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1. Introduction

Functional differential equations (FDEs) which
include delay differential equations and differen-
tial integral equations have been studied for at
least 200 years. However, especially, it can be
seen from the relevant literature that during the
last seven decades numerous qualitative behav-
iors of various FDEs, in particular, delay deferen-
tial equations have been studied extensively and
they are still being investigated by researchers. It
is known that UAS, exponential stability, insta-
bility, integrability and boundedness of solutions
are the most important fundamental properties
of FDEs and ODEs. There are many publica-
tions on fundamental properties of solutions of
FDEs, ODEs and so on. We cite here the pa-
pers [1–6], [7–9], [10], [11–31] and the books of
( [32], [33–39]) fully or partially devoted to fun-
damental motions of trajectories of solutions of
these classes of equations. In particular, UAS
and boundedness of solutions at the infinity de-
scribe long time behaviors of solutions. Addition-
ally, during the applications of FDEs and ODEs

in control theory, engineering, medicine, etc., usu-
ally it is necessary to know qualitative estimates
of solutions such as instability, integrability, ex-
ponentially stability and so on.

We would like to summarize two recent works of
AS, UAS and some other fundamental motions of
solutions of DDEs. Recently, Tian and Ren [13]
took into consideration the below system of linear
DDEs:

dx

dt
= Ax(t) +Bx(t− h(t)). (1)

In [13, Theorem 1], an LKF was defined for the
system (1) and based on that LKF, a theorem
was proved on the AS of the zero solution of (1).
In [13], the method of proof is depending upon
the definition of a very interesting suitable LKF.

Later, Tunç et al. [23] dealt with the nonlinear
system of DDEs:

dx

dt
=A(t)x(t) +BF (x(t− h(t)))

+ E(t, x(t), x(t− h(t))). (2)

In [23], three theorems, which have sufficient con-
ditions, were proved on the UAS and integrability

92

http://creativecommons.org/licenses/by/4.0/


Stability tests and solution estimates for non-linear differential equations 93

of solutions, when E(.) ≡ 0 in (2), and the bound-
edness of the solutions of (2), when E(.) ̸= 0. In
[35], the method used in the proofs is based on
the definitions of two suitable LKFs. For some
interesting recent and applicable results on the
fractional mathematical models, see [40–43].

In this article, by the virtue of the systems of
DDEs (1) and (2), the related ones in the refer-
ences of this paper and literature, we deal with
the following nonlinear system of DDEs:

dx

dt
=A(t)x(t) +G(x(t)) +H(t, x(t))

+BF (x(t− h(t))) +Q(t, x(t), x(t− h(t))),
(3)

where x ∈ Rn, t ∈ R+, R+ = [0,∞),
h(t) ∈ C1(R+, (0,∞)), A(t) ∈ C(R+,Rn×n),
G ∈ C(Rn,Rn),G(0) = 0, H ∈ C(R+ × Rn,Rn),
H(t, 0) = 0,B ∈ Rn×n, F ∈ C(Rn,Rn), F (0) = 0,
Q ∈ C(R+ ×Rn ×Rn,Rn) and the variable delay
h(t) of (3) fulfills the inequalities:

0 ≤ h1 ≤ h(t) ≤ h2,

h12 = h2 − h1,

0 ≤ h′(t) ≤ h0 < 1. (4)

We would now like to explain the objectives of
this paper.

1) In this paper, Theorem 1, Theorem 4
and Theorem 2 dealt with UAS, instabil-
ity and integrability of solutions nonlinear
system of DDEs (5):

dx

dt
=A(t)x(t) +G(x(t)) +H(t, x(t))

+BF (x(t− h(t))). (5)

2) The ES of the following system of ODEs
was discussed by Theorem 3, when
BF (x(t− h(t))) ≡ 0 in (5):

dx

dt
= A(t)x(t) +G(x(t)) +H(t, x(t)). (6)

3) Theorem 5 dealt with the bounded solu-
tions of the perturbed system (3).

4) In particular cases of the considered sys-
tems, four new examples are designed to
show applications of Theorems 1-5.

2. Basic information

Assume that C0 = C0([−τ, 0], Rn),τ > 0, is the
space of continuous functions ϕ : [−τ, 0] → Rn.
For any a ∈ R, a ≥ 0, ∀t0 ≥ 0 and x ∈
C0([t0 − τ, t0 + a], Rn), let xt = x(t + θ) when
−τ ≤ θ ≤ 0 and t ≥ t0.

Let x ∈ Rn. The norm ∥.∥ is defined as ∥x∥ =
n∑

i=1
|xi|. Additionally, the matrix norm ∥A∥ is de-

fined as ∥A∥ = max
1≤j≤n

(
n∑

i=1
|aij |

)
, where A ∈

Rn×n.

For any ϕ ∈ C0, let

∥ϕ∥C0
= sup

θ∈[−τ,0]
∥ϕ(θ)∥ = ∥ϕ(θ)∥[−τ,0]

and

CH = {ϕ : ϕ ∈ C0 and ∥ϕ∥C0
≤ H < ∞}.

In this article, without mention, let x(t) represent
x.

3. Stability and integrability

Let Q(.) = 0. Hence, we now have the nonlinear
system of DDEs (5).

A. Assumptions

(H1) Let aA ∈ R, aA > 0 with

aii(t) +
n∑

j=1,j ̸=i

|aji(t)| ≤ −aA for all t ∈ R+;

(H2) There exist positive constants h0 and aA
from (3) and (H1), respectively, and fF ,
gG, hH , K2 > 0 such that

∥F (u)− F (v)∥ ≤ fF ∥u− v∥ ,
∀u, v ∈ Rn, F (0) = 0,

sgnxiGi(x) < 0

as

xi ̸= 0,∀x ∈ Rn, G(0) = 0,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0,∀t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ , ∀t ∈ R+ and x ∈ Rn,

(aA + gG + hH)(1− h0)− fF ∥B∥ ≥ K2.

Theorem 1. We suppose that conditions (H1)
and (H2) are held. Then, trivial solution of (5) is
UA stable.

Proof. We define an LKF ∆1 := ∆1(t, xt) by

∆1(t, xt) := ∥x(t)∥+ γ

t∫
t−h(t)

∥F (x(s))∥ ds, (7)

where γ ∈ R, γ > 0, it will be chosen after some
calculations.
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From the LKF (7), we have

∆1(t, xt) := |x1(t)|+ ...+ |xn(t)|+ γ

t∫
t−h(t)

|f1(x(s))|ds

+ ...+ γ

t∫
t−h(t)

|fn(x(s))|ds.

According to the LKF of (7), it satisfies that

∆1(t, 0) = 0, γ1 ∥x∥ ≤ ∆1(t, xt),

where
γ1 ∈ (0, 1), γ1 ∈ R,

Let γ2 ≥ 1, γ2 ∈ R , and define

Z1(t, xt) :=

t∫
t−h(t)

∥F (x(s))∥ ds.

Next, we have

γ1 ∥x∥+γZ1(t, xt) ≤ ∆1(t, xt) ≤ γ2 ∥x∥+γZ1(t, xt).

Using condition (H2) and some simple evalua-
tions, we find that

∥∆1(t, xt)−∆1(t, yt)∥
≤ ∥x(t)− y(t)∥
+ γFfh2 sup

t−h(t)≤s≤t
∥x(s)− y(s))∥

≤ M0 sup
t−h(t)≤s≤t

∥x(s)− y(s)∥ ,

where
M0 := 1 + γFfh2.

According to the above inequality, it is followed
that

|∆1(t, xt)−∆1(t, yt)| ≤ M0∥x(s)− y(s)∥[t−h(t),t].

Thus, the locally Lipschitz condition in xt is sat-
isfied by the LKF ∆1(t, xt). Thus, condition (A1)
of ( [32, Theorem 4.2.9], Tunç et al. [23, Theorem
1]) is held.

For the next step, by virtue of the definition of
Z1(t, xt) and condition (H2), we have

Z1(t, xt) =

t∫
t−h(t)

∥F (x(s))∥ ds

≤fFh(t) sup
t−h(t)≤s≤t

∥x(s)∥

≤fFh2 sup
t−h(t)≤s≤t

∥x(s)∥ .

Using some simple calculations and condition
(H2), we have

Z1(t2, xt)− Z1(t1, xt) =

t2∫
t2−h(t2)

∥F (x(s))∥ ds

−
t1∫

t1−h(t1)

∥F (x(s))∥ ds

=

t2∫
t1

∥F (x(s))∥ ds−
t2−h(t2)∫

t1−h(t1)

∥F (x(s))∥ds

≤
t2∫

t1

∥F (x(s))∥ ds

≤fF sup
t1≤s≤t2

∥x(s)∥ (t2 − t1) = M(t2 − t1),

M1 = fF sup
t1≤s≤t2

∥x(s)∥ , 0 < t1 < t2 < ∞.

The obtained inequality demonstrates that the
second condition, i.e., (A2), of ( [32, Theorem
4.2.9], Tunç et al. [23, Theorem 1]) is satisfied.

The differentiating the LKF ∆1(t, xt) of (7) and
taking into account (5), we arrive that

d

dt
∆1(t, xt) =

n∑
i=1

x′i(t)sgnxi(t+ 0) + γ ∥F (x(t))∥

− γ(1− h′(t)) ∥F (x(t− h(t)))∥ .
(8)

By virtue of conditions (H1) and (H2), we obtain
n∑

i=1

sgnxi(t+ 0)x′i(t)

≤
n∑

i=1

aii(t) +

n∑
j=1,j ̸=i

|aji(t)|

 |xi(t)|

− ∥G(x(t))∥ − ∥H(t, x(t))∥
+ ∥B∥ ∥F (x(t− h(t)))∥

≤ − (aA + gG + hH) ∥x(t)∥
+ ∥B∥ ∥F (x(t− h(t)))∥ . (9)

Thereby, putting the inequality (9) into (8) and
using the condition 0 ≤ h′(t) ≤ h0 < 1, we have

d

dt
∆1(t, xt) ≤− aA ∥x(t)∥ − gG ∥x(t)∥ − hH ∥x(t)∥

+ ∥B∥ ∥F (x(t− h(t)))∥
+ γ ∥F (x(t))∥
− γ(1− h′(t)) ∥F (x(t− h(t)))∥

≤ − (aA + gG + hH) ∥x(t)∥
+ ∥F (x(t− h(t)))∥ ∥B∥
+ γfF ∥x(t)∥
− γ(1− h0) ∥F (x(t− h(t)))∥ .
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Let γ = ∥B∥ (1− h0)
−1. Then, it follows that

d

dt
∆1(t, xt)

≤−
[
(aA + gG + hH)− (1− h0)

−1fF ∥B∥
]
∥x(t)∥

=− 1

1− h0
[(aA + gG + hH)(1− h0)− fF ∥B∥] ∥x(t)∥ .

Using the condition (H2), clearly, we have

d

dt
∆1(t, xt) ≤ −K2 ∥x(t)∥ < 0, ∥x(t)∥ ≠ 0.

(10)
Thus, it is obvious that d

dt∆1(t, xt) is negative def-
inite. From the inequality (10), it follows that as-
sumption (A3) of ( [32, Theorem 4.2.9], Tunç et
al. [23, Theorem 1]) is satisfied. Thus, all the as-
sumptions of ( [32, Theorem 4.2.9], Tunç et al. [23,
Theorem 1]) are held. Hence, the zero solution of
(5) is UA stable. □

Theorem 2. If the conditions (H1) and (H2)
are held, then the solutions of (5) satisfies that
∞∫
t0

∥x(s)∥ds < ∞.

Proof. As in the proof of the above first theo-
rem, we utilize the LKF ∆1(t, xt). According to
conditions (H1) and (H2) we have

d

dt
∆1(t, xt) ≤ −K2 ∥x(t)∥ .

This result confirms that the LKF ∆1(t, xt) is de-
creasing, i.e.,

∆1(t, xt) ≤ ∆(t0, ϕ(t0)) for all t ≥ t0.

Integrating this inequality, it follows that

K2

t∫
t0

∥x(s)∥ds ≤ ∆(t0, ϕ(t0))−∆1(t, xt) ≤ K3,

t ≥ t0,

where K3 = ∆(t0, ϕ(t0)). Then,

t∫
t0

∥x(s)∥ds ≤ K−1
2 ∆(t0, ϕ(t0)) ≡ K−1

2 K3.

Let t → +∞ . Hence,
∞∫

t0

∥x(s)∥ds ≤ K−1
2 K3 < ∞.

Thus, the proof of Theorem 2 is finished. □

Example 1. Let us take into account the below
system of non-linear DDEs:(

x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)(
x1
x2

)

+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)

+

(
3 2
2 3

)(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
,

(11)

where h(t) = 1
2 |arctan t| is the delay function,

t ≥ 2−1π.

A comparison between the systems of DDEs (11)
and DDEs (5) gives that

A(t) =

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
.

By the virtue of the matrix A(t), we derive that

aii(t) +
n∑

j=1,j ̸=i

|aji(t)| = −25 < −24 = −aA

because of

a11(t) + |a21(t)| = −25− 1

1 + t4
+

1

1 + t4

= −25 < −24 = −aA

and

a22(t) + |a12(t)| = − 1

1 + t4
− 25 +

1

1 + t4

= −25 < −24 = − aA.

Hence,

aii(t) +
2∑

j=1,j ̸=i

|aji(t)| < −aA = −24, ∀t ∈ R+.

As for the next step, we get

G(x) = G(x1, x2) =

(
G1(x1, x2)
G2(x1, x2)

)
=

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)
,

sgnx1G1(x) = sgnx1G1(x1, x2)

= −2x21 −
x21

1 + x21
< 0, x1 ̸= 0,

sgnx2G2(x) = sgnx2G2(x1, x2)

= −2x22 −
x22

1 + x22
< 0, x2 ̸= 0,

∥G(x)∥ = ∥G(x1, x2)∥ =

∥∥∥∥( G1(x1, x2)
G2(x1, x2)

)∥∥∥∥
=

∥∥∥∥∥
(

−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)∥∥∥∥∥
=

∣∣∣∣−2x1 −
x1

1 + x21

∣∣∣∣+ ∣∣∣∣−2x2 −
x2

1 + x22

∣∣∣∣
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≥ 2 |x1| −
|x1|

1 + x21
+ 2 |x2| −

|x2|
1 + x22

≥ |x1|+ |x2| = ∥x∥ , gG = 1 > 0.

Additionally, we have

H(t, x) = H(t, x1, x2)

=

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)
sgnx1H1(t, x) = sgnx1H1(t, x1, x2)

= −2x21 −
x21

1 + exp(t) + x21
< 0, x1 ̸= 0,

sgnx2H1(t, x) = sgnx2H1(t, x1, x2)

= −2x22 −
x22

1 + exp(t) + x22
< 0, x2 ̸= 0.

∥H(t, x)∥ = ∥H(t, x1, x2)∥

=

∥∥∥∥∥
(

−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)∥∥∥∥∥
=

∣∣∣∣−2x1 −
x1

1 + exp(t) + x21

∣∣∣∣
+

∣∣∣∣−2x2 −
x2

1 + exp(t) + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + exp(t) + x21

+ 2 |x2| −
|x2|

1 + exp(t) + x22
≥ |x1|+ |x2| = ∥x∥ , hH = 1 > 0.

B =

(
3 2
2 3

)
, ∥B∥ = 5.

F (x(t− 1

2
|arctg(t)|)

= F (x1(t−
1

2
|arctg(t)| , x2(t−

1

2
|arctg(t)|)

=

(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
F (0) = 0, h(t) =

1

2
|arctan(t)| .

Let

u = x(t− 1

2
|arctan(t)| , v = y(t− 1

2
|arctan(t)| ,

u1 = x1(t−
1

2
|arctan(t)|), v1 = y1(t−

1

2
|arctan(t)|),

and

u2 = x2(t−
1

2
|arctan(t)|)

v2 = y2(t−
1

2
|arctan(t)|), t ≥ π

2
.

Then,

∥F (u)− F (v)∥ = ∥F (u1, u2)− F (v1, v2)∥

=

∥∥∥∥( sinu1 − sin v1
sinu2 − sin v2

)∥∥∥∥
= |sinu1 − sin v1|+ |sinu2 − sin v2|

≤ 2

∣∣∣∣u1 − v1
2

∣∣∣∣+ 2

∣∣∣∣u2 − u2
2

∣∣∣∣
= ∥u− v∥ , fF = 1.

As for the variable delay h = h(t),

h(t) =
1

2
|arctan(t)| ,

0 < 0.001 = h1 =
1

2
|arctan(t)| ≤ π

4
= h2,

h12 = h2 − h1 =
π
4 − 0.001,

h′(t) =
1

2 + 2t2
,

0 ≤ h′(t) ≤ 1

2
= h0 < 1.

Next, we derive that

(aA + gG + hH)(1− h0)− fF ∥B∥
= (24 + 1 + 1)(1− 2−1)− 5 = 13− 5 = 8 ≥ K2.

By the virtue of the above estimates, it follows that
the conditions (H1) and (H2) of Theorem 1 are
held. For this reason, the solution (x1(t), x2(t)) =
(0, 0) of the system of DDEs (11) is UA sta-
ble. Furthermore, ∥x(t)∥, the norm of solutions
of (11) are integrable.

B. Assumption

For the exponentially stability of the system of
ODEs (6), we need the below conditions.

(H3) There exist constants h0 from (4), aA from
(H1), and fF > 0, gG > 0, H0 > 0,
K2 > 0, eE > 0 such that

G(0) = 0, sgnxiGi(x) < 0asxi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and x ∈ Rn ,

(aA + gG + hH) ≥ eE .

Theorem 3. We suppose that conditions (H1)
and (H3) are held. Then the trivial solution of
the system (6) is exponentially stable.

Proof. Define a Lyapunov function (LF) ∆2 :=
∆2(t, x) by

∆2(t, x) := ∥x(t)∥ . (12)

This function is equivalent to

∆2(t, x) := |x1(t)|+ ...+ |xn(t)| .
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From this point of view, we see that the LF
∆2(t, x) is positive definite. The derivative of the
LF ∆2(t, x) of (12) along the system of ODEs (6)
gives that

d

dt
∆2(t, x) =

n∑
i=1

x′i(t)sgnxi(t+ 0).

Using conditions (H1), (H3) and doing some sim-
ple calculations, we obtain

n∑
i=1

sgnxi(t+ 0)x′i(t)

≤
n∑

i=1

aii(t) +
n∑

j=1,j ̸=i

|aji(t)|

 |xi(t)|

− ∥G(x(t))∥ − ∥H(t, x(t))∥
≤ − (aA + gG + hH) ∥x(t)∥
=− (aA + gG + hH)∆2(t, x).

Hence,

d

dt
∆2(t, x) ≤ − (aA + gG + hH)∆2(t, x)

Integrating the last inequality, we derive that

∥x(t)∥ = ∆2(t, x(t))

≤ ∆2(t0, x(t0)) exp [− (aA + gG + hH)] (t− t0) .

According to this inequality,

∥x(t)∥ ≤∆2(t0, x(t0))

× exp [− (aA + gG + hH)] (t− t0) , t ≥ t0.

This inequality verifies that the zero solution of
(6) is exponentially stable. □

Example 2. Consider the following two dimen-
sional system of non-linear ODEs, which is a spe-
cial case of (6):

(
x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
×
(

x1
x2

)
+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)
(13)

A comparison between the systems of ODEs (13)
and ODEs (6) gives that BF (x(t − h(t))) ≡
0.Next, A(t), G(x(t))and H(t, x(t)) are the same
as in Example 1. The estimates for the functions
A(t), G(x(t)) and H(t, x(t)) remain the same and
correct. As for the final step for this example, it
follows that

(aA + gG + hH) = (24 + 1 + 1) = 26 > 25 = eE .

According to the above discussions, it follows that
conditions (H1) and (H3) of Theorem 3 are sat-
isfied. Thus, the solution (x1(t), x2(t)) = (0, 0) of
the system of ODEs (13) is exponentially stable.

4. Instability

C. Assumption

As for the instability of (5), we need the below
conditions.

(H4) There exists a constant positive constant
āA such that

aii(t)−
n∑

j=1,j ̸=i

|aji(t)| ≥ āA for all t ∈ R+.

(H5) There exist constants h0 from (4), āA from
(H4) and fF > 0, gG > 0, H0 > 0, K2 > 0
such that

F (0) = 0, ∥F (v)∥ ≤ fF ∥v∥ for allv ∈ Rn,

G(0) = 0, sgnxiGi(x) > 0 as xi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) > 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and x ∈ Rn,

āA + gG + hH − (1− h0)
−1fF ∥B∥ > 0.

Theorem 4. We suppose that conditions (H4)
and (H5) are held. Then, the trivial solution of
the system of DDEs (5) is unstable.

Proof. Define a new LKF ∆3 := ∆3(t, xt) by

∆3(t, xt) := ∥x(t)∥ − γ1

t∫
t−h(t)

∥F (x(s))∥ ds, (14)

where γ1 ∈ R, γ1 > 0. It will be determined at
the below.

Next, the LKF (14) is equivalent to

∆3(t, xt) := |x1(t)|+ ...+ |xn(t)|

− γ1

t∫
t−h(t)

|f1(x(s))|ds− ...− γ1

t∫
t−h(t)

|fn(x(s))|ds.



98 O. Tunç / IJOCTA, Vol.13, No.1, pp.92-103 (2023)

From this point of view, the LKF ∆3(t, xt) satis-
fies the following relation:

∆3(t, xt) ≥ ∥x(t)∥ − γ1fF

t∫
t−h(t)

∥(x(s))∥ ds

≥ ∥x(t)∥ − γ1fFh(t) sup
t−h(t)≤s≤t

∥x(s)∥

≥ ∥x(t)∥ − γ1fFh1 sup
t−h(t)≤s≤t

∥x(s)∥

= [1− γ1fFh1] sup
t−h(t)≤s≤t

∥x(s)∥ > 0

provided that ∥x(t)∥ = sup
t−h(t)≤s≤t

∥x(s)∥, h1 <

(γ1fF )
−1 and ∥x(t)∥ ≠ 0.

Next, the differentiating the LKF ∆3(t, xt) of (14)
along (5) leads that

d

dt
∆3(t, xt) =

n∑
i=1

x′i(t)sgnxi(t+ 0)− γ ∥F (x(t))∥

+ γ ∥F (x(t− h(t)))∥ × (1− h′(t)).
(15)

For the first term of (15), using conditions
(H4), (H5) and doing some elementary calcula-
tions, we obtain

n∑
i=1

sgnxi(t+ 0)x′i(t)

≥
n∑

i=1

aii |xi(t)| −
n∑

i=1

n∑
j=1,j ̸=i

|aji| |xi(t)|

+
n∑

i=1

Gi(x(t))sgnxi(t+ 0)

+
n∑

i=1

Hi(t, x(t))sgnxi(t+ 0)

−
n∑

i=1

n∑
j=1

|bij | |Fj(x(t− h(t)))|

=
n∑

i=1

aii(t)−
n∑

j=1,j ̸=i

|aji(t)|

 |xi(t)|

+ ∥G(x(t))∥+ ∥H(t, x(t))∥
− ∥B∥ ∥F (x(t− h(t)))∥

≥āA ∥x(t)∥+ gG ∥x(t)∥+ hH ∥x(t)∥
− ∥B∥ ∥F (x(t− h(t)))∥ . (16)

Combining the inequalities (15), (16) and using
the condition 0 ≤ h′(t) ≤ h0 < 1, we derive that

d

dt
∆3(t, xt) ≥ āA ∥x(t)∥+ gG ∥x(t)∥+ hH ∥x(t)∥

− ∥B∥ ∥F (x(t− h(t)))∥ − γ1 ∥F (x(t))∥

+ γ1 ∥F (x(t− h(t)))∥ × (1− h′(t))

≥ (āA + gG + hH ) ∥x(t)∥
− ∥B∥ ∥F (x(t− h(t)))∥
− γ1fF ∥x(t)∥+ γ1(1− h0) ∥F (x(t− h(t)))∥ .

Let γ1 = (1− h0)
−1 ∥B∥. Then,

d

dt
∆3(t, xt) ≥

(
āA + gG + hH − (1− h0)

−1fF ∥B∥
)

× ∥x(t)∥ > 0.

Thus, the zero solution of the nonlinear system of
DDEs (5) is unstable. □

Example 3. Let us consider the system:(
x′1
x′2

)
=

(
25 + 1

1+t4
1

1+t4
1

1+t4
25 + 1

1+t4

)(
x′1
x′2

)
+

(
2x1 +

x1

1+x2
1

+2x2 +
x2

1+x2
2

)

+

(
3 2
2 3

)(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
,

(17)
where h(t) = 1

2 |arctan t| is the delay function,

t ≥ 2−1π.

A comparison between the systems of DDEs (17)
and DDEs (5) gives that

A(t) =

(
25 + 1

1+t4
1

1+t4
1

1+t4
25 + 1

1+t4

)
.

By the virtue of the matrix A(t), we derive that

aii(t)−
n∑

j=1,j ̸=i

|aji(t)| ≥ 25 = āA

since
a11(t)− |a21(t)|

= 25 +
1

1 + t4
− 1

1 + t4
≥ 25 = āA

and

a22(t)−|a12(t)| =
1

1 + t4
+25− 1

1 + t4
≥ 25 = āA.

Hence,

aii(t)−
2∑

j=1,j ̸=i

|aji(t)| ≥ āA = 25, ∀t ∈ R+.

As for the next step, we get

G(x) = G(x1, x2)

=

(
G1(x1, x2)
G2(x1, x2)

)
=

(
2x1 +

x1

1+x2
1

2x2 +
x2

1+x2
2

)
sgnx1G1(x) = sgnx1G1(x1, x2)

= 2x21 +
x21

1 + x21
> 0, x1 ̸= 0,
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sgnx2G2(x) = sgnx2G2(x1, x2)

= 2x22 +
x22

1 + x22
> 0, x2 ̸= 0,

∥G(x)∥ = ∥G(x1, x2)∥

=

∥∥∥∥( G1(x1, x2)
G2(x1, x2)

)∥∥∥∥ =

∥∥∥∥∥
(

2x1 +
x1

1+x2
1

2x2 +
x2

1+x2
2

)∥∥∥∥∥
=

∣∣∣∣2x1 + x1
1 + x21

∣∣∣∣+ ∣∣∣∣2x2 + x2
1 + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + x21

+ 2 |x2| −
|x2|

1 + x22
≥ |x1|+ |x2| = ∥x∥ , gG = 1 > 0.

Additionally, we have

H(t, x) = H(t, x1, x2)

=

(
2x1 +

x1

1+exp(t)+x2
1

2x2 +
x2

1+exp(t)+x2
2

)
,

sgnx1H1(t, x) = sgnx1H1(t, x1, x2)

= 2x21 +
x21

1 + exp(t) + x21
> 0, x1 ̸= 0,

sgnx2H1(t, x) = sgnx2H1(t, x1, x2)

= 2x22 +
x22

1 + exp(t) + x22
> 0, x2 ̸= 0.

∥H(t, x)∥ = ∥H(t, x1, x2)∥

=

∥∥∥∥∥
(

2x1 +
x1

1+exp(t)+x2
1

2x2 +
x2

1+exp(t)+x2
2

)∥∥∥∥∥ ,
=

∣∣∣∣2x1 + x1
1 + exp(t) + x21

∣∣∣∣
+

∣∣∣∣2x2 + x2
1 + exp(t) + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + exp(t) + x21

+ 2 |x2| −
|x2|

1 + exp(t) + x22
≥ |x1|+ |x2|
= ∥x∥ , hH = 1 > 0.

B =

(
3 2
2 3

)
, ∥B∥ = 5.

F (x(t− 1

2
|arctg(t)|)

= F (x1(t−
1

2
|arctg(t)| , x2(t−

1

2
|arctg(t)|)

=

(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
F (0) = 0, h(t) =

1

2
|arctan(t)| .

Let

u = x(t− 1

2
|arctan(t)| , u1 = x1(t−

1

2
|arctan(t)|)

and

u2 = x2(t−
1

2
|arctan(t)|), t ≥ π

2
.

∥F (u)∥ = ∥F (u1, u2)∥ =

∥∥∥∥( sinu1
sinu2

)∥∥∥∥
= |sinu1|+ |sinu2|

≤ |u1|+ |u2|
= ∥u∥ ,
fF = 1.

As for the variable delay

h = h(t) =
1

2
|arctan(t)| ,

the verifications in Example 1 for this function
are the same there, too.

Finally, we have that

(āA + gG + hH)(1− h0)− fF ∥B∥
= (25 + 1 + 1)(1− 2−1)− 5

= 13.5− 5 = 8.5 > 0.

By the virtue of the above estimates, it follows
that the conditions (H4) and (H5) of Theorem
4 are satisfied. For this reason, the solution
(x1(t), x2(t)) = (0, 0) of the system of DDEs (17)
is unstable.

5. Boundedness

For the bounded solutions of (3), we need to mod-
ify condition (H2) as the below:

(H6) There exist positive constants h0 and
aA from (4) and (H1), respectively, fF ,
gG, hH and a continuous function qQ ∈
C(R,R) such that

F (0) = 0,

∥F (u)− F (v)∥ ≤ fF ∥u− v∥ for all u, v ∈ Rn,

G(0) = 0, sgnxiGi(x) < 0

as

xi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and
x ∈ Rn,

∥Q(t, x(t), x(t− h(t)))∥ ≤ |qQ(t)| ∥x(t)∥ ,
(aA + gG + hH − |qQ(t)|)
×(1− h0)− fF ∥B∥ ≥ 0.
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Theorem 5. If conditions (H1) and (H6) are
held, then the solutions of the system of DDEs
(3) are bounded as t → +∞ .

Proof. By virtue of conditions (H1), (H6) and
the LKF ∆1(t, xt), we derive that

d

dt
∆1(t, xt) ≤− 1

1− h0

[
(aA + gG + hH)(1− h0)

−fF ∥B∥
]
∥x(t)∥

+ ∥Q(t, x(t), x(t− h(t)))∥

≤ − 1

1− h0

[
(aA + gG + hH − |qQ(t)|)

× (1− h0)− fF ∥B∥
]
∥x(t)∥ .

Hence, from condition (H6), it is clear that

d

dt
∆1(t, xt) ≤ 0.

Integrating this inequality, we obtain

∆1(t, xt) ≤ ∆1(t0, ϕ(t0)) ≡ K4 > 0, ϕ(t0) ̸= 0.
(18)

By virtue of the LKF ∆1(t, xt) and (18), we derive
that

∥x(t)∥ ≤ K4.

Next, it follows that

lim
t→+∞

∥|x(t)|∥ ≤ lim
t→+∞

K4 = K4.

Thus, the solutions of the system of nonlinear
DDEs (3) are bounded as t → +∞. This is the
end of proof of Theorem 5. □

Example 4. Consider the following perturbed
system of DDEs:(

x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
×
(

x1
x2

)
+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)

+

(
3 2
2 3

)
×
(

sinx1(t− 1
2 |arctan(t)|)

sinx2(t− 1
2 |arctan(t)|)

)

+

( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)
,

(19)

where h(t) = 1
2 |arctan t| is time-varying delay,

t ≥ 2−1π .

A comparison between the systems of DDEs (19)
and DDEs (3) shows that the functions A(t),
G(x(t)), H(t, x(t)), F (x(t − h(t))) and the con-
stant matrix B are the same as in Example 1.
From this point of view, the relations for the func-
tions A(t), G(x(t)), H(t, x(t)), F (x(t−h(t))) and
the matrix B remain the same and correct as in
Example 1.

For the remain calculations, we consider the func-
tion

Q(t, x, x(t− 1

2
|arctan(t)|))

=

( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)

∥Q(t, x, x(t− 1

2
|arctan(t)|))∥

=

∥∥∥∥∥
( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)∥∥∥∥∥
=

4 |sinx1|
4 + |arctan(t)|+ x21(t− 1

2 |arctan(t)|)

+
4 |sinx2|

4 + |arctan(t)|+ x22(t− 1
2 |arctan(t)|)

≤ [|x1|+ |x2|] = |qQ(t)| ∥x∥ ,
where

|qQ(t)| = 1,

∥x∥ = |x1|+ |x2| .
Next,

(āA + gG + hH − |qQ(t)|)(1− h0)− fF ∥B∥
= (24+1+1−1)(1−2−1)−5 = 12.5−5 = 7.5 > 0.

Thus, conditions (H1) and (H6) of Theorem 6 are
held. By virtue of the given discussions, we con-
clude that all the solutions of (19) are bounded as
t → ∞.

6. Contributions

In this section, we make comments to the contri-
butions of Theorems 1-5.

1) It follows that the systems of (1) and
(2) are particular cases of the systems of
DDEs (3) and DDEs (5). This is an im-
provement and a new contribution (see,
[17, 23]).

2) In [13, Theorem 1], the authors proved a
theorem on the AS of the linear system
of DDEs (1) using a suitable LKF as ba-
sic tool. Next, in [23], the authors proved
three results on the UAS, the integrabil-
ity and the boundedness of the solutions
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of the nonlinear system of DDEs (2) using
a suitable LKF.

In this paper, we proved five new the-
orems related to the UAS, the instability
and the integrability of solutions of the
nonlinear system of DDEs (5) by Theorem
1, Theorem 4 and Theorem 2, the expo-
nentially stability of zero solution of the
system of nonlinear ODEs (6) by Theo-
rem 3 and the boundedness of solutions
of the system of nonlinear DDEs (3) by
Theorem 5, respectively.

To prove Theorems 1, 2 and 5, the LKF

∆1(t, xt) := ∥x(t)∥+ γ

t∫
t−h(t)

∥F (x(s))∥ ds,

to prove Theorem 3, the LF

∆2(t, x) := ∥x(t)∥
and to prove Theorem 4, the LKF

∆3(t, xt) := ∥x(t)∥ − γ1

t∫
t−h(t)

∥F (x(s))∥ ds

were used as basic tools.
Indeed, these LKFs and LF lead

very suitable conditions for Theorem 1-
Theorem 5. Next, the instability and the
ES results are new, the other three results
are nonlinear generalizations of the former
results in the literature. These are some
other contributions to the topic and liter-
ature.

3) In this paper, we provide four examples,
which satisfy the conditions of Theorems
1-5, and, in particular cases, we also
show the applications of the Theorem 1-
Theorem 5.

4) The LKF ∆1(t, xt) implies to eliminate
the need to use the Gronwall’s inequality
for the boundedness of solutions at infin-
ity. Hence, the boundedness result, The-
orem 5, has weaker conditions and it is
also more general as well as has simple
conditions, which are more convenient for
applications.

7. Conclusion

In this article, the unperturbed nonlinear system
of DDEs (5) with variable delay, the perturbed
nonlinear system of DDEs (3) with variable delay
and the system of ODEs (6) were taken into con-
sideration. Here, five new results, i.e., Theorem 1
–Theorem 5, which are dealt with the qualitative
behaviors of trajectories of solutions called UAS,

instability and integrability of solutions of the un-
perturbed system of DDEs (5), the boundedness
of solutions of the perturbed system of DDEs (3)
and the exponentially stability of solutions of the
system of ODEs (6), were proved using the LKF
method for the delay systems (3), (5) and the sec-
ond method of Lyapunov for the system of ODEs
(6), respectively. In the proof of the bounded-
ness result, i.e., Theorem 5, it was not needed to
use the Gronwall’s inequality. This case allows
weaker conditions. Indeed, the novelty and the
contributions of the results of this paper are that
the results of this article are new and they have
weaker conditions than those available in the rel-
evant literature. This idea can be seen form the
items 1)-4). Finally, four examples, Example 1-
Example 4, were given to make clear the applica-
tions of our results.
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[6] Bohner, M., & Tunç O. (2022) Qualitative
analysis of integro-differential equations with
variable retardation. Discrete & Continuous
Dynamical Systems - B, 27(2), 639-657.

[7] Du, X. T. (1995). Some kinds of Lia-
punov functional in stability theory of RFDE.
Acta Mathematicae Applicatae Sinica, 11(2),
214–224.

[8] El-Borhamy, M., & Ahmed, A. (2020). Sta-
bility analysis of delayed fractional integro-
differential equations with applications of
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[16] Tunç, C. (2010). Stability and bounded of so-
lutions to non-autonomous delay differential
equations of third order. Nonlinear Dynam-
ics, 62(4), 945-953.
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