2𝑘7(𝑤2−1)ℏ2𝑡2𝛼sech6(𝑘𝑥)(4(𝑤3+𝑤) cosh(4𝑘𝑥))

𝛤(𝛼+1)𝛤(2𝛼+1)(w tanh(𝑘𝑥)+1)6
  

              −
8𝑎2𝑘7(𝑤2−1)ℏ2𝑡2𝛼sech6(𝑘𝑥)16𝑤(𝑤2−1) cosh(2𝑘𝑥)

𝛤(𝛼+1)𝛤(2𝛼+1)(𝑤 tanh(𝑘𝑥)+1)6
 

−
2sinh (2𝑘𝑥)((𝑤4+6𝑤2+1)cosh (2𝑘𝑥)−4𝑤4+4)

𝛤 (𝛼+1)𝛤 (2𝛼+1)(𝑤 tanh (𝑘𝑥)+1)6
, 

⋮ 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (20) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (27) 

By taking 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the attained 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝓃
)
𝑚

𝑁
𝑚=1 , will end up with the 

exact solution 𝑢(𝑥, 𝑡) =
2𝑘(tanh (𝑘(𝑥−4𝑎𝑘2𝑡))+𝑤)

𝑤 tanh (𝑘(𝑥−4𝑎𝑘2𝑡))+1
 which 

is of the Sharma-Tasso-Olever equation as 𝑁 → ∞. 

 

 

Figure 2. 𝑢(𝑥, 𝑡) versus 𝑡 for contemplated, Ex. 1. when 

ℏ = −1, 𝑥 = 5, 𝑎 = 1, 𝑘 = 0.1,𝑤 = 0.5, and 𝑛 = 1 for 

distinct 𝛼. 

Table 1. Absolute errors of ADM, HPM, OHAM [63], and 

the q-HAETM for Ex. 1 at 𝜶 = 𝟏, 𝒏 = 𝟏, 𝒌 = 𝟏, 𝒂 = 𝟏, ℏ =
−𝟏,𝒘 = 𝟎. 𝟓 and 𝒕 = 𝟎. 𝟎𝟏. 

    x ADM HPM OHAM q-HAETM 

2 5.3799× 10−3 5.3799 × 10−3 4.6088 × 10−3 3.8991 × 10−3 

3 2.4002× 10−3 2.4002 × 10−3 6.4466 × 10−4 5.3356 × 10−4 

4 9.4208× 10−4 9.4208 × 10−4 8.7636 × 10−5 7.2319 × 10−5 

5 3.5464× 10−4 3.5464 × 10−4 1.1867 × 10−5 9.7893 × 10−6 

6 1.3156× 10−4 1.3156 × 10−4 1.6062 × 10−6 1.3248 × 10−6 

7 4.8547× 10−5 4.8547 × 10−5 2.1737 × 10−7 1.7930 × 10−7 

8 1.7879× 10−5 1.7879 × 10−5 2.9419 × 10−8 2.4266 × 10−8 

9 6.5802× 10−6 6.5802 × 10−6 3.9814× 10−9 3.2840 × 10−9 

10 2.4211× 10−6 2.4211 × 10−6 5.3883 × 10−10 4.4445 × 10−10 
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             (i) 

 

 

           (ii) 

Figure 3. ℏ-curve for the acquired solution 𝑦(𝑥, 𝑡) versus ℏ 

for considered Ex. 1 when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when 

𝑎 = 1, 𝑘 = 0.1,𝑤 = 0.5, 𝑡 = 0.001, 𝑥 = 5 for distinct 𝛼. 

 

Table 2. Absolute errors of ADM, HPM, OHAM [63], and 

the q-HAETM for Ex. 1 at 𝜶 = 𝟏, 𝒏 = 𝟏, 𝒌 = 𝟏, 𝒂 = 𝟏, ℏ =
−𝟏,𝒘 = 𝟎. 𝟓 and 𝒕 = 𝟎. 𝟎𝟎𝟏. 

    x ADM HPM OHAM q-HAETM 

2 7.2096 × 10−4 7.2096 × 10−4 4.6795 × 10−4 3.8602 × 10−4 

3 5.3361 × 10−4 5.3361 × 10−4 6.5443 × 10−5 5.2797 × 10−5 

4 2.3942 × 10−4 2.3942 × 10−4 8.8962 × 10−6 7.1556 × 10−6 

5 9.4126 × 10−5 9.4126 × 10−5 1.2046 × 10−6 9.6860 × 10−7 

6 3.5453 × 10−5 3.5453 × 10−5 1.6305 × 10−7 1.3109 × 10−7 

7 1.3154 × 10−5 1.3154 × 10−5 2.2066 × 10−8 1.7741 × 10−8 

8 4.8545 × 10−6 4.8545 × 10−6 2.9864 × 10−9 2.4010 × 10−9 

9 1.7879 × 10−6 1.7879 × 10−6 4.0416 × 10−10 3.2494 × 10−10 

10 6.5802 × 10−7 6.5802 × 10−7 5.4698 × 10−11 4.3975 × 10−11 

 

4.2. Example 2 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0, 
(28) 

with initial conditions 

𝑢(𝑥, 0) = −√2√B0 tan (
√B0𝑥

√2
). (29) 

Introduce ET on Eq. (28) along with the starting 

solution in (29), which leads to 

𝐸[𝑢(𝑥, 𝑡)] + 𝑠2 {√2√𝐵0 tan (
√B0𝑥

√2
)} +

𝑠𝛼𝐸{3𝑎𝑢𝑥
2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥} = 0}. 

(30) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] +

𝑠2 {√2√B0 tan (
√B0𝑥

√2
)} +

𝑠𝛼𝐸 {3𝑎
𝜕𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥
+ 3𝑎𝜑2(𝑥, 𝑡; 𝑞)

𝜕𝜑(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑(𝑥, 𝑡; 𝑞)
𝜕2𝜑(𝑥,𝑡;𝑞)

𝜕𝑥2
+ 𝑎

𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(31) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)]

= ℏℜ𝑚[�⃗� 𝑚−1], 
(32) 

where 

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] + (1 −

                         
𝐾𝑚

𝑛
) 𝑠2 {√2√B0 tan (

√B0𝑥

√2
)} +

                          𝑠𝛼𝐸 {3𝑎 ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥
+𝑚−1

𝑖=0

                           3𝑎 ∑ ∑ 𝑢𝑖𝑢𝑖−𝑗
𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0

𝑚−1
𝑖=0 +

                           3𝑎 ∑ 𝑢𝑖
𝑚−1
𝑖=0

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
+

                           𝑎
𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

(33) 

Apply inverse ET on Eq. (32), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢(𝑥, 𝑡) + ℏ𝐸
−1{ℜ𝑚[�⃗� 𝑚−1]}. (34) 

From Eq. (34), we arrive at: 

𝑢0(𝑥, 𝑡) = −√2√B0 tan (
√B0𝑥

√2
), 

𝑢1(𝑥, 𝑡) = −
2𝑎B0

2ℏ𝑡𝛼sec2(
√B0𝑥

√2
)

𝛤 (𝛼+1)
, 

𝑢2(𝑥, 𝑡) = −
2𝑎B0

2ℏ(𝑛+ℏ)𝑡𝛼sec2(
√B0𝑥

√2
)

𝛤(𝛼+1)
  

−
𝑎2B0

7 2⁄ ℏ2𝑡2𝛼sec6(
√B0𝑥

√2
)(√2𝛤(𝛼+1)(8 sin(√2√B0𝑥)+sin(2√2𝑥)))

2𝛤(2𝛼+1)
  

+
𝑎2B0

7 2⁄ ℏ2𝑡2𝛼sec6(
√B0𝑥

√2
)√2𝛤(𝛼+1)24𝑎B0

3 2⁄ ℏ𝑡𝛼

2 𝛤(2𝛼+1)
, 

⋮ 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (28) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (35) 

If we set 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the secure 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑁
𝑚=1 , converges to exact 

solution 𝑢(𝑥, 𝑡) = −√2B0 tan (
1

2
√2𝐵0 (𝑥 −

𝜆𝑡𝛼

𝛤(𝛼+1)
)) 

of the integer-order Sharma-Tasso-Olever equation as 

𝑁 → ∞. 
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(a) 

 

(b) 

 

(c) 

Figure 4. Surfaces of (a) q-HAETM solution (b) Exact 

solution (c) Absolute error= |𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑝𝑝.| at ℏ =

−1,𝐵0 = 1, 𝜆 = 2, 𝑎 = 1, 𝑛 = 1, and 𝛼 = 1. 

 

 
Figure 5. 𝑢(𝑥, 𝑡) versus 𝑡 for Ex. 2 at ℏ = −1, 𝑥 = 5, B0 =

1, 𝜆 = 2, 𝑎 = 1, and 𝑛 = 1 for distinct 𝛼. 

 

 
           (i) 

 

 
           (ii) 

Figure 6. A plot of approximate solution 𝑢(𝑥, 𝑡) with 

respect to ℏ for Ex. 2 when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when 

𝑥 = 5, B0 = 1, 𝜆 = 2, 𝑎 = 1, and 𝑡 = 0.001 for distinct 𝛼. 

 

Table 3. Numerical simulations for Ex. 2 at 𝑛 = 1, 𝛼 =
1, ℏ = −1, B0 = 1, 𝑎 = 1, 𝜆 = 2 for various values of 𝑥 and 

at 𝑡 = 0.001, 𝑡 = 0.01. 
𝑡 𝑥 𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 

 

0.001 

 

0.1 3.0758 × 10−7 1.5406 × 10−5 7.9499 × 10−4 

0.2 6.3401 × 10−7 3.1368 × 10−5 1.5953 × 10−3 

0.3 1.0070 × 10−6 4.9479 × 10−5 2.4768 × 10−3 

0.4 1.4581 × 10−6 7.1155 × 10−5 3.4833 × 10−3 

0.5 2.0307 × 10−6 9.8300 × 10−5 4.6578 × 10−3 

0.01 

0.1 3.4407 × 10−5 6.1324 × 10−4 1.0980 × 10−2 

0.2 6.8106 × 10−5 1.1773 × 10−3 2.1147 × 10−2 

0.3 1.0657 × 10−4 1.8089 × 10−3 3.1485 × 10−2 

0.4 1.5292 × 10−4 2.5468 × 10−3 4.1785 × 10−2 

0.5 2.1137 × 10−4 3.4366 × 10−3 5.1021 × 10−2 

 

4.3. Example 3 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑎𝑢3𝑥 +

3

2
𝑎𝑢2𝑥𝑥 + 𝑎𝑢𝑥𝑥𝑥 = 0, (36) 

with initial conditions 

𝑢(𝑥, 0) = √
1

𝑎
tanh (√

1

𝑎
𝑥). (37) 

Introduce ET on Eq. (36) along with the starting 

solution in (37), which leads to 
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𝐸[𝑢(𝑥, 𝑡)] − 𝑠2 {√
1

𝑎
tanh (√

1

𝑎
𝑥)} +

                     𝑠𝛼𝐸 {𝑎𝑢3𝑥 +
3

2
𝑎𝑢2𝑥𝑥 +

                     𝑎𝑢𝑥𝑥𝑥} = 0}. 

(38) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] −

           𝑠2 {√
1

𝑎
tanh (√

1

𝑎
𝑥)} +

𝑠𝛼𝐸 {𝑎
𝜕𝜑3(𝑥,𝑡;𝑞)

𝜕𝑥
+             

3

2
𝑎
𝜕2𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥2
+

𝑎
𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(39) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)] =

ℏℜ𝑚[�⃗� 𝑚−1]. 
(40) 

where  

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] + (1 −

                        
𝐾𝑚

𝑛
) 𝑠2 {√

1

𝑎
tanh (√

1

𝑎
𝑥)} +

                𝑠𝛼𝐸 {𝑎 ∑ ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖−𝑗

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0 +𝑚−1

𝑖=0

                         
3

2
𝑎 ∑

𝜕2𝑢𝑖

𝜕𝑥2

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
𝑚−1
𝑖=0 +

                         𝑎
𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

(41) 

Apply inverse ET on Eq. (40), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢(𝑥, 𝑡) + ℏ𝐸
−1{ℜ𝑚[�⃗� 𝑚−1]}. (42) 

From Eq. (42), we arrive at: 

𝑢0(𝑥, 𝑡) = √
1

𝑎
tanh (√

1

𝑎
𝑥), 

𝑢2(𝑥, 𝑡) =

ℏ𝑡𝛼(𝑎 cosh(4√
1

𝑎
𝑥)−2(𝑎−3) cosh(2√

1

𝑎
𝑥)−3𝑎−4)sech6(√

1

𝑎
𝑥)

2𝑎2𝛤 (𝛼+1)
, 

𝑢1(𝑥, 𝑡) =
ℏ(𝑛+ℏ)𝑡𝛼(𝑎cosh (4√

1

𝑎
𝑥)−2(𝑎−3)cosh (2√

1

𝑎
𝑥)−3𝑎−4)sech6(√

1

𝑎
𝑥)

2𝑎2𝛤 (𝛼+1)
−

1

4𝛤(𝛼+1)𝛤(2𝛼+1)
(𝛤(𝛼 + 1) cosh5 (√

1

𝑎
𝑥)(−52𝑎2 cosh(6√

1

𝑎
𝑥) +

𝑎2 cosh(8√
1

𝑎
𝑥) + 4(149𝑎2 + 149𝑎 − 588) cosh(2√

1

𝑎
𝑥) +

4(7𝑎2 − 223𝑎 + 72) cosh(4√
1

𝑎
𝑥) + 515𝑎2 +

60𝑎 cosh(6√
1

𝑎
𝑥) + 1548𝑎 +

2160))((
1

𝑎
)
7 2⁄

ℏ2𝑡2𝛼sech15 (√
1

𝑎
𝑥)) −

4(
1

𝑎
)
5
ℏ3𝑡3𝛼 sinh(√

1

𝑎
𝑥)tanh(√

1

𝑎
𝑥)sech15(√

1

𝑎
𝑥)

4𝛤(𝛼+1)2 𝛤(3𝛼+1)
 

((12−8𝑎) cosh(2√
1

𝑎
𝑥)+acosh(4√

1

𝑎
𝑥)−9(𝑎+2))

2

4𝛤(𝛼+1)2 𝛤(3𝛼+1)
, 

⋮ 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 7. (a) 3D plot for q-HAETM solution (b) surface of 

exact solution (c) approximated solution surface at ℏ =
−1.858, 𝑎 = 4, 𝑛 = 1 and 𝛼 = 1. 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (36) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (43) 
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If we set 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the secure 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑁
𝑚=1 , converges to exact 

solution 𝑢(𝑥, 𝑡) = √
1

𝑎
tanh (√

1

𝑎
(𝑥 − 𝑡)) of the 

integer-order Sharma-Tasso-Olever equation as 𝑁 →
∞. 

 

 

Figure 8. 𝑢(𝑥, 𝑡) versus 𝑡 for the contemplated Ex. 3 at ℏ =
−1.858, 𝑥 = 5, 𝑎 = 4, and 𝑛 = 1 for distinct of 𝛼. 

 

 

               (i) 

 

 

           (ii) 

Figure. 9. ℏ-curve for acquired solution 𝑢(𝑥, 𝑡) for Ex. 3 

when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when  𝑥 = 5, 𝑎 = 4, and 𝑡 =
0.001 for distinct 𝛼. 

 

Table 4. Numerical simulations for Ex. 3 at 𝑛 = 1, 𝛼 =
1, ℏ = −1, B0 = 1, 𝑎 = 1, 𝜆 = 2 for various values of 𝑥 and 

at 𝑡 = 0.001, 𝑡 = 0.002. 

𝑡 𝑥 𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 

 

0.001 

 

5 2.8246 × 10−7 4.1132 × 10−5 4.9465 × 10−4 

4 4.2905 × 10−7 9.2494 × 10−5 8.1866 × 10−4 

3 8.7092 × 10−6 1.3618 × 10−4 7.2756 × 10−4 

2 5.7987 × 10−5 3.6881 × 10−5 8.8362 × 10−3 

1 1.9745 × 10−4 4.3659 × 10−4 2.9978 × 10−2 

0.002 

5 8.1686 × 10−7 7.4104 × 10−5 8.4707 × 10−4 

4 6.5000 × 10−7 1.5605 × 10−4 1.2792 × 10−3 

3 1.9479 × 10−5 1.5950 × 10−4 2.2392 × 10−3 

2 1.2665 × 10−4 3.8463 × 10−4 1.8766 × 10−2 

1 3.6421 × 10−4 1.5111 × 10−3 6.0264 × 10−2 

 

5. Numerical results and discussion 

The numerical research for non-integer order STO 

equations using the q-HAETM is implemented in the 

current part. In terms of absolute error, Figure 1 depicts 

the resemblance of the solution obtained using the 

discussed method to the precise solution for Eq. (20). 

We can see that the obtained solution and the exact 

solution are the best matches with each other. The 

recommended technique's conclusion for Eq. (20) is 

plotted against time in figure 2. The solution increases 

with an increase in time for considering various 

fractional orders. The performance of 𝑛 with ℏ in an 

accomplished outcome of the provided method is 

shown in figure 3. The optimal region for the 

convergence of the obtained series solution in terms of 

the auxiliary parameter ℏ can be depicted in figure 3.  

Table 1 and Table 2 cite the accurateness of the 

considered method in comparison with various 

methods namely, ADM, HPM, and OHAM through 

absolute errors at 𝑡 = 0.001 and 𝑡 = 0.01 respectively. 

The link between the results obtained by the proposed 

method in terms of absolute error and the precise 

answer for Ex. 2 is depicted in figure 4. We can 

compare both obtained solution and the exact solution 

to check the accuracy of the projected algorithm. The 

deed of the safe results of Ex. 2 with the change in time 

𝑡 is depicted in figure 5. As we can see, the solution 

increases with an increase in time 𝑡. The effectiveness 

of 𝑛 in the produced solution by the proposed algorithm 

is shown in figure 6. Also, the solution is affected by 

various fractional orders with the time 𝑡. However, we 

attained a better accuracy rate with the consideration of 

fractional order differential operators too. This shows 

that the presented scheme is highly suitable to deal with 

nonlinear fractional differential equations. The 

approximated error results acquired for various values 

of 𝛼 with the help of the considered scheme are cited in 

Table 3. Figure 7 depicts the relationship between the 

results acquired by the q-HAETM concerning absolute 

error and the exact solution for Ex. 3. Figure 8 is 

decorated with the variation of attained solution with 

time 𝑡. According to the considered initial 

approximation, the solution gradually decreases with 

an increase in time 𝑡. The performance of the 

embedding parameter (ℏ) for distinct values of 𝑛 in the 
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secured solution by the proposed strategy is shown in 

figure 9. Table 4 cites the accuracy of the obtained 

solutions in terms of absolute error. 

 

6. Conclusion 

In this paper, we have demonstrated how to solve the 

nonlinear time-fractional STO equation using the 

effective q-HAM with the Elzaki transform. We have 

examined three examples with distinct starting 

solutions to prove the significance as well as the 

effectiveness of the considered scheme. Moreover, we 

can compare the obtained results with the exact 

solutions to witness the same. The rate of convergence 

of the obtained series solution to the exact solution is 

accelerated with the help of optimal values of 

convergence control parameter ℏ. Presented numerical 

simulations guarantee results with higher accuracy.   

The numerical simulations are executed by using the 

considered technique in comparison with the other 

schemes like ADM, HPM, and OHAM in terms of 

approximated errors. The secure outputs indicate that a 

considered methodology was used to generate a 

standardized analytical solution. In this study, the 

detailed analysis of the fractional behaviour of the 

nonlinear STO equation and its solution is achieved by 

considering different initial approximations. The 

process of finding the solution for the considered 

problem using the Elzaki transform was effortless. The 

proposed approach is effective in delivering a simple 

solution, a critical convergence zone, and a non-local 

influence. Finally, we claim that our proposed 

technique is incredibly dependable and can be applied 

to large study classifications relating to fractional-order 

nonlinear scientific methods, which aid us in better 

understanding the nonlinear compound phenomena in 

linked domains of innovation and science. 
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