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1. Introduction

Fractional calculus has great importance in math-
ematical analysis, also in consideration of its nu-
merous applications in modeling and in applica-
tions. Recently there have been several significant
contributions to the theory of fractional opera-
tors [1].

From last decades various types of integral in-
equalities have attracted the attention of many
mathematicians [2–6] and also fractional integral
inequalities have been found many interesting ap-
plications in the fields of engineering and physics.

Very recently in 2019, Ekinci and Ozdemir [2]
have studied Hermite-Hadamard type inequalities
involving intermediate values of | f ′ | by using
Riemann-Liouville fractional operator and Butt
et al. [3] established some new integral inequalities
involving Caputo fractional derivatives for expo-
nential s-convex functions. In this sequence Kizil

and Ardiç [4] have introduced inequalities for
strongly convex functions via Atangana-Baleanu
integral operators. Later in 2022, Kalsoom et.al.
[5] proposed few new inequalities of Ostrowski
type by means of newly derived identity and con-
sidered some special cases. Our present work is
fully motivated by the mentioned work.

Saigo fractional integral operator is one of the
important operators of fractional calculus theory
due to involving the Gauss hypergeometric func-
tion 2F1(.). This operator has already found vari-
ous applications in solving problems in the theory
of special functions, integral transforms and the-
ory of inequalities.

Before setting out the main findings of our article,
it is useful to briefly review the contributions on
which it is based.

We say that, fixed v ∈ R a real valued function
g(x) defined for x > 0 belongs to the function
space Cv, if there exists a real number q > v such
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that g(x) = xqΦ(x), where Φ(x) ∈ C(0, 1). More-
over, for m ∈ Ra we say that g(x) belongs to the
function space Cm

v , if gm ∈ Cv.

For a > 0, Riemann-Liouville fractional integral
operator of a function g such that g ∈ Cv(, v ≥
−1) defined as follows [7]:

Ra
0,y{g(y)

}
=

1

Γ(a)

∫ y

0
(y − t)a−1g(t)dt, (1)

here, y > 0.

For a > 0, Erdélyi-Kober fractional integral op-
erator of a function g such that g ∈ Cv(v ≥ −1)
defined as follows [8]:

Ka,b
0,y{g(y)} =

y−a−b

Γ(a)

∫ y

0
tb(y − t)a−1g(t)dt, (2)

here, b ∈ R.
For a > 0, Saigo fractional integral operator of a
function g, such that g ∈ Cv(v ≥ −1) defined as
follows [9]:

Ia,a
′,b

0,y {g(y)} =
y−a−a′

Γ(a)
×∫ y

0
(y − t)a−1

2F1

(
a+ a′,−b, a, 1− t

y

)
g(t)dt,

(3)

here, a′, b ∈ R, and 2F1(r1, r2, r3; z) is classical
Gauss hypergeometric function defined in [10].

2F1(r1; r2; r3; z) =

∞∑
n=0

(r1)n(r2)n
(r3)n

zn

n!
, (4)

where (s)k denotes the Pochhammer symbol
(shifted factorial) defined as follows [10,11]:

(s)k :=
Γ (s+ k)

Γ (s)

=

{
1 (k = 0; s ∈ C \ {0})
s (s+ 1) · · · (s+ k − 1) (k ∈ N; s ∈ C) .

(5)

By observing, we note that Saigo fractional in-
tegral operators contains both Reimann-Liouville
fractional integral operators as well as Erdélyi-
Kober fractional integral operators.

Remark 1. (i)Taking a′ = −a in the equations
(3) then, we get Riemann-Liouville fractional in-
tegral operator (1).

Ra
0,y{g(y)} = Ia,−a,b

0,y {g(y)} (6)

Remark 2. (ii)Taking a′ = 0 in the equations
(3) then, we get Erdélyi-Kober fractional integral
operator (2).

Ka,b
0,y{g(y)} = Ia,0,b0,x {g(y} (7)

Fractional integral inequalities are an important
tool to prove the key result, the uniqueness of so-
lutions of fractional partial differential equations
and fractional boundary value problems. Also,
they give information about the boundness of the
solutions of partial differential equations and frac-
tional boundary value problems. These features
have led many researchers in the area of integral
inequalities to analyze some more extensions and
generalizations by involving fractional calculus in-
tegral operators.

Introduce the following functional:

T (k, l,m, n) =

∫ d

c
n(t)dt

∫ d

c
m(t)k(t)l(t)dt

+

∫ d

c
m(t)dt

∫ d

c
n(t)k(t)l(t)dt

−
(∫ d

c
n(t)k(t)dt

)(∫ d

c
m(t)l(t)dt

)
−
(∫ d

c
m(t)k(t)dt

)(∫ d

c
n(t)l(t)dt

)
(8)

here k, l : [c, d] → R are two integrable functions
defined on the interval [c, d] and m(t) and n(t) are
positive integrable functions defined on [c, d].

Consider two functions Φ and Ψ defined on [c, d],
then they are synchronous on [c, d], if they satis-
fies the following inequality:

(Φ(t)− Φ(s))(Ψ(t)−Ψ(s)) ≥ 0, (9)

for arbitrary t, s ∈[c,d], then from [12,13], we ob-
serve that

T (Φ,Ψ,m, n) ≥ 0, (10)

If the inequality defined in (9) is reversed, then
functions Φ and Ψ are called asynchronous on
[c,d] and satisfies the following inequality:

(Φ(t)− Φ(s))(Ψ(t)−Ψ(s)) ≤ 0, (11)

for any t, s ∈[c,d].
From [14], we have the Chebyshev inequality for
the special case when m(t) = Ψ(t), for any t,s ∈
[c, d], .

The functional T (k, l,m, n) defined in (8) has
drawn many researchers’ attentions due to the
wide range of applications in engineering math-
ematics, statistical probability, transform theory,
and probability and numerical quadrature. From
all these applications, the functional T (k, l,m, n)
(8) has also been used to produce many integral
inequalities (see, e.g., [15–22]; for more details re-
garding very recent work, we can refer [23])

In the last few years, many researchers have
more attention to the q-calculus and fractional



Certain Saigo type fractional integral inequalities and their q-analogues 3

q-differential equations due to many applications
of the q-calculus in physics, statistics and math-
ematics. The q-calculus is also called the quan-
tum calculus can be dated back to 1908, Jack-
son’s work [24] and fractional q-calculus is the
q-analogous of the ordinary fractional calculus.
Recently, q-calculus operators have been applied
in various fields like optimal control problems,
ordinary fractional calculus, solutions of the q-
difference (differential),q-transform analysis and
q-integral equations, and many more such areas.

In 1966, Al-Salam gives the idea of fractional
q-calculus by introducing the q-analogue of
Cauchy’s formula ( [25–27]). Then, in 1969
Agrawal [28] studied some fractional q-integral
operators and q-derivatives and their basic prop-
erties. Then later in 2007, Rajkovic et al. [29] ex-
tended the notion of the left fractional q-integral
operators and fractional q-derivatives by intro-
ducing variable lower limit and proved the semi-
group properties. In the sequence, Isogawa et
al. [30] studied various basic properties of frac-
tional q-derivatives.

For 0 <| q |< 1 the q-shifted factorial is defined
as [31]:

(b; q)k =

{
1 (k = 0)∏k−1

s=0(1− bqs) (k ∈ N) ,
(12)

here, b, q ∈ C and b ̸= q−l(l ∈ N0).

For k ∈ N0, q-shifted factorial with negative sub-
script is defined as follows:

(b; q)k

=
1

(1− bq−1)(1− bq−2)(1− bq−3)...(1− bq−k)
.

(13)

From (12) and (13), we can conclude that:

(b; q)∞ =
∞∏
s=0

(1− bqs), (14)

here, b, q ∈ C
By using the equations (12), (13) and (14), we
observe that:

(b; q)∞ =
(b; q)∞
(bqk; q)∞

, (15)

here, k ∈ N.
Then from above equations, for any complex num-
ber β,

(b; q)β =
(b; q)∞

(bqβ; q)∞
, (16)

here, only the principal value of qβ is valid for the
above equation.

For the power function (c−d)m, we can define its
q-analogy as follows:

(c− d)mq = cm
(
d

c
; q

)
m

(m ∈ N)

= cm

(
d
c ; q

)
∞(

d
c q

m; q
)
∞

(c ̸= 0)

= cm
∞∏
l=0

[
1−

(
d
d

)
ql

1−
(
d
c

)
ql+m

]
.

(17)

From above (17), we conclude that:

(c− d)mq =

{
1 (m = 0)

(c− d)(c− dq) · · · (c− dqm−1) (m ∈ N) .
(18)

In 1910, Jackson was the first researcher who in-
troduced q-derivative and q-integral in systematic
way.

The q-derivative of a function g(x) is defined as
[31]:

Dq{g(x)} =
dq
dqx

{g(x)} =
g(qx)− g(x)

qx− x
. (19)

From above, we observe and notice that

lim
q→1

Dq{g(x)} =
d

dx
{g(x)}, (20)

if, given function g(x) is differentiable.

The q-integral of a function g(x) is defined as [31]:∫ t

0
g(x)dqx = t(1− q)

∞∑
l=0

qlg(tql), (21)

∫ ∞

t
g(x)dqx = t(1− q)

∞∑
l=0

q−lg(tq−l), (22)

∫ ∞

0
g(x)dqx = t(1− q)

∞∑
l=−∞

qlg(ql). (23)

For 0 < q < 1, q-gamma function is given by [31]:

Γq(b) =
(q; q)∞
(qb; q)∞

(1− q)(1−b). (24)

For b > 0, q-analogue of Riemann-Liouville frac-
tional integral operator of a function g(x) defined
as [28]:

Rb
q

{
g(x)

}
=

xb−1

Γq(b)

∫ x

0

(qt
x
; q
)
b−1

g(t)dqt, (25)

where,(b, q)β is given in the equation (16).
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For, a > 0 and b ∈ R and 0 < q < 1, q-analogue
of the Erdélyi-Kober fractional operator is defined
as [28]:

Ka,b
q

{
f(x)

}
=

xb−1

Γq(a)

∫ x

0

(qt
x
; q
)
a−1

tbf(t)dqt.

(26)

For a > 0, a′ and b ∈ R, q-analogue of Saigo’s
fractional integral is defined as [32]:

Ia,a
′,b

q

{
f(x)

}
=

x−a′−1

Γq(a)

∫ x

0

(qt
x
; q
)
a−1

∞∑
k=0

(qa+a′ ; q)k(q
−b; q)k

(q−a; q)k(q, q)k

q(b−a′)k(−1)kq−(
k
2)
( t
x
− 1

)k
q
f(t)dqt .

(27)

2. Certain inequalities involving Saigo
type fractional integral operator

In this section, we introduce some inequalities in-
volving the Saigo type fractional integral operator
and their special cases.

Theorem 1. Assume u and v are two pos-
itive integrable and synchronous mapping on
[0,∞]. Suppose ∃ four positive integrable map-
pings m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(28)

Then the following inequality holds true:

Ia,a
′,b

0,x

{
n1n2u

2
}
(x)× Ia,a

′,b
0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (29)

Proof. By using the relations that are given in
(28), for t ∈ [0, x],∀x > 0, we can easily have:(

m2(t)

n1(t)
− u(t)

v(t)

)
≥ 0 (30)(

u(t)

v(t)
− m1(t)

n2(t)

)
≥ 0 (31)

If we product (30) and (31) side by side , we can
write (

m2(t)

n1(t)
− u(t)

v(t)

)(
u(t)

v(t)
− m1(t)

n2(t)

)
≥ 0

Then we have:

(
m1(t)n1(t) +m2(t)n2(t)

)
u(t)v(t)

≥ n1(t)n2(t)u
2(t) +m1(t)m2(t)v

2(t).
(32)

Consider the following function F (x, t) defined by:

F (x, t) =
x−a−a′(x− t)a−1

Γ(a)

× 2F1

(
a+ a′,−b, a, 1− t

x

)
,

(t ∈ (0, x);x > 0).

(33)

Then multiplying both sides of (32), by F (x, t)
defined by (33) and integrating the resulting in-
equality with respect to t from 0 to x and using
the definition (3), we have:

Ia,a
′,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

0,x

{
(n1n2)u

2
}
(x) + Ia,a

′,b
0,x

{
(m1m2)v

2
}
(x)

(34)

Let us recall the A.M -G.M inequality, i.e (a+b) ≥
2
√
ab, a, b ∈ R+. By applying this classical in-

equality to (34), we obtain:

Ia,a
′,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

≥ 2
√
Ia,a

′,b
0,x

{
(n1n2)u2

}
(x)× Ia,a

′,b
0,x

{
(m1m2)v2

}
(x)

(35)

By making use of some necessary operations, we
deduce that:

Ia,a
′,b

0,x

{
n1n2u

2
}
(x)× Ia,a

′,b
0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (36)

This complete the proof of Theorem 1. □

If we substitute a′ = −a and a′ = 0 in above
results we get following special cases of the in-
equalities respectively.

Corollary 1. For Riemann-Liouville fractional
integral operator the following inequality holds
true:

Ra
0,x

{
n1n2u

2
}
(x)×Ra

0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ra

0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (37)

Corollary 2. For Erdélyi-Kober fractional inte-
gral operator the following inequality holds true:

Ka,b
0,x

{
n1n2u

2
}
(x)×Ka,b

0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ka,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

)2

.
(38)
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Theorem 2. Consider u and v are two pos-
itive integrable and synchronous mapping on
[0,∞]. Assume ∃ four positive integrable mapping
m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(39)

Then the following inequality holds true:

Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
m1m2

}
(x)Ia,a

′,b
0,x

{
v2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

)2

.

(40)

Proof. With similar steps to the proof of the pre-
vious Theorem, if we consider the inequalities are
given in (39), we have(

m2(t)

n1(s)
− u(t)

v(s)

)
≥ 0, (41)(

u(t)

v(s)
− m1(t)

n2(s)

)
≥ 0. (42)

Then we can write above inequality as the follow-
ing form:

(
m1(t)

n2(s)
+

m2(t)

n1(s)

)
u(t)

v(s)
≥ u2(t)

v2(s)
+

m1(t)m2(t)

n1(s)n2(s)
.

(43)

If we multiply both sides of (43), by
n1(s)n2(s)v

2(s), we get

m1(t)u(t)n1(s)v(s) +m2(t)u(t)n2(s)v(s)

≥ n1(s)n2(s)u
2(t) +m1(t)m2(t)v

2(s).
(44)

Then on multiplying both sides of the equation
(44), by F (x, t) defined in (33) and integrating
with respect to t from 0 to x, and using the defi-
nition (3), we have

n1(s)v(s)I
a,a′,b
0,x

{
m1u

}
(x)

+n2(s)v(s)I
a,a′,b
0,x

{
m2u

}
(x)

≥ n1(s)n2(s)I
a,a′,b
0,x

{
u2

}
(x)

+v2(s)Ia,a
′,b

0,x

{
m1m2

}
(x).

(45)

Again multiplying both sides of the equation (45),
by F (x, s) defined in (33), a nd integrating with

respect to s from 0 to x and using the definition
(3), we have

Ia,a
′,b

0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

≥ Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

+Ia,a
′,b

0,x

{
v2
}
(x)Ia,a

′,b
0,x

{
m1m2

}
(x).

(46)

Now, using the AM-GM inequality, we have:

Ia,a
′,b

0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

≥ 2

{
Ia,a

′,b
0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
v2
}
(x)Ia,a

′,b
0,x

{
m1m2

}
(x)

} 1
2

.

(47)

By making use of some necessary operations, we
deduce that:

Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
m1m2

}
(x)Ia,a

′,b
0,x

{
v2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

)2

.

(48)

This proofs the Theorem (2). □

On putting a′ = −a and a′ = 0 in above results
we get following special cases of the inequalities
respectively.

Corollary 3. For Riemann-Liouville fractional
integral operator the following inequality holds
true:

Ra
0,x

{
n1n2

}
(x)Ra

0,x

{
u2

}
(x)

×Ra
0,x

{
m1m2

}
(x)Ra

0,x

{
v2
}
(x)

≤ 1

4

(
Ra

0,x

{
n1v

}
(x)Ra

0,x

{
m1u

}
(x)

+Ra
0,x

{
n2v

}
(x)Ra

0,x

{
m2u

}
(x)

)2

(49)

Corollary 4. For Erdélyi-Kober fractional inte-
gral operator the following inequality holds true:
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Ka,b
0,x

{
n1n2

}
(x)Ka,b

0,x

{
u2

}
(x)

×Ka,b
0,x

{
m1m2

}
(x)Ka,b

0,x

{
v2
}
(x)

≤ 1

4

(
Ka,b

0,x

{
n1v

}
(x)Ka,b

0,x

{
m1u

}
(x)

+Ka,b
0,x

{
n2v

}
(x)Ka,b

0,x

{
m2u

}
(x)

)2

(50)

3. Saigo type fractional q-integral
inequalities

Here, we established some q-integral inequalities
involving q-Saigo type fractional integral operator
which are the q-analogues of the Theorems proved
in the previous section.

Theorem 3. Consider 0 < q < 1, let u and v
are two positive integrable and synchronous map-
ping on [0,∞]. Assume ∃ four positive integrable
mapping m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(51)

Then the following inequality holds true:

Ia,a
′,b

q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

q

{
(n1n2)u

2
}
(x)

+Ia,a
′,b

q

{
(m1m2)v

2
}
(x).

(52)

Proof. To prove our result we need to recall func-
tion with their conditions defined by Choi [33],

H(t, x, u(x); a, a′, b; q) =
x−a′−1

Γq(a)

(qt
x
, q
)
a−1

∞∑
k=0

(qa+a′ , q)k(q
−b, q)k

(q−a, q)k(q, q)k

×q(b−a′)k(−1)kq−(
k
2)
( t
x
− 1

)k
q
u(t) ,

(53)

where x > 0,0 ≤ t ≤ x; a > 0, a′, b ∈ R with
a + a′ > 0 and b < 0, 0 < q < 1, u : [0,∞) →
[0,∞) it is seen that

H(t, x, u(x); a, a′, b; q) ≥ 0. (54)

Then from (44), we have

(
m1(t)n1(t) +m2(t)n2(t)

)
u(t)v(t)

≥ n1(t)n2(t)u
2(t) +m1(t)m2(t)v

2(t).
(55)

Now multiplying both sides of (55) by
H(t, x, 1; a, a′, b; q) given in (53) together with
(54) and taking q-integration with respect to t
from 0 to x with aid of (27), we get our desired
result.

Ia,a
′,b

q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

q

{
(n1n2)u

2
}
(x) + Ia,a

′,b
q

{
(m1m2)v

2
}
(x)
(56)

□

If we substitute a′ = −a and a′ = 0 in above
results we get following special cases of the in-
equalities respectively.

Corollary 5. For q-analogue of Riemann-
Liouville fractional integral operator the following
inequality holds true:

Ra
q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ra
q

{
(n1n2)u

2
}
(x) +Ra

q

{
(m1m2)v

2
}
(x)

(57)

Corollary 6. For q-analogue of Erdélyi-Kober
fractional integral operator the following inequal-
ity holds true:

Ka,b
q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ka,b
q

{
(n1n2)u

2
}
(x) +Ka,b

q

{
(m1m2)v

2
}
(x)
(58)

Theorem 4. Let 0 < q < 1, consider u and v
are two positive integrable and synchronous map-
ping on [0,∞]. Assume ∃ four positive integrable
mapping m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(59)

Then the following inequality holds true:

Ia,a
′,b

q

{
n1v

}
(x)Ia,a

′,b
q

{
m1u

}
(x)

+Ia,a
′,b

q

{
n2v

}
(x)Ia,a

′,b
q

{
m2u

}
(x)

≥ Ia,a
′,b

q

{
n1n2

}
(x)Ia,a

′,b
q

{
u2

}
(x)

+Ia,a
′,b

q

{
v2
}
(x)Ia,a

′,b
q

{
m1m2

}
(x).

(60)

Proof. From (44), we have

m1(t)u(t)n1(s)v(s) +m2(t)u(t)n2(s)v(s)

≥ n1(s)n2(s)u
2(t) +m1(t)m2(t)v

2(s).
(61)
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Then on multiplying both sides of the equation
(61), by H(t, x, 1; a, a′, b; q) defined in (53) to-
gether with (54) and taking q-integration with
respect to t from 0 to x with aid of (27)

n1(s)v(s)I
a,a′,b
q

{
m1u

}
(x)

+ n2(s)v(s)I
a,a′,b
q

{
m2u

}
(x)

≥ n1(s)n2(s)I
a,a′,b
q

{
u2

}
(x)

+ v2(s)Ia,a
′,b

q

{
m1m2

}
(x)

(62)

Again multiplying both sides of the equation (62),
by H(t, x, 1; a, a′, b; q) defined in (53) together
with (54) and taking q-integration with respect
to s from 0 to x with aid of (27), we get our de-
sired result.

Ia,a
′,b

q

{
n1v

}
(x)Ia,a

′,b
q

{
m1u

}
(x)

+Ia,a
′,b

q

{
n2v

}
(x)Ia,a

′,b
q

{
m2u

}
(x)

≥ Ia,a
′,b

q

{
n1n2

}
(x)Ia,a

′,b
q

{
u2

}
(x)

+Ia,a
′,b

q

{
v2
}
(x)Ia,a

′,b
q

{
m1m2

}
(x)

(63)

□

By setting a′ = −a and a′ = 0 in above results
we get following special cases of the inequalities
respectively.

Corollary 7. For q-analogue of Riemann-
Liouville fractional integral operator the following
inequality holds true:

Ra
q

{
n1v

}
(x)Ra

q

{
m1u

}
(x)

+Ra
q

{
n2v

}
(x)Ra

q

{
m2u

}
(x)

≥ Ra
q

{
n1n2

}
(x)Ra

q

{
u2

}
(x)

+Ra
q

{
v2
}
(x)Ra

q

{
m1m2

}
(x)

(64)

Corollary 8. For q-analogue of Erdélyi-Kober
fractional integral operator the following inequal-
ity holds true:

Ka,b
q

{
n1v

}
(x)Ka,b

q

{
m1u

}
(x)

+Ka,b
q

{
n2v

}
(x)Ka,b

q

{
m2u

}
(x)

≥ Ka,b
q

{
n1n2

}
(x)Ka,b

q

{
u2

}
(x)

+Ka,b
q

{
v2
}
(x)Ka,b

q

{
m1m2

}
(x)

(65)

4. Concluding remark

We summarize our research work by mentioning
that all the results derived in this paper are novel

and important. Firstly, we have established cer-
tain inequalities involving Saigo type fractional
integral operator and derived some special cases
of it. Then we have derived q-analogues of the in-
equalities involving Saigo type fractional integral
operator that means certain q-integral inequali-
ties. Some special cases of q-integral inequali-
ties are also derived. We also notice that when
q approaches to 1 then the resulting inequalities
presented in Section 3, are become those demon-
strated in Section 2.
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