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Neural field models, typically cast as continuum integro-differential equations,
are widely studied to describe the coarse-grained dynamics of real cortical tis-
sue in mathematical neuroscience. Studying these models with a sigmoidal fir-
ing rate function allows a better insight into the stability of localised solutions
through the construction of specific integrals over various synaptic connectiv-
ities. Because of the convolution structure of these integrals, it is possible
to evaluate neural field model using a pseudo-spectral method, where Fourier
Transform (FT) followed by an inverse Fourier Transform (IFT) is performed,
leading to an identical partial differential equation. In this paper, we revisit a
neural field model with a nonlinear sigmoidal firing rate and provide an efficient
numerical algorithm to analyse the model regarding finite volume scheme. On
the other hand, numerical results are obtained by the algorithm.
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1. Introduction

The cortex has a structure which can be viewed
as a great number of macro and micro columns,
each of which encapsulates laminar substructures
and is considered as an elementary unit of the
cortex [1, 2]. Studying columnar organisation
of the cortex traces its roots back to a semi-
nal work of Mountcastle in the 20th century,
when clusters of neurons, that form cylinders
of 200 − 500µm, are aligned through cortical
layers [1, 3]. The 20th century witnessed two
breakthrough that shed lights on the foundations
of theoretical neuroscience: (i) large scale corti-
cal dynamics of the cortex relies on the dynam-
ics of individual neurons, (ii) individual neurons
can be accounted as electrical units and have
an essential role to conduct signals by reacting
to electrical current. Therefore the invention of
multi-electrode technology provided researchers
to characterise the resting state of the membrane
voltage of neurons in a cortical tissue. The devel-
opment of these techniques for cortical tissue had

lead new research manners to analyse the electro-
physiological investigations of synaptic transmis-
sion [3, 4]. Hence, large-scale spatio-temporal
dynamics of neural populations which were not
recognised by the scientific community till the
1980s, have been one of the primary sources in
theoretical neuroscience.

Neural field models have specifically been inves-
tigated to understand the behaviour of a real
cortical tissue in space and time. The history of
these models is based on Beurle’s pioneering work,
where the study of masses of cells in the brain
considering only excitatory neurons is provided,
in the 1950s [5]. The bases of modern versions
of these models have been conceived by Wilson
and Cowan [6, 7], Amari [8, 9] and Nunez [10] in
the late 1970s. Since their initial inception, neu-
ral fields have been widely analysed in one and
two dimensional systems. This has mostly en-
capsulated the mathematical investigations and
numerical analysis of space-time cortical patterns,
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and much has been studied about localised pat-
terns, global periodic states and travelling waves.
These tissue level models have shed lights into
understanding of many application areas includ-
ing large-scale brain rhythms [11], geometric vi-
sual hallucinations [12], motion perception [13]
and short term memory [14]. For more current
perspective for the analysis of neural field mod-
elling we refer reader to a comprehensive book
by Coombes et al. [15]. Neural field models have
been viewed spatially extended models to mimic
the macroscopic spatio-temporal dynamics of in-
teracting neurons and written in the form of par-
tial integro-differential equations. Using various
synaptic connectivity functions between neurons
and firing rate functions, these models are known
to support various solutions, e.g. localised struc-
tures as well as travelling waves observed in a
real cortical tissue. These continuum models have
non-local nature and have been widely analysed
numerically and analytically. Here we present a
numerical scheme to study space-time solutions
in neural fields. This provides an alternative as-
pect to solve the neural field equations given in
the form of an integro-differential equation and
comparable with its analytical representation.

Here we present an adapted numerical scheme
to obtain numerical approximation to the solu-
tions in neural fields. The numerical scheme is
based on the finite volume approach and first
we describe the discretisation process by working
on cell centered and collocated grid of meshes.
Then we provide an expression for the numerical
fluxes. By the calculation of fluxes, we obtain
matricial formulation. On the other hand, an
approximation of the average value of f on the
cell is calculated by the Gaussian quadrature.
Thereafter, the Patankar matrix is defined in the
matricial formulation and the system is solved by
a series approach together with the help of con-
trol volume.

This chapter is organised as follows. In Sec. 2,
we revisit a primer one dimensional neural field
model and summarise the previous results. Then,
in Sec. 3, an equivalent partial differential equa-
tion is derived with a pseudo-spectral method us-
ing Fourier Transform (FT) followed by an inverse
Fourier transform (IFT). Sec. 3 is dedicated to an
efficient numerical algorithm for the neural field
model in partial differential equation form with
an exponentially decaying synaptic kernel and
sigmoidal firing rate function. Lastly, in Sec. 5,
summary of the results is given with potential
future directions.

2. The PIDE model

In this section, we concentrate on a minimal one-
dimensional neural field equation that can be
written as a partial integro-differential equation
(PIDE) of the form

∂v(x, t)

∂t
= −v(x, t) +

∫
Ω

w(x− y)f(v(y, t)− κ)dy,

(1)
where Ω ⊆ R is a planar domain, x ∈ Ω and
t ∈ R+. Here the variable v stands for the synap-
tic activity of neuron population, the function w
represents the anatomical connectivity between
neurons and assumed that the connectivity de-
pends on the Euclidean distance |x − y|. The
function f denotes a sigmoidal type firing rate
and the constant parameter κ is the firing thresh-
old.

Typical forms for the connectivity function are
often considered using exponential functions such
that

lim
x→∞

w(x) = 0 and

∞∫
−∞

w(x)dx < ∞. (2)

Therefore the kernel describing the spatial distri-
bution of synaptic interactions can be chosen in
the simplest form of

w(x) =
1

2σ
e−|x|/σ, (3)

where w is chosen as symmetrical, e.g. w(x) =
w(−x) and continuous, and σ is a scaling pa-
rameter. This version of exponentially decay-
ing connectivity function is known to support
the generation of travelling front solutions which
connects high activity states to a low activity
states [16–18].

Besides, the firing rate non-linearity triggered
by the membrane voltage is generally chosen in a
smooth and monotonically increasing functional
form with

lim
x→−∞

f(v(x, t)) = 0 and lim
x→∞

f(v(x, t)) = 1.

(4)
Hence, we consider an example form of such firing
rate as

f(v(x, t)− κ) =
1

1 + e−α(v(x,t)−κ)
, (5)

where α represents the steepness parameter and
κ is the firing threshold. The form of the synaptic
kernel and firing rate function is given in Fig. 1.
Studying neural field models with given example
of firing rate non-linearity and connectivity often
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allows a good understanding of the solutions as
given in Fig. 2 and their stability.

(a)

(b)

Figure 1. The synaptic kernel (a)
and sigmoidal firing rate function
(b) mimicking the interactions in the
brain. Parameters are κ = 0.5, σ = 1
and µ = 1.5.

A simplification to the model described in Eq. (1)
is made by Amari, who considered a Heaviside
choice of firing rate: f(u) = H(u − κ) assuming
that f(v(x, t)) = 0 if v ≤ κ and f(v(x, t)) = 1
if v > κ. Here H stands for the Heaviside func-
tion. The front solution to neural field model
with a Heaviside firing rate has been studied by
Coombes et al. for interface dynamics [18], where
a typical front solution is considered as v(x, t) > κ
for x < x0(t) and v(x, t) ≤ κ for x ≥ x0(t). Here
x0(t) represents the evolution of interface con-
necting high activity state to a low activity state.

Although partial integro-differential equations
(PIDE) for neural field models described in
Eq. (1) are thoroughly studied in the literature
for various connectivity and firing rate functions,
one can also describe an identical equation of par-
tial differential equations (PDE). This link from
PIDE form to PDE form of the neural field model
can be efficiently used for more straight-forward
theoretical and numerical investigations [19, 20].
A large amount of analytical work has been per-
formed on Eq. (1). Although the cortex is actually
a two-dimensional domain, it is more realistic to

analyse neuronal system in two dimension. How-
ever, here we focus on a one-dimensional primer
to explain the numerical algorithm.

3. An equivalent PDE model

From now on our attention is directed in two folds.
Firstly, using the ideas presented by Laing and
Troy [20], we describe PDE which is identical to
PIDE given in Eq. (1). Secondly, we provide an
efficient numerical solution for the PIDE form.
Owing to the convolution structure in Eq. (1),
several methods have been developed to convert
PIDE form to an equivalent PDE form [14]. One
of these methods is applied using a Fourier trans-
form for the convolution of the synaptic kernel
and firing rate, manipulate the obtained equation.
Then an inverse Fourier Transform is performed
to transform the dynamics to an equivalent PDE
version of the model in Eq. (1). This technique
has been efficiently used to exploit dynamical sys-
tems with several standard tools [21, 22], as well
as allowing for a numerical analysis of spatio-
temporal neural fields in one and two dimensions.

A Fourier Transform of the convolution of synap-
tic kernel and firing rate functions is described
as the product of their Fourier transforms. We
now assume that v and vt are continuous and
integrable with x ∈ R and t ∈ R+, and follow the
ideas described in [14, 20]. Thus FT [v](p) can be
denoted as the Fourier transform of v(x) where p
is the transform variable. Here the Fourier trans-
form of the connectivity function w can be written
with a rational function of p2, e.g. A(p2)/B(p2),
where p denotes the Euclidean distance in Fourier
space. Using the properties of convolution and
applying FT to both sides of Eq. (1):

FT

[
∂v

∂t
+ v

]
= FT [w]FT [f(v − κ)], (6)

where FT [·] represents the Fourier transform.
Therefore, for the kernel given in Eq. (3), it can
be written that

FT [w] =
A(p2)

B(p2)
=

1

1 + σ2p2
. (7)

Then Eq. (6) can be given as

(1 + σ2p2)FT

[
∂v

∂t
+ v

]
= FT [f(v − κ)]. (8)

Taking the inverse Fourier transform, the model
becomes(
1− σ2 ∂2

∂x2

)(
∂v(x, t)

∂t
+ v(x, t)

)
= f(v(x, t)−κ),

(9)
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leading to

vt + v − σ2vtxx − σ2vxx = f(v − κ), (10)

where f is the sigmoidal firing rate nonlinear-
ity given in Eq. (5) and κ is a constant thresh-
old. Here we also used that FT [vxx] = −p2FT [v].
The partial differential equation given in Eq. (10)
is an equivalent version of the partial integro-
differential equation given in Eq. (1) with synap-
tic kernel in Eq. (3) and non-linear firing rate in
Eq. (5).

(a)

(b)

Figure 2. A bump solution u(x, t) at
various times: t = 10(black), t = 20
(blue), t = 27 (green), t = 100 (ma-
genta) is shown in (a). The region
that is highlighted with gray in (a) is
zoomed in (b). Parameters are κ =
0.5001, µ = 2.5, σ = 1 and the do-
main size is L = 6π. The initial condi-
tion is chosen as u(x, 0) = 2/ cosh(x).

In the following section we provide an efficient
numerical algorithm based on finite volume ap-
proach for solving Eq. (10) with the appropriate
conditions. We give detailed information about
the numerical approach for the convergence re-
sults which is an effective and alternative approx-
imation for such problems [23], [24].

4. Numerical investigation

The finite volume method is a well-known nu-
merical approach for describing partial differen-
tial equations and to evaluate in the algebraic

equations form. The typical description of the
method consists of discretisation process which is
for solving the partial differential equations. This
is acquired a system of algebraic equations. On
the other hand, the discretisation procedure can
be applied for a cell centered and collocated grid
of meshes depending on a geometrical and mesh
construction of the problem. Thus it is clearly
visible in the miscellaneous applications of the
method that it is of various types of numerical
algorithms regarding variable types of the equa-
tions and featured operators [25]. The method
also express the conservation laws of related to
the amount of unknowns in the equation which is
namely indicated by the flux. In a specific case,
this expression can be satisfied by the synaptic
activities in a neural field studies. Namely, the
flux which arrives to a control volume through
the synaptic connectivity is of the contrary di-
rection of the synaptic connectivity first existed
the control volume. Therefore, we understand
that the method is applied on real-world scenar-
ios regarding the geometrical construction of the
problem. As a specific example in our study, we
describe the 1D problem in the neural field which
is adapted to the cell centered meshes. Accord-
ingly, the synaptic activity of neuron population
in the scenario with a sigmoidal type firing rate
and the related parameters can be explained con-
cerning the meshes for the synaptic connectivities
on a planar domain.

In this section, we consider the finite volume
conceptualisation for the numerical investigation.
The aim is to investigate the numerical solution
of Eq. (10) with the suitable Dirichlet bound-
ary conditions. Particularly, we consider first the
discretisation procedure and we obtain an inter-
pretation for the fluxes. This leads us to figure
out a systematic approach for the calculation of
the fluxes which is represented by the Patankar
matrix in the matricial formulation.

4.1. Discretisation

We design the discretisation process on the cell
centered grids (see Fig. 3). First we consider
I ∈ N and the domain Ω has I cells. The
cells are organised by the point-wise structures
ϕi := [xi−1/2, xi+1/2] for i = 1, 2, ..., N with xi−1/2

and xi+1/2.

Here we generate the figure for a 1D domain
which is of the length L and it is discretised into
the same size of Nx number of cells [26]. The
size of the each cell is given as 0.1 and denoted
by ∆xi. We contemplate with the cell-centred
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finite volume method for the numerical concept.
Therefore, we visualise the domain with the po-
sition of the cell centered grids where interfaces
are given for the cells.

Figure 3. The discretised domain in
1D with L = 1 and Nx = 10.

Now, we design Eq. (10) on cell ϕi [27]. We also
apply Gauss’s Theorem and transform the equa-
tion into the following form [23].

∂

∂t

∫
ϕi

v(x, t) dx+

∫
ϕi

v(x, t) dx

− σ2 ∂3

∂x2∂t

∫
ϕi

v(x, t) dx− σ2 ∂2

∂x2

∫
ϕi

v(x, t) dx

= f(v(xi+1/2, t)− κ)− f(v(xi−1/2, t)− κ).

which is alternatively shown as

∫
ϕi

v(x, tn+1) dx

=

∫
ϕi

v(x, tn) dx+

∫ tn+1

tn

f(v(xi+1/2, t)− κ)

−
∫ tn+1

tn

f(v(xi−1/2, t)− κ),

where ∆t := tn+1 − tn is defined for any tn and
its successive tn+1 in the cell edges for a suitable
number n. Then we divide equation (11) to 1

∆xi

where ∆xi = L.

1

∆xi

∫
ϕi

v(x, tn+1) dx =
1

∆xi

∫
ϕi

v(x, tn) dx

+
1

∆xi

(∫ tn+1

tn

f(v(xi+1/2, t)− κ)

−
∫ tn+1

tn

f(v(xi−1/2, t)− κ)

)
,

where the numerical scheme is stated for the al-
ternative form as

V n+1
i = V n

i − ∆t

∆xi
(Fn

i+1/2 − Fn
i−1/2), (11)

where V n
i shows us a new form of the cell averages.

It is also an approximation to the average value
of v at anytime tn := n∆t [28]. Alternatively, we

show

V n
i ≈ 1

∆xi

∫ xi+1/2

xi−1/2

v(x, tn) dx ≡

1

∆xi

∫
ϕi

v(x, tn) dx.

(12)

We denote Fn
i+1/2 which is an approximation to

the numerical flux through out the cell.

Fn
i+1/2 ≈

1

∆t

∫ tn+1

tn

f(v(xi+1/2, t)− κ). (13)

On the other hand, we modify Eq. (11) as in the
following form:

V n+1
i − V n

i

∆t
+

Fn
i+1/2 − Fn

i−1/2

∆xi
= 0. (14)

4.2. Numerical flux approximation

The concept of the finite volume method is in-
cluded approximation to the fluxes. The conser-
vation law is also taken into consideration. The
average flux calculation is formulated by the law
and also this is counted for the each cell construc-
tion [28], [29].

Here we provide an expression for the numeri-
cal flux approximation. Let us consider xi+1/2 be
an inner interface.

Fn
i+1/2 =

1

2
[f(V n

i−1)− f(V n
i )], (15)

where we have a formulation for the numerical
flux. Now we define the finite volume approach
on Eq. (11) and we get

Fn+1
i = Fn

i − ∆t

2∆xi
[f(V n

i+1)− f(V n
i−1)]. (16)

Then we obtain the flux expression and a different
version of the expression is written as follows

Fn+1
i =

1

2
(Fn

i−1−Fn
i+1)−

∆t

2∆xi
[f(V n

i+1)−f(V n
i−1)],

(17)

where Fn
i = 1/2(Fn

i−1 − Fn
i+1) is the average flux

of Fn
i−1 and Fn

i+1, respectively. Now we consider
the Taylor series of v(x, tn+1) and we get
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v(x, tn+1) = v(x, tn) + ∆tvt(x, tn)

+
1

2
(∆t)2vtt(x, tn) + ...

= v(x, tn)−∆tAvx(x, tn)

+
1

2
(∆t)2A2vxx(x, tn) + ...,

where A is the matrix which includes constant
coefficients. We show the matricial formulation
regarding the Taylor series results. Let us con-
sider the first three terms of the series which are
from above. We describe an essential equation
from the finite difference scheme and we have the
following equation [30,31].

V n+1
i =V n

i − ∆ t

∆xi
A(V n

i+1 − V n
i−1)

+
1

2

(
∆ t

2∆xi

)2

A2(V n
i−1 − 2V n

i + V n
i+1).

(18)

Now we apply finite volume scheme which is de-
fined in Eq. (11). This gives us a clear statement
for the approximation to the fluxes.

Fn
i−1/2 =

1

2
A(V n

i−1 − V n
i )− 1

2

∆ t

∆xi
A2(V n

i − V n
i−1).

(19)

Thus we approximate the flux functions numeri-
cally in time tn+1/2 = tn + 1

2∆ t. Briefly, we have

Fn
i−1/2 = f(V

n+1/2
i−1/2 ). (20)

For the cell centered and collocated grid of mesh,

we have the form of V
n+1/2
i−1/2 at 1

2∆xi and
1
2∆ t as

follows:

V
n+1/2
i−1/2 =

1

2
(V n

i−1+V n
i+1)−

1

2

∆ t

∆xi
[f(V n

i+1)−f(V n
i−1)].

Now we reduce the system and consider Eq. (11).
By applying the upwind method we have

V n+1
i = V n

i − β∆ t

∆xi
(V n

i+1 − V n
i ),

and we also have

Fn
i−1/2 = β

−
V n
i + β

+
V n
i−1,

where β is a constant and [β]− = min(β, 0) and
[β]+ = max(β, 0). Therefore we define the im-
plicit form of the Patankar matrix A = [Aij ] [32],

[33], [34].

A =



V n+1
i−1 − V n

i−1 +
β∆ t
∆xi

(V n
i − V n

i−1)

for j = i− 1,

V n+1
i − V n

i + β∆ t
∆xi

(V n
i+1 − V n

i )

for j = i,

V n+1
i+1 − V n

i+1 +
β∆ t
∆xi

(V n
i+2 − V n

i+1)

for j = i+ 1,
0, otherwise.

Besides, we define the vectors:

V =
[
v1 v2 · · · vN

]T
,

B1 =
[
f1 f2 · · · fN

]T
,

B2 =
[
k1 · · · kN−1 kN

]T
,

where V is the vector of unknowns, B1 is defined
for the f function values and B2 is the vector
of conditions. Consequently, we solve the system
AV = B1 + B2 by using Gaussian Elimination
and we obtain the numerical results [35,36].

4.3. Convergence results

In this section, we consider the stability, consis-
tency, and convergence of the method and imple-
ment numerical results of Eq. (10) with Dirichlet
boundary conditions [37], [38], [39]. We show
the difference between the approximate solution
and the exact solution by the following statement.

Definition (local truncation error): Suppose
that the approximate solution of the problem in
(10) is replaced by the exact solution. Then by
the help of ∆xi, we obtain

τi =
1

∆x2i
[vi−1 − 2vi−1 + vi+1 − fi(v − κ)], (21)

which is the local truncation error for the approx-
imation. The alternative representation is shown
by applying the Taylor series expansion [38] and
(21) becomes

τi =
1

12
∆x2i v

′′′
i +O(h4), (22)

where τi = O(h2) as h → 0 [38]. Now, we con-
sider the following statement for the stability of
the method [40].

Theorem 1. The numerical scheme is considered
as stable to solve the problem which is defined in
together with the Dirichlet boundary conditions.

Proof. The proof can be found in Section 8, LeV-
eque, R. J. (2002) [39]. □

We also present the consistency of the method by
||τh|| → 0 as h → 0 where ||τh|| = O(hp) for
h = ∆xi in p-Norm and the method is consid-
ered as consistent by this approach [38]. Besides,
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we apply the discretisation on the cell centered
and collocated grid of meshes. The numerical cal-
culation of the fluxes gives us an understanding
on matricial formulation of the implicit Patankar
matrix and we have series approach to obtain the
numerical solution. Briefly, the numerical algo-
rithm is applied for the solution of the problem
in this direction [41], [42]. We also apply L1 er-

ror, EN =

∑
i∈ϵel

|υN
i −υn

i ||ϕi|∑
i∈ϵel

|υn
i ||ϕi| , and the error in L∞

norm, EN =

∑
i∈ϵel

|υN
i −υn

i |∑
i∈ϵel

|υn
i |

, respectively. where

ϵel is the cell index set, υni and υNi are the cell
mean values of exact and approximation, respec-
tively [41] at t = tfinal. In the case the exact
solution is not given, we describe truncation er-
ror which supports the finding for the comparison
formula in L1 and L∞ norms.

We apply the procedure on Eq. (10) together
with the Dirichlet boundary conditions given as
0 at t = tfinal and the parameters are given as
κ = 0.5, and σ = 1.

Table 1. L1 and L∞ convergence re-
sults at x = 0.2.

N L1 error L∞ error
5 0.2514e–04 0.3509e–05
10 0.6004e–05 0.7420e–06
25 0.5038e–06 0.4081e–07
50 0.2203e–06 0.1295e–08

Table 2. L1 and L∞ convergence re-
sults at x = 0.5.

N L1 error L∞ error
5 0.2110e–04 0.3172e–05
10 0.5312e–05 0.7359e–06
25 0.4012e–06 0.4019e–07
50 0.1207e–07 0.1260e–08

Numerical results are obtained by MATLAB and
Maple computer programs which show us the ap-
proximation in details. As we can see in the Ta-
ble (1), (2), and (3) the approximation gives us
more suitable results when the iteration increases.
More specifically, we have efficient results after
N=5 iteration which gives us an understanding
about the performance result of the numerical
scheme.

Table 3. L1 and L∞ convergence re-
sults at x = 1.0.

N L1 error L∞ error
5 0.1003e–04 0.2113e–05
10 0.4072e–05 0.5087e–06
25 0.2843e–06 0.2809e–07
50 0.0927e–07 0.0891e–08

Figure 4. L1 convergence results at
x = [0, 1] for N = 5, 10, 25, and 50.

On the other hand, Figure 4 shows us L1 error
results and we have decreasing error values by
space. In the approximation we consider the an-
alytical findings comparison with the numerical
scheme result for our particular case. Figure 5
presents L∞ error findings which is of similar ef-
fect regarding increasing x values at the final time.

Figure 5. L∞ convergence results at
x = [0, 1] for N = 5, 10, 25, and 50.

5. Conclusion

In this paper, we revisited a well known neu-
ral field model with a sigmoidal firing rate. We
firstly provided some biological and theoretical
background for the neural field model and sum-
marised a numerical algorithm for partial differ-
ential equations. Using the ideas previously pre-
sented by Laing [14, 20], the technique to trans-
form partial integro-differential equation to an
equivalent form of partial differential equation is
applied using Fourier transform followed by an
inverse Fourier transform. Considering the equiv-
alent PDE form and setting vt = 0, stationary
bump solutions of (1) can be obtained. Here, an
exponentially decaying connectivity function and
sigmoidal firing rate are taken into account for
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the convlution integral, see Fig. 1. The spatial
derivatives in new form of the neural field model
given by Eq. (9) can be computed using finite
difference methods in the x direction. The sys-
tem given in Eq. (9) is solved in terms of a one
dimensional Mass matrix M , e.g. in the form of
Mu′ = F (u) that allows user to compute matrix
inverse in MATLAB. The PIDE model given in
Eq. (1) and PDE model given in Eq. (9) are
equivalent.

The numerical approach for the solution of neu-
ral fields used in this paper is based on the finite
volume method which encapsulates a discretisa-
tion process to solve partial differential equation.
Depending on the geometrical structure of the
problem, a cell centered and collocated grid of
meshes can be used for the discretisation. This
approach is complemented with the Patankar ma-
trix in the matricial formulation for the numerical
investigation. As seen from the convergence re-
sults given in Figs. 4 and 5, numerical approach
presented in this paper may provide an alter-
native direction to solve one dimensional neural
fields with a better approximations when iteration
increases. One straightforward extension of this
work would be to consider adaptation [43,44]. In
fact, the experiments carried on cortical tissues
imply that there are many metabolic processes
that restrain the excitatory dynamics of neural
networks. This processes differ from inhibition
and called as spike frequency adaptation. The
linear adaptation has been a popular modulation
for investigating neural response in mean field
models. Thus the numerical investigation used
in this paper can be extended to include a two
component neural field model including synap-
tic activity of a neuron population and spike
frequency adaptation, see [16, 19, 20]. Another
possible extension would be a numerical investi-
gation of a two dimensional neural field model. In
fact, cortex is a two dimensional structure with a
few millimeter thickness. Due to its laminar or-
ganisation, the cortex is usually regarded as a two
dimensional structure. Therefore it is significant
to revisit a two dimensional version of the model
and determine the conditions to apply the numer-
ical investigation used here. On the other hand,
the numerical investigation of a two dimensional
neural field model with and without adaptation
may be computationally expensive and challeng-
ing to perform in terms of algebratic equations
resulting from numerical method.
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Aytül Gökçe is a Research Fellow at Ordu Univer-

sity in Turkey, working in the broad area of applied
mathematics. Aytül’s research is mainly devoted to
dynamical systems modelling in biology and medicine,
and the understanding of patterning in real life prob-
lems.

https://orcid.org/0000-0003-1421-3966
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