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1. Introduction

The fundamental idea behind fractional calculus
is simply to replace the traditional integer orders
in integral and differential operators with arbi-
trary constant orders. Although it seems an el-
ementary consideration, fractional order opera-
tors play an important role in describing many
physical phenomena and have interesting impli-
cations. [1, 2].

The introduction of the notion of variable-order
(VO) integral and differential operators together
with their some main properties was firstly initial-
ized by Samko and Ross [3] in 1993. By these op-
erators, one can define the order of the fractional
integral and derivative as a function of indepen-
dent variables such as time and space variables.
In view of the characterization of the non-fixed
kernel, this operators allows us to designate the

memory and hereditary features of natural phe-
nomena in a better way. By virtue of its poten-
tial efficiency to model real world problems, this
topic has attracted many researchers in ongoing
decades. In this direction, lots of papers have
been published on different branches of science
and engineering such as viscoelasticity, medicine,
signal processing, control systems, so on [4–7].
Since its difficulty in getting an explicit solutions
for fractional differential equations of VO, many
papers have been devoted to find numerical solu-
tions for this type of problems. See [8–13] and the
references cited therein. Hovewer very few paper
on existence, uniquness and stability properties
of fractional variable order differential equations
have been published recently [14–20].

When we conduct an overview of the literature,
increasing number of authors from several areas
of the scientific community have focused on inves-
tigating the existence and uniqueness of fractional
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constant order differential and integro-differential
equations [21–26].

In [27], Devi et al. studied the following Caputo’s
fractional boundary value problem by taking into
consideration the monotone iterative technique.{

CDqu = F (t, u, Iq(u)) +G(t, u, Iq(u)),
g (u (0) , u (T )) = 0

where 0 < q < 1. As a consequence, it has been
shown that the established monotone flows con-
verge uniformly to the coupled extremal solutions
of the considered problem.

In [28], some sort of stability results were studied
for fractional integro-differential equations involv-

ing Hilfer fractional derivative HDα,β;ψ
a+ (.) with

0 < α < 1 and 0 ≤ β ≤ 1.
In particular, Bai and Kong [29] considered the
existence of the solutions for the following initial
value problem{

CDα
a+y(t) = f(t, y(t), Iαa+y(t)), t ∈ [a, b],

y(a) = xa,

by employing the upper and lower solution ap-
proach. The operators CDα

0+ and Iα0+ stand for
the Caputo-Hadamard fractional derivative and
Hadamard fractional integral operators of order
α ∈ (0, 1], respectively.

Motivated by the preceding works, we deal with
the following boundary value problem on J :=
[0, b] such that{

CDu(t)
0+ y(t) = Φ(t, y(t), I

u(t)
0+ y(t)),

y(0) = 0, y(b) = 0,
(1)

where 1 < u(t) ≤ 2 and CDu(t)
0+ , I

u(t)
0+ are consid-

ered as in the sense of Caputo fractional derivative
and integral of variable-order u(t), respectively.

Our purpose is to investigate the existence and
uniqueness of the solution of equation (1). We
further show the stability of the solution in the
Ulam-Hyers-Rassias (UHR) sense.

2. Mathematical Preliminaries

This part covers some fundamental concepts and
lemmas that will be needed to understand the
main theorems discussed in the subsequent sec-
tions.We also introduce some of the specifications
for variable order operators.
Let C(J ,R) denote the the set of all real-valued
continuous functions from J into R. For an el-
ement χ ∈ C(J ,R), define the standart norm
‖χ‖ = Sup{|χ(t)| : t ∈ J }, and with this norm
C(J ,R) becomes a Banach space.

For −∞ < t1 < t2 < +∞, let the mappings to
be defined u(t) : [t1, t2] → (0,+∞) and v(t) :

[t1, t2] → (n − 1, n). Then, the left Riemann-
Lioville(R-L) fractional integral of VO u(t) ( [30])
is given as

I
u(t)

t+1
m(t) =

∫ t

t1

(t− s)u(t)−1

Γ(u(t))
m(s)ds, t > t1, (2)

as well as the left VO Caputo derivative ( [30]) is
defined by

CDv(t)

t+1
m(t) =

∫ t

t1

(t− s)n−v(t)−1

Γ(n− v(t))
m(n)(s)ds, t > t1.

(3)

These definitions, as expected, correspond with
the usual R-L fractional integral and Caputo frac-
tional derivative, respectively, when u(t) and v(t)
are constant.see e.g. [3, 30,31].

Lemma 1. ( [31]) Let σ1, σ2 > 0, t1 > 0,
m ∈ L(t1, t2) and CD

t+1
m ∈ L(t1, t2). Then, dif-

ferential equation
CDσ1

t+1
m(t) = 0

has the following general solution

m(t) = α0+α1(t−t1)+α2(t−t1)2+...+αn−1(t−t1)n−1

where n − 1 < σ1 ≤ n and α` (` = 0, 1, ..., n − 1)
are taken as arbitrary real numbers.

From that Lemma we deduce the next relation

Iσ1

t+1

CDσ1

t+1
m(t) = m(t) + α0 + α1(t− t1)

+ α2(t− t1)2 + ...+ αn−1(t− t1)n−1

Furthermore,
CDσ1

t+1
Iσ1

t+1
m(t) = m(t).

and

Iσ1

t+1
Iσ2

t+1
m(t) = Iσ2

t+1
Iσ1

t+1
m(t) = Iσ1+σ2

t+1
m(t).

Remark 1. ( [32]) It’s worth noting that the
semigroup property isn’t mostly satisfied by gen-
eral functions u(t), v(t), i.e.,

I
u(t)

t+1
I
v(t)

t+1
m(t) 6= I

u(t)+v(t)

t+1
m(t).

Definition 1. A function µ ∈ C(J ,R) is said to
be a Cδ class function if it belong to the set

Cδ(J ,R) =
{
µ ∈ C((0, b] ,R) : tδµ ∈ C(J ,R)

}
for 0 ≤ δ ≤ 1.

Lemma 2. [13] Assume that u : J → (1, 2) is
a continuous function and m ∈ Cδ(J ,R). Then

the fractional integral I
u(t)
0+ m(t) of variable order

exists for each point on J .

Lemma 3. ( [13]) Let u ∈ C(J , (1, 2)) and

m ∈ C(J ,R) then I
u(t)
0+ m(t) ∈ C(J ,R).

We now give the well-known Schauder fixed-point
result.
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Theorem 1. ( [31]) Assume that E is a Banach
space and Q is a nonempty convex subset of E
and moreover F : Q −→ Q is compact, and con-
tinuous map. Then, there exist fixed points of F
in Q.

Definition 2. ( [23]) The equation (1) is called
Ulam-Hyers-Rassias (UHR) stable with respect
to the function ψ ∈ C(J ,R+) if there exists
cΦ > 0, such that for any ε > 0 and for each
solution z ∈ C1(J ,R) of the inequality

|CDu(t)
0+ z(t)− Φ(t, z(t), I

u(t)
0+ z(t))| ≤ εψ(t), t ∈ J ,

there exists a solution y ∈ C(J ,R) of equation
(1) with

|z(t)− y(t)| ≤ cΦεψ(t), t ∈ J .

3. Existence Results

Let us begin with introducing the following as-
sumptions:

(H1): Let P = {J1 := [0, b1],J2 := (b1, b2],J3 :=
(b2, b3], ...Jn := (bn−1, b]} be a partition of
the interval J , and let u(t) : J → (1, 2] be
a piecewise constant function with respect
to P, i.e.,

u(t) =
n∑
`=1

u`I`(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
where 1 < u` ≤ 2 are constants, and I` is the in-
dicator of the interval J` := (b`−1, b`],
` = 1, 2, ..., n, (with b0 = 0, bn = b) such that

I`(t) =

{
1, for t ∈ J`,
0, for elsewhere.

(H2): Let tδΦ : J × R× R→ R be a continuous
function (0 ≤ δ ≤ 1), there exist constants
K, L > 0, satisfying the inequality

tδ|Φ(t, w1, z1)− Φ(t, w2, z2)| ≤ K|w1 − w2|
+L|z1 − z2|,

For each ` ∈ {1, 2, ..., n}, the set E` = C(J`,R),
represents the Banach space of continuous func-
tions y : J` → R equipped with the sup norm

‖y‖E` = sup
t∈J`
|y(t)|,

where ` ∈ {1, 2, ..., n}
We now analyze BVP defined in (1). On account
of (3), the solution of (1) can be stated as∫ t

0

(t− s)1−u(t)

Γ(2− u(t))
y′′(s)ds = Φ(t, y(t), I

u(t)
0+ y(t)), (4)

for t ∈ J . If we employ (H1), the foregoing equa-
tion(4) can be written as∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′(s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y′′(s)ds = Φ(t, y(t), Iu`

0+y(t))

(5)
for t ∈ J`, ` = 1, 2, ..., n.
The solution to the BVP (1) will be introduced
in the following definition.

Definition 3. BVP (1) has a solution, if there
are functions y`, ` = 1, 2, ..., n, such that y` ∈
C([0, b`],R) satisfying equation (5) and boundary
conditions y`(0) = 0 = y`(b`).

Based on the preceding observation, BVP (1) can
be represented as in (4) and, with considering
J`, ` ∈ {1, 2, ..., n} as in (5).
Since we define y(t) identically 0 for t ∈ [0, b`−1),
then the equation (5) is expressed as

CDu`
b+`−1

y(t) = Φ(t, y(t), Iu`
b+`−1

y(t)), t ∈ J`.

We shall deal with following BVP{
CDu`

b+`−1

y(t) = Φ(t, y(t), Iu`
b+`−1

y(t)),

y(b`−1) = 0, y(b`) = 0,
(6)

for t ∈ J`. On the way to achieve our purpose,
the upcoming lemma will play an important role.

Lemma 4. A function y ∈ E` establishes a so-
lution for (6) if and only if y fulfills the integral
equation

y(t) = − t− b`−1

b` − b`−1

[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

]
t=b`

+ Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t)).

(7)

Proof. We first assume that y ∈ E` is solution
of the problem (6). If we apply the fractional op-
erator Iu`

b+`−1

to both sides of (6) and considering

Lemma 1, we obtain

y(t) = α1 + α2(t− b`−1) + 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×Φ
(
s, y(s), Iu`

b+`−1

y(s)
)
ds,

for t ∈ J`. By y(b`−1) = 0, we get α1 = 0.
Taking into account another boundary condition
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y(b`) = 0, it follows that

0 = α2(b` − b`−1)

+
1

Γ(u`)

∫ b`

b`−1

(b` − s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds

α2 = −(b` − b`−1)−1Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

∣∣∣∣
t=b`

Then, we observe that

y(t) = −(b` − b`−1)−1(t− b`−1)

×
[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

]
t=b`

+ Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t)), t ∈ J`.

On the contrary, let y ∈ E` be the solution of
integral equation (7). Taking into account the
continuity of function tδΦ and using Lemma (1),
we conclude that y is the solution of the problem
(6). �

We can now show our first existence result which
is based on Theorem (1)

Theorem 2. Assume that conditions (H1), (H2)
hold, and if

2(b`−b`−1)u`−1(b1−δ` −b1−δ`−1 )

(1−δ)Γ(u`)
(K + L

(b`−b`−1)u`

Γ(u`+1) ) < 1,

then, there exist at least one solution for the prob-
lem (6) on J .

Proof. Let us set the operator W : E` → E` such
that for t ∈ J`
Wy(t) = −(b` − b`−1)−1(t− b`−1)

×
[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

] ∣∣∣∣
t=b`

+
1

Γ(u`)

∫ t

b`−1

(t− s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds.

The operator W : E` → E` described in 3.1 is well
defined, as seen by the properties of fractional in-
tegrals and the continuity of function tδΦ.
Let

R` ≥
2η0(b`−b`−1)u`

Γ(u`)

1−
2(b`−b`−1)u`−1(b1−δ

`
−b1−δ
`−1

)

(1−δ)Γ(u`)
(K+L

(b`−b`−1)u`

Γ(u`+1)
)

,

with
η0 = sup

t∈J`
|Φ(t, 0, 0)|.

We generate the set

BR` = {y ∈ E` : ‖y‖E` ≤ R`}.

It is clear that BR` is nonempty, closed, convex
and bounded.

Now, we will see that W satisfies the claims of
the Theorem (1). We demonstrate it by using
following stages.

STEP 1: We show that W (BR`) ⊆ (BR`).
For y ∈ BR` and by (H2), we get

|Wy(t)| ≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

= 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×(K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+
2η0(b`−b`−1)u`

Γ(u`)

≤ 2(b`−b`−1)u`−1

Γ(u`)

∫ b`
b`−1

s−δ

×(K + L
(b`−b`−1)u`

Γ(u`+1) )|y(s)|ds

+
2η0(b`−b`−1)u`

Γ(u`)

≤ 2(b`−b`−1)u`−1(b1−δ` −b1−δ`−1 )

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )R`

+
2η0(b`−b`−1)u`

Γ(u`)

≤ R`,
which yields that W (BR`) ⊆ BR` .
STEP 2: W is continuous.
We assume that the sequence (yn) converges to y
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in E`. Then,
|(Wyn)(t)− (Wy)(t)|

≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

s−δ(b` − s)u`−1

× (K|yn(s)− y(s)|+ LIu`
b+`−1

|yn(s)− y(s))|)ds

≤ 2K
Γ(u`)
‖yn − y‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+ 2L
Γ(u`)
‖Iu`
b+`−1

(yn − y)‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2K
Γ(u`)
‖yn − y‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1) ‖yn − y‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤
(

2K
Γ(u`)

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1)

)
‖yn − y‖E`

×
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2(b`−b`−1)u`−1(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

×
(
K + L

(b`−b`−1)u`

Γ(u`+1)

)
‖yn − y‖E` i.e., we obtain

‖(Wyn)− (Wy)‖E` → 0 as n→∞.
As a consequence, the operator W is a continuous
on E`.

STEP 3: W is compact.
We will prove that W (BR`) is relatively compact,
which means that W is compact. In view of step
1, W (BR`) is uniformly bounded. Namely, we
have W (BR`) = {W (y) : y ∈ BR`} ⊂ BR` thus
for each y ∈ BR` we get ‖W (y)‖E` ≤ R` show-
ing that W (BR`)is bounded. Finally, It must be
demonstrated the equicontinuity of W (BR`).
For t1, t2 ∈ J`, t1 < t2 and y ∈ BR` , we write

|(Wy)(t2)− (Wy)(t1)|

=
∣∣− (b`−b`−1)−1(t2−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× Φ(s, y(s), Iu`
b+`−1

y(s))ds

+ 1
Γ(u`)

∫ t2
b`−1

(t2 − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds

+
(b`−b`−1)−1(t1−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× Φ(s, y(s), Iu`
b+`−1

y(s))ds

− 1
Γ(u`)

∫ t1
b`−1

(t1 − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds
∣∣

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1
∣∣Φ(s, y(s), Iu`

b+`−1

y(s))

− Φ(s, 0, 0)
∣∣ds

+
(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, 0, 0)|ds+ 1

Γ(u`)

∫ t2
t1

(t2 − s)u`−1

× |Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, 0, 0)|ds

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))

− Φ(s, 0, 0)|ds

+
(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, 0, 0)|ds+ 1

Γ(u`)

∫ t2
t1

(t2 − s)u`−1
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× |Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, 0, 0)|ds.

≤ (b`−b`−1)−1

Γ(u`)
((t2 − b`−1)− (t1 − b`−1))

×
∫ b`
b`−1

(b` − s)u`−1s−δ(K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+
η0(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1ds

+ 1
Γ(u`)

∫ t1
b`−1

s−δ
(

(t2 − s)u`−1 − (t1 − s)u`−1
)

× (K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+ η0

Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
ds

+ 1
Γ(u`)

∫ t2
t1
s−δ(t2 − s)u`−1

× (K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+ η0

Γ(u`)

∫ t2
t1

(t2 − s)u`−1ds

≤ (b`−b`−1)u`−2

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
× (K‖y‖E` + L‖Iu`

b+`−1

y‖E`)
∫ b`
b`−1

s−δds

+
η0(b`−b`−1)u`−1

Γ(u`+1)

(
(t2 − b`−1)− (t1 − b`−1)

)
+ 1

Γ(u`)
(K‖y‖E` + L‖Iu`

b+`−1

y‖E`)

×
∫ t1
b`−1

s−δ((t2 − t1)u`−1)ds

+ η0

Γ(u`)

(
(t2−b`−1)u`

u`
− (t2−t1)u`

u`
− (t1−b`−1)u`

u`

)
+ (t2−t1)u`−1

Γ(u`)
(K‖y‖E` + L‖Iu`

b+`−1

y‖E`)
∫ t2
t1
s−δds

+ η0

Γ(u`)
(t2−t1)u`

u`

≤ (b`−b`−1)u`−2(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

× ((t2 − b`−1)− (t1 − b`−1))

× (K‖y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖y‖E`)

+
η0(b`−b`−1)u`−1

Γ(u`+1)

(
(t2 − b`−1)− (t1 − b`−1)

)
+
(

(t11−δ−b`−1
1−δ)(t2−t1)u`−1

(1−δ)Γ(u`)

)
× (K‖y‖E` + L

(b`−b`−1)u`

Γ(u`+1) ‖y‖E`) + η0

Γ(u`+1)

×
(

(t2 − b`−1)u` − (t2 − t1)u` − (t1 − b`−1)u`
)

+ (t21−δ−t11−δ)(t2−t1)u`−1

(1−δ)Γ(u`)

× (K‖y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖y‖E`) + η0(t2−t1)u`

Γ(u`+1)

≤
(

(b`−b`−1)u`−2(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

(K + L
(b`−b`−1)u`

Γ(u`+1) )

× ‖y‖E` +
η0(b`−b`−1)u`−1

Γ(u`+1)

)
×
(

(t2 − b`−1)− (t1 − b`−1)
)

+
(
t21−δ−b`−1

1−δ

(1−δ)Γ(u`)
(K + L

(b`−b`−1)u`

Γ(u`+1) )‖y‖E`
)

× (t2 − t1)u`−1

+ η0

Γ(u`+1)

(
(t2 − b`−1)u` − (t1 − b`−1)u`

)
Hence ‖(Wy)(t2)−(Wy)(t1)‖E` → 0 as |t2−t1| →
0. It implies that W (BR`) is equicontinuous.

As a consequence of the Theorem (1), the prob-
lem (6) has at least a solution ỹ` in BR` .
Let

y` =

 0, t ∈ [0, b`−1],

ỹ`, t ∈ J`,
(8)

We know that y` ∈ C([0, b`], X) defined by (8)
satisfies the equation∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′` (s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y`
′′(s)ds = Φ(t, y`(t), I

u`
0+y`(t)),

for t ∈ J`, concluding that y` is a solution of (5)
with y`(0) = 0, y`(b`) = ỹ`(b`) = 0.

Then,

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2

.

.

.

.

yn(t) =

{
0, t ∈ [0, b`−1],
ỹ`, t ∈ J`

constitutes a solution for BVP(1).
The principle of Banach contraction is used to ar-
rive at the following result. �

Theorem 3. Assume that the assumptions (H1),
(H2) hold and if

2(b`
1−δ − b`−1

1−δ)(b` − b`−1)u`−1

(1− δ)Γ(u`)

×
(
K +

L(b` − b`−1)u`

Γ(u` + 1)

)
< 1 (9)

then the problem (6) has at most one solution in
E`.
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Proof. The Banach contraction concept will be
used to demonstrate the unique fixed point for W
specified in Theorem (3).
For y1(t), y2(t) ∈ E`, it follows that

|(Wy1)(t)− (Wy2)(t)|

≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×
(
K|y1(s)− y2(s)|+ LIu`

b+`−1

|y1(s)− y2(s))|
)
ds

≤ 2K
Γ(u`)
‖y1 − y2‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+ 2L
Γ(u`)
‖Iu`
b+`−1

(y1 − y2)‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2K
Γ(u`)
‖y1 − y2‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1) ‖y1 − y2‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤
(

2K
Γ(u`)

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1)

)
‖y1 − y2‖E`

×
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×
(
K +

L(b`−b`−1)u`

Γ(u`+1)

)
‖y1 − y2‖E`

Therefore, by considering (9), the operator W
is a contraction. Employing Banach contraction
mapping, we result in that W has only one fixed
point, say it ỹ` ∈ E`, which also concludes that
the problem (6) has got unique solution.
We let

y` =

 0, t ∈ [0, b`−1],

ỹ`, t ∈ J`,
(10)

We know that y` ∈ C([0, b`],R) defined by (10)
satisfies the equation∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′` (s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y`
′′(s)ds = Φ(t, y`(t), I

u`
0+y`(t)),

for t ∈ J`, which yields that y` is a unique solu-
tion of (5) with y`(0) = 0, y`(b`) = ỹ`(b`) = 0.

This led us to

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2

.

.

.

.

yn(t) =

{
0, t ∈ [0, b`−1],
x̃`, t ∈ J`

which is the unique solution of the boundary value
problem (1). �

4. Ulam-Hyers-Rassias stability

Theorem 4. Suppose that the conditions (H1),
(H2), together with (9) hold. Assume further that

(H3): The function ψ ∈ C(J`,R+) have increas-
ing property and there exists λψ > 0 such
that

Iu`
b`−1

+ψ(t) ≤ λψψ(t)

then, under these assumptions, the equation (1)
has UHR stability with respect to ψ

Proof. Suppose that z ∈ C(J`,R) is a solution
of the following inequality∣∣CDu`

b`−1
+z(t)− Φ(t, z(t), Iu`

b`−1
+z(t))

∣∣ ≤ εψ(t),(11)

for t ∈ J`. Let us denote y ∈ C(J`,R) to be the
unique solution of the problem{

CDu`
b`−1

+y(t) = Φ(t, y(t), Iu`
b`−1

+y(t)), t ∈ J`
y(b`−1) = 0, y(b`) = 0

By using Lemma (4), we have

y(t) = −(b` − b`−1)−1(t− b`−1)

Γ(u`)

∫ b`

b`−1

(b` − s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds

+
1

Γ(u`)

∫ t

b`−1

(t− s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds
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By integrating both sides of (11) and utilizing
(H3), we find∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds
∣∣∣

≤ ε
∫ t
b`−1

(t−s)u`−1

Γ(u`)
ψ(s)ds

≤ ελψψ(t)

In addition, we get for each t ∈ J`
|z(t)− y(t)|

=
∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds
∣∣∣

≤
∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds
∣∣∣

+
(b`−b`−1)−1(t−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, z(s), Iu`
b+`−1

z)− Φ(s, y(s), Iu`
b+`−1

y)|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, z(s), Iu`
b+`−1

z)− Φ(s, y(s), Iu`
b+`−1

y)|ds

≤ λψεψ(t)

+
(b`−b`−1)−1(t−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×(K|z(s)− y(s)|+ LIu`
b+`−1

|z(s)− y(s)|)ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1s−δ

×(K|z(s)− y(s)|+ LIu`
b+`−1

|z(s)− y(s)|)ds

≤ λψεψ(t) +
(b`−b`−1)u`−1

Γ(u`)
)

×(K‖z − y‖E` + L‖Iu`
b+`−1

(z − y)‖E`
∫ b`
b`−1

s−δds

+
(b`−b`−1)u`−1

Γ(u`)
(K‖z − y‖E` + L‖Iu`

b+`−1

(z − y)‖E`)

×
∫ t
b`−1

s−δds

≤ λψεψ(t) +
(b`−b`−1)u`−1(b`

1−δ−b`−1
1−δ)

(1−δ)Γ(u`)

×(K‖z − y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖z − y‖E`)

+
(b`−b`−1)u`−1(t1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

×(K‖z − y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖z − y‖E`)

≤ λψεψ(t) +
2(b`−b`−1)u`−1(b`

1−δ−b`−1
1−δ)

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )‖z − y‖E`
which gives

‖z − y‖E`

×
(

1− 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )
)

≤ λψεψ(t)

For each t ∈ J`, we arrive at the following relation

‖z − y‖E`

≤ λψεψ(t)

(1−
2(b`

1−δ−b`−1
1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)
(K+L

(b`−b`−1)u`

Γ(u`+1)
))

= [1− 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )]−1λψεψ(t)

:= cΦεψ(t)

which concludes that the equation (6) admits
UHR stability with respect to ψ for each i ∈
{1, 2, ..., n}.
Consequently, main problem (1) has UHR sta-
bility with respect to ψ. �

5. Example

Consider the fractional boundary value problem
that follows:



76 A. Refice, M. S. Souid, A. Yakar / IJOCTA, Vol.11, No.3, pp.68-78 (2021)


CDu(t)

0+ y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|Iu(t)
0 y(t)|)

,

y(0) = 0, y(2) = 0.
(12)

for t ∈ J := [0, 2],
Let

Φ(t, y, z) =
t−

1
3 e−t

(ee
t2

1+t + 4e2t + 1)(1 + y + z)

,

(t, y, z) ∈ [0, 2]× [0,+∞)× [0,+∞) and

u(t) =


3
2 , t ∈ J1 := [0, 1],

9
5 , t ∈ J2 :=]1, 2].

(13)

Then, we have

t
1
3 |Φ(t, w1, z1)− Φ(t, w2, z2)|

=

∣∣∣∣∣ e−t

(ee
t2

1+t +4e2t+1)

(
1

1+w1+z1
− 1

1+w2+z2

)∣∣∣∣∣
≤ e−t(|w1−w2|+|z1−z2|)

(ee
t2

1+t +4e2t+1)(1+w1+z1)(1+w2+z2)

≤ e−t

(ee
t2

1+t +4e2t+1)

(|w1 − w2|+ |z1 − z2|)

≤ 1
(e+5) |w1 − w2|+ 1

(e+5) |z1 − z2|.

As a result, with δ = 1
3 and K = L = 1

e+5 , the

assumption (H2) is satisfied.
By (13), solution of the given problem (12) can
be split into two parts as follows

CD
3
2

0+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
3
2
0 y(t)|)

,

t ∈ J1,

CD
9
5

1+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
9
5
0 y(t)|)

,

t ∈ J2.

For t ∈ J1, we begin by looking at the following
boundary value problem:

CD
3
2

0+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
3
2
0 y(t)|)

,

y(0) = 0, y(1) = 0.
(14)

We are in position to check whether the condition
(9) is satisfied or not

(b1
1−δ−b01−δ)(b1−b0)u1−1

(1−δ)Γ(u1)

(
2K + 2L(b1−b0)u1

Γ(u1+1)

)
= 2

2
3

(e+5)Γ( 3
2

)

(
1 + 1

Γ( 5
2

)

)
' 0.7685 < 1

Let ψ(t) = t
1
2

Iu1

0+ψ(t) =
1

Γ(3
2)

∫ t

0
(t− s)

1
2 s

1
2ds

≤ 1

Γ(3
2)

∫ t

0
(t− s)

1
2ds

≤ 2

3Γ(3
2)
ψ(t) := λψψ(t).

It shows that the assumption (H3) holds with

ψ(t) = t
1
2 and λψ = 2

3Γ( 3
2

)
.

Regarding Theorem (3), the problem (14) has a
unique solution y1 ∈ E1, and from Theorem (4)
the solution of (14) is UHR stable.
For t ∈ J2, the problem (12) can be written in
the following way

CD
9
5

1+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
9
5
0 y(t)|)

,

y(1) = 0, y(2) = 0.
(15)

We see that
(b2

1−δ−b11−δ)(b2−b1)u2−1

(1−δ)Γ(u2)

(
2K + 2L(b2−b1)u2

Γ(u2+1)

)
= 2

2
3−1

2
3

Γ( 9
5

)
2
e+5

(
1 + 1

Γ( 14
5

)

)
' 0.3913 < 1

Thus, the condition (9) is satisfied.
Also

Iu2

1+ψ(t) =
1

Γ(9
5)

∫ t

1
(t− s)

4
5 s

1
2ds

≤ 1

Γ(9
5)

∫ t

1
(t− s)

4
5ds

≤ 5

9Γ(9
5)
ψ(t)

:= λψψ(t).

Therefore, the condition (H3) is satisfied with

ψ(t) = t
1
2 and λψ = 5

9Γ( 9
5

)
.

Taking into account of Theorem (3), the problem
(15) has a unique solution ỹ2 ∈ E2, and from The-
orem (4) the equation (15) has UHR stability.
It is known that

y2(t) =

{
0, t ∈ J1

ỹ2(t), t ∈ J2.

Hence, by considering definition (3), the bound-
ary value problem (12) has got a unique solution

y(t) =


y1(t), t ∈ J1,

y2(t) =

 0, t ∈ J1,
ỹ2(t), t ∈ J2.

Eventually, according to Theorem (4), the equa-
tion (12) is UHR stable with respect to ψ.
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6. Conclusion

We study some qualitative properties for a class
of nonlinear fractional boundary value problems
involving variable order operators. Since the ex-
istence and uniqueness as well as stability results
to variable-order equations is rarely discussed in
the literature, all of the outcomes in this paper
have a great deal of potential for contributing to
future researches.
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