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The Korteweg–De Vries (KdV) equation has always provided a venue to study
and generalizes diverse physical phenomena. The pivotal aim of the study is to
analyze the behaviors of forced KdV equation describing the free surface criti-
cal flow over a hole by finding the solution with the help of q-homotopy analysis
transform technique (q-HATT). he projected method is elegant amalgamations
of q-homotopy analysis scheme and Laplace transform. Three fractional oper-
ators are hired in the present study to show their essence in generalizing the
models associated with power-law distribution, kernel singular, non-local and
non-singular. The fixed-point theorem employed to present the existence and
uniqueness for the hired arbitrary-order model and convergence for the solution
is derived with Banach space. The projected scheme springs the series solution
rapidly towards convergence and it can guarantee the convergence associated
with the homotopy parameter. Moreover, for diverse fractional order the physi-
cal nature have been captured in plots. The achieved consequences illuminates,
the hired solution procedure is reliable and highly methodical in investigating
the behaviours of the nonlinear models of both integer and fractional order.
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1. Introduction

Mankind is always looking for innovation, devel-
opment, novelty, modernization and modification
in science and technology to lead daily life in a
convenient manner. In this connection, mathe-
matics is the basic, essential and pivotal tool and
which aid us to study, investigate and predict the
essence of life associated with surrounding na-
ture. Among this tool, calculus with differential
and integral operators is the most efficient and
favourable instrument and it has been recanalized

most elegant discipline. Most of the concept in
nature associated with the rate of change, varia-
tion and modification are necessitates differential
calculus. Recently, many researchers came with
limitations of classical concept particularly to
capture power-law, non-local, non-singular, het-
erogeneities, exponential decay, fading memory,
fatigue effect, and other functions. Later, math-
ematicians suggested an old tool and which is
rooted soon after the classical concept, called frac-
tional calculus (FC). Many senior pioneers prear-
ranged the reputation of FC and proposed distinct
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notions and properties [1–15]. In a while, the
fundamental theory and extensive claims of es-
sential properties are broadly employed to model
diverse physical mechanisms and everyday prob-
lems [16–22].

The essence of studying the mathematical models
with differential equations of fractional and inte-
ger order is always a hot topic, and hence many
researchers are magnetized towards the new ap-
proaches with numerical and analytical methods.
For instance, authors in [23] find the invariant
solution for Bogoyavlensky-Konopelchenko equa-
tion, the fractional-reaction diffusion trimolecu-
lar models is studied in [24], the fractional-order
Gross–Pitaevskii equations are examined with the
help of unified method by researchers in [25].
Similarly, authors derived interesting results for
Calogero-Bogoyavlenskii-Schif [26] and coupled
Korteweg–de Vries equations [27] with similar
techniques. To show the essence of the Lie sym-
metry analysis, authors in [28] investigated about
the Bratu Gelfand model, the effect of fractional
derivatives are illustrated by authors to capture
the stimulating results associated with fifth-order
Schrodinger equation [29], COVID-19 [30], Mac-
cari systems [31], chaotic system [32], the math-
ematical model of Tumour invasion and metasta-
sis [33], and modified coupled Korteweg–de Vries
system [34]. The Lump and optical solitons solu-
tions are derived by researchers in [35] with the
analytical method, and authors in [36] derived
some stimulating results associated with bipar-
tite graph and fractional operator. The projected
method is hired by the scholars to investigate
the system associated with Jaulent–Miodek sys-
tem with energy-dependent Schrödinger poten-
tial [37], the epidemic model of childhood disease
[38], liquids with gas bubbles models [39], the Za-
kharov–Kuznetsov equation in dusty plasma [40],
and Degasperis–Procesi equations [41].

In a two-dimensional channel flow, the impact of
bottom configurations on the free-surface waves is
investigated with the help of the forced Korteweg-
de Vries equation. The bottom topography
plays a vital part in the study of shallow-water
waves, and which can significantly evaluate the
behaviours of wave motions [42, 43]. Shallow wa-
ter or long waves are the waves in water shal-
lower than 1/20 their actual wavelength. When
the bottom configuration is more complex, the in-
terplay between the bottom topography and soli-
tary waves can demonstrate more stimulating dy-
namics of the free surface waves. When the rigid
bottom of the channel has some obstacles and
for an incompressible and inviscid fluid, the two-
dimensional channel flow with free surface waves

have been studied [44, 45]. Fluid flows over an
obstacle, the forcing approximately with the KdV
equation can portray the development of the free
surface. The FKdV equation is very important
while describing the nature sine Gordon equa-
tion as well as the nonlinear Schrödinger equa-
tion. Further, the proposed model has numerous
applications in the connected branches of math-
ematics and physics. This equation is consid-
ered an essential tool to study the propagation of
short laser pulses in optical fibres, atmosphere dy-
namics, geostrophic turbulence and magnetohy-
drodynamic waves [46, 47]. Particularly, it offers
stimulating results associated to physical prob-
lems such as acoustic waves on a crystal lattice,
tsunami waves over obstacles, and shallow-water
waves over rocks.

Here, we consider the forced KdV equation with
the free water surface elevation measured u (x, t)
on critical flow over a hole from undisturbed wa-
ter level and which introduce and nurtured by Wu
in 1987 [48], and presented as follows:
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where Fr is Froude number and it also calls as the
critical parameter, h is the sea mean water depth,
f (x) is the external forcing term and define as

f (x) = pa(x)
ρg + b (x). Here, pa(x)

ρg is the surface

air pressure, and b (x) is rigid bottom topogra-

phy and is defined by b (x) = −0.1e−
xβ

4 − 1. The
Froude number (Fr) plays an important role in
Eq. (1), since its value elucidates the kind of crit-
ical flows over the localised obstacle. Specifically,
for > 1, = 1 and < 1 respectively represent the
flow is considered as supercritical, trans-critical
and subcritical. In the rigid bottom topogra-
phy b (x), two different kinds of hole examined,
namely for β = 2 and β = 8. The behaviours
of b (x) for two distinct cases is cited in Figure
1. These cases respectively signify the hole is ex-
pected an inverse of bell-shaped and the hole is
more flattened at the bottom as well as wider.
Authors in [49], considered the simplified above
equation by eliminating surface air pressure and
presented it as follows
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In the literature, we have diverse fractional op-
erators and the most familiarly used are includ-
ing Riemann–Liouville (RL), Caputo [3], Caputo-
Fabrizio (CF) [50] and Atangana–Baleanu (AB)
[51] operators. However, mathematicians and sci-
entists are always looking and searching for the
tool which can help to derive and find the re-
quired consequences at a particular situation in
specific context. In this regard, each earlier pro-
posed concepts have their own confines. Includ-
ing, the RL operator be unsuccessful to admit the
universal truth of derivative and then M. Caputo
suggested new notion which overcame this draw-
back. Recently, researchers cited some additional
properties need to be incorporate with this opera-
tor and many new fractional operators with their
own merits are suggested by mathematicians.

Recently, many researchers are hired them as
generalizing tool to investigate diverse phenom-
ena and achieved some stimulating consequences
[6, 16, 43]. Particularly, these operators aid us
to investigate the long-range memory, hetero-
geneities, exponential decay and non-local and
non-singular, non-Gaussian without a steady-
state and crossover behaviour. Now, we consider
the fractional-order forced KdV (FF-KdV) equa-
tion by trading the time derivative with three
fractional operators. Now, the FF-KdV equation
is defined as follows
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t u (x, t) = −c

([
(Fr − 1)− 3

2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (3)

CF
0 Dα

t u (x, t) = −c
([

(Fr − 1)− 3
2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (4)

ABC
a Dα

t u (x, t) = −c
([

(Fr − 1)− 3
2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (5)

where α ( 0 < α ≤ 1) is fractional-order. The
considered model offers an interesting insight into
diverse physical phenomena and hence it magne-
tizes researchers with different tools to present
their viewpoints with corresponding derived con-
sequences. For instance, authors in model [52]
find the analytic solutions to the projected model;
author in [53] presents some interesting result for
the proposed model; considering the model for
waves generated by topography, authors in [49,54]
find the approximated analytical solution by using
the HAM; authors in [55] investigated the consid-
ered problem and presented dynamics of trapped

solitary waves; lines and pseudospectral solutions
has been investigated by authors in [56].

The hired scheme is a blend of Laplace transform
(LT) with homotopy based scheme [57, 58]. The
uniqueness of q-HATT is that it does not require
assumptions, perturbations, conversion of nonlin-
ear to linear and PDE to ODE [59]. Moreover, it
is the generalization of many methods (results at-
tained by this technique is a particular case for the
value of parameters associated to method). The
projected algorithm has been employed due to its
efficiency and accuracy to examine the extensive
classes of complex as well as nonlinear models
and problems and also for the system of equa-
tions [60–67]. Recently, many interesting conse-
quences are derived by using the projected scheme
while analyzing the real-world problem.

The rest of the manuscript is systematized as fol-
lows: We followed the next section by basics and
essential notions of both FC and LT. In Section 3,
the solution for the hired model with three frac-
tional operators are presented and also the exis-
tence and uniqueness of solutions with two frac-
tional operators for the model is presented using
Banach space within the frame of fixed-point the-
ory. With the aid of attained outcomes and corre-
sponding consequences, the discussion about the
results is presented in Section 4 and finally, the
concluding remarks on the present study are pre-
sented in the lost segment.

2. Preliminaries

Here, we recall few basic notions of FC [3, 50, 51,
68,69]:
Definition 1. The Caputo fractional derivative
of f ∈ Cn−1 is presented for n ∈ N as

Dα
t f (t) =

dnf (t)

dtn
, α = n ∈ N,

=
1

Γ(n− α)

∫ t

0
(t− ϑ)n−α−1f (n) (ϑ) dϑ, n− 1 < α < n .

(6)

Definition 2. The fractional Caputo-Fabrizio
(CF) derivative in Caputo sense for a function
f ∈ H1 (a, b) (b > a) is presented as follows [68]

CFC
0 Dα

t (f (t)) (7)

=
M [α]

1− α

∫ t

0
f
′
(ϑ) exp

[
−α (t− ϑ)
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dϑ,

where M [α] (M [0] =M [1] = 1) is a normaliza-
tion function.

Definition 3. The fractional Atangana-Baleanu-
Caputo derivative for f ∈ H1 (a, b) (b > a) is
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Figure 1. Nature of b (x) at β = 2 and 8.
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Definition 4. The fractional AB integral is pre-
sented as
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+ α
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∫ t
a f (ϑ) (t− ϑ)α−1dϑ. (9)

Definition 5. The Laplace transform (LT ) for
a Caputo fractional derivative Dα

t f (t) is defined
for (n− 1 < α ≤ n), as

L [Dα
t f (t)] = sαF (s)−

n−1∑
r=0
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(
0+
)
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where F (s) is LT of f(t).

Note: According to [68], the following must hold
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which gives M (α) = 2
2−α . By the assist of the

above equation researchers in [68] proposed a
novel Caputo derivative for 0 < α < 1 as fol-
lows
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Definition 6. The LT for a CF derivative
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by
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Theorem 1. The Lipschitz conditions for the RL
and AB derivatives are respectively held the fol-
lowing results [51]
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Theorem 2. The fractional-order differential
equation ABC

a Dα
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lution [51] and which is
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B[α]s (t)

+ α
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3. Solution for FKDV equation

The considered solution procedure is presented
for the FKDV equation with three fractional op-
erators to find the series solution. Further, for
both CF and AB fractional operators existence
and uniqueness is derived with fixed point theory.

3.1. Caputo Sense

Consider the equation defined in Eq. (3)
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u (x, 0) = − 2ex
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Taking LT on Eq. (18) and using Eq. (19), we
get



56 P. Veeresha, M. Yavuz, C. Baishya / IJOCTA, Vol.11, No.3, pp.52-67 (2021)
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At H(x, t) = 1, the deformation equation pre-
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On employing inverse LT on Eq. (22), one can
get

um (x, t) = kmum−1 (x, t) + }L−1 {Rm [−→u m−1]} .
(24)

On simplifying the above equations by assist of
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with initial conditions Eq. (19). Taking LT on
Eq. (26) and by the assist of Eq. (19), we get
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Here, the existence and uniqueness are illustrated
with CF operator for the considered Eq. (26) as
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t [u (x, t)] = Q (x, t, u) , (31)
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Now, using Eq. (31) and results derived in [46],
we obtained
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Then we have from [41] as follows
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φi (x, t). (39)

Then we have

‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

=

∥∥∥∥ 2 (1− α)

(2− α)M (α)
(Q (x, t, un−1))

−Q (x, t, un−2) +
2α

(2− α)M (α)
(40)∫ t

0
(Q (x, t, un−1)−Q (x, t, un−2)) dζ

∥∥∥∥ .
Application of the triangular inequality, Eq. (40)
reduces to
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‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

=
2 (1− α)

(2− α)M (α)

‖(Q (x, t, un−1)−Q (x, t, un−2))‖

+
2α

(2− α)M (α)
(41)∥∥∥∥∫ t

0
(Q (x, t, un−1)−Q (x, t, un−2)) dζ

∥∥∥∥ .
The Lipschitz condition satisfied by the kernel t1,
then

‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

≤ 2 (1− α)

(2− α)M (α)
Ψ
∥∥φ(n−1) (x, t)

∥∥ (42)

+
2α

(2− α)M (α)
Ψ

∫ t

0

∥∥φ(n−1) (x, t)
∥∥ dζ.

�

By the aid of the above result, we state the fol-
lowing result:

Theorem 4. If we have specific t0, then the solu-
tion for Eq. (26) will exist and unique. Further,
we have

2 (1− α)

(2− α)M (α)
Ψ +

2α

(2− α)M (α)
Ψ t0 < 1.

Proof. Let u (x, t) is the bounded functions ad-
mitting the Lipschitz condition. Then, we get by
Eqs . (41) and (42)

‖φi (x, t)‖ ≤ ‖un (x, 0)‖ (43)[
2 (1− α)

(2− α)M (α)
Ψ +

2α

(2− α)M (α)
Ψ t

]n
.

Therefore, for the obtained solution, continuity
and existence are verified. Now, to prove the Eq.
(43) is a solution for Eq. (26), we consider

u (x, t)− u (x, 0) = un (x, t)−Kn (t) . (44)

Let us consider

‖Kn (t)‖ = ‖ 2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q(x, t, un−1))

+
2α

(2− α)M (α)

∫ t

0
(Q (x, ζ, u)−Q (x, ζ, un−1)) dζ‖

≤ 2 (1− α)

(2− α)M (α)
‖(Q (x, t, u)−Q (x, t, un−1))‖

+
2α

(2− α)M (α)

∫ t

0
‖(Q (x, ζ, u)−Q (x, ζ, un−1))‖ dζ

≤ 2(1−α)
(2−α)M(α)Ψ ‖u− un−1‖

+ 2α
(2−α)M(α)Ψ ‖u− un−1‖ t. (45)

This process gives

‖Kn (t)‖

≤
(

2 (1− α)

(2− α)M (α)
+

2α

(2− α)M (α)
t

)n+1

Ψn+1M.

Similarly, at t0 we can obtain

‖Kn (t) ‖ ≤ (46)(
2 (1− α)

(2− α)M (α)
+

2α

(2− α)M (α)
t0

)n+1

Ψn+1M.

As n → ∞, from Eq. (46), ‖Kn (t)‖ → 0 pro-

vided 2(1−α)
(2−α)M(α) + 2α

(2−α)M(α) t0 < 1. Next, for

the solution of the projected model, we prove the
uniqueness. Suppose u∗ (x, t) is another solution,
then

u (x, t)− u∗ (x, t)

=
2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q (x, t, u∗)) (47)

+
2α

(2− α)M (α)

∫ t

0
(Q (x, ζ, u)−Q (x, ζ, u∗)) dζ.

Now, employing the norm on the above equation
we get

‖u (x, t)− u∗ (x, t)‖

=

∥∥∥∥ 2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q (x, t, u∗))

+
2α

(2− α)M (α)∫ t

0
(Q (x, ζ, u)−Q (x, ζ, u∗)) dζ

∥∥∥∥
≤ 2 (1− α)

(2− α)M (α)
Ψ ‖u (x, t)− u∗ (x, t)‖

+
2α

(2− α)M (α)
Ψ t ‖u (x, t)− u∗ (x, t)‖ . (48)

On simplification

‖u (x, t)− u∗ (x, t)‖ (49)(
1− 2(1−α)

(2−α)M(α)Ψ − 2α
(2−α)M(α)Ψ t

)
≤ 0.

From the above condition, it is clear that
u (x, t) = u∗ (x, t), if
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(
1− 2(1−α)

(2−α)M(α)Ψ − 2α
(2−α)M(α)Ψ t

)
≥ 0.

(50)

Hence, Eq. (50) proves our required result. �

3.3. Atangana-Baleanu Sense

Consider the equation defined in Eq. (5)

ABC
a Dα

t u (x, t) + c(

[
(Fr − 1)− 3

2

u (x, t)

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
) = 0, 0 < α ≤ 1, (51)

with initial conditions (19). Taking LT on Eq.
(51) and using Eq. (19), we have

L [u (x, t)] =
1

s

(
− 2ex

(1 + ex)2

)
− c

B [α](
1− α+

α

sα

)
L{
[
(Fr − 1)− 3

2

u

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
}. (52)

Now, N is defined as

N [ϕ (x, t; q)]

= L [ϕ (x, t; q)] +
1

s

(
2ex

(1 + ex)2

)
+

c

B [α]

(
1− α+

α

sα

)
L{
[
(Fr − 1)− 3

2

ϕ (x, t; q)

h

]
∂ϕ (x, t; q)

∂x

−h
2

6

∂3ϕ (x, t; q)

∂x3
− 1

2

∂b (x)

∂x
}. (53)

The deformation equation at H(x, t) = 1, is given
as follows

L [um (x, t)− kmum−1 (x, t)] = }Rm [−→u m−1] , (54)

where

Rm [−→u m−1]

= L [um−1 (x, t)] +

(
1− km

n

){
1

s

(
2ex

(1 + ex)2

)}
+

c

B [α]

(
1− α+

α

sα

)
L{(Fr − 1)

∂um−1

∂x

− 3

2h

m−1∑
i=0

ui
∂um−1−i
∂x

− h2

6

∂3um−1

∂x3
− 1

2

∂b (x)

∂x
}.

(55)

Now, by the help of the initial condition, we can
derive

u1 (x, t) = }
(

1− α+
αtα

Γ [α+ 1]

)

(c(
6e2x (−1 + ex)

(1 + ex)5h
−

ex
(
−1 + 11ex − 11e2x + e3x

)
h2

3(1 + ex)5

−0.025e−
x2

4 x+
2ex (−1 + ex) (−1 + Fr)

(1 + ex)3 )),

...

In the segment, the existence and uniqueness are
illustrated for the considered equation associated
with AB operator. We have from Eq. (51),

ABC
a Dα

t u (x, t) = G (x, t, u) , (56)

and the above equation is considered as

ABC
0 Dα

t [u (x, t)] = G (x, t, u). (57)

We have from Eq. (57) and Theorem 2

u (x, t)− u (x, 0) =
(1− α)

B (α)
G (x, t, u) (58)

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, u) (t− ζ)α−1dζ.

Theorem 5. The kernel G admits the Lip-
schitz condition and contraction if 0 ≤(
c
(

(Fr − 1) δ − 3
4hδ (a+ b)− h2

6 δ
3 − 1

2δξ
))

< 1

satisfies.

Proof. To prove the theorem, let us consider the
two functions u and u1, then

‖G (x, t, u)− G (x, t, u1)‖

= ‖ c((Fr − 1)
∂

∂x
[u (x, t)− u (x, t1)]

− 3

2h

[
u (x, t)

∂u (x, t)

∂x
− u (x, t1)

∂u (x, t1)

∂x

]
−h

2

6

∂3

∂x3
[u (x, t)− u (x, t1)]− 1

2

∂b (x)

∂x

∥∥∥∥
≤
∥∥∥∥c (Fr − 1) δ − 3

4h
δ [u (x, t)− u (x, t1)]

−h
2

6
δ3 − 1

2

∂b (x)

∂x

∥∥∥∥ ‖u (x, t)− u(x, t1)‖

≤ c
(

(Fr − 1) δ − 3

4h
δ (a+ b)− h2

6
δ3 − 1

2
δξ

)
×‖u (x, t)− u (x, t1)‖ , (59)

where a = ‖u‖ , b = ‖u1‖ (since u and u1

are the bounded functions) and ‖b (x)‖ = ξ
is also a bounded function. Putting η =
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c
(

(Fr − 1) δ − 3
4hδ (a+ b)− h2

6 δ
3 − 1

2δξ
)

in Eq.

(59), then

‖G (x, t, u)− G (x, t, u1)‖
≤ η ‖u (x, t)− u(x, t1)‖ . (60)

By the assist of forgoing relation, the Lipschitz
condition is achieved for G. Further, we can see

that if 0 ≤
(
σ2

2 δ
2 + λ

(
a2 + b2 + ab

))
< 1, which

leads to contraction. The recursive form of Eq.
(60) is presented as

un (x, t) =
(1− α)

B (α)
G (x, t, un−1) (61)

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, un−1) (t− ζ)α−1dζ,

and initial condition

u (x, 0) = u0 (x, t) . (62)

The successive difference between the terms is
presented as

φn (x, t) = un (x, t)− un−1 (x, t)

=
(1− α)

B (α)
(G1 (x, t, un−1)− G (x, t, un−2))

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, un−1) (t− ζ)α−1dζ. (63)

Notice that

un (x, t) =
n∑
i=1

φi (x, t). (64)

Plugging the norm on the Eq. (63), and by the
assist of Eq. (58), we get

‖φn (x, t)‖ ≤ (1− α)

B (α)
η
∥∥φ(n−1) (x, t)

∥∥
+

α

B (α) Γ (α)
η

∫ t

0

∥∥φ(n−1) (x, ζ)
∥∥ dζ. (65)

�

By the assist of the above result, we prove the
following theorem.

Theorem 6. The solution for Eq. (51) will exist
and unique if there exist a t0 then

(1− α)

B (α)
η +

α

B (α) Γ (α)
η < 1.

Proof. Let us consider the bounded function
u (x, t) satisfying the Lipschitz condition. Then,
we get by Eq. (63) and Eq. (65), one can get

‖φ (x, t)‖ ≤ ‖un (x, 0)‖ (66)[
(1− α)

B (α)
η +

α

B (α) Γ (α)
η

]n
.

Therefore, for the obtained solutions, continuity
and existence are verified. Now, to prove the Eq.
(66) is a solution for Eq. (51), we consider

u (x, t)− u (x, 0) = un (x, t)−Kn (x, t) . (67)

Now, we consider

‖Kn (x, t)‖ = ‖(1− α)

B (α)
(G (x, t, u)− G(x, t, un−1))

+
α

B (α) Γ (α)∫ t

0
(t− ζ)µ−1 (G (x, ζ, u)− G (x, ζ, un−1)) dζ‖

≤ (1− α)

B (α)
‖G (x, ζ, u)− G (x, ζ, un−1)‖

+
α

B (α) Γ (α)

∫ t

0
‖G (x, ζ, u)− G (x, ζ, un−1)‖ dζ

≤ (1− α)

B (α)
η1 ‖u− un−1‖

+
α

B (α) Γ (α)
η1 ‖u− un−1‖ t. (68)

Similarly, at t0 we can obtain

‖Kn (x, t) ‖ ≤
(

(1− α)

B (α)
+

α t0
B (α) Γ (α)

)n+1

ηn+1M. (69)

As n tends to ∞, then ‖Kn (x, t) ‖ approaches to
0 with respect to Eq. (69).

u (x, t)− u∗ (x, t)

=
(1− α)

B (α)
(G (x, t, u)− G (x, t, u∗)) (70)

+
α

B (α) Γ (α)

∫ t

0
(G (x, ζ, u)− G (x, ζ, u∗)) dζ.

The Eq. (70) simplifies on applying norm,

‖u (x, t)− u∗ (x, t)‖

=

∥∥∥∥(1− α)

B (α)
(G (x, t, u)− G (x, t, u∗))

+
α

B (α) Γ (α)

∫ t

0
(G (x, ζ, u)− G (x, ζ, u∗)) dζ

∥∥∥∥
≤ (1− α)

B (α)
η ‖u (x, t)− u∗ (x, t)‖

+
α

B (α) Γ (α)
η t ‖u (x, t)− u∗ (x, t)‖ . (71)

On simplification

‖u (x, t)− u∗ (x, t)‖ (72)(
1− α

B (α) Γ (α)
ηt− (1− α)

B (α)
η

)
≤ 0.

From the above condition, it is clear that
u (x, t) = u∗ (x, t), if(

1− α

B (α) Γ (α)
ηt− (1− α)

B (α)
η

)
≥ 0. (73)
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(a) (b)

(c)

Figure 2. Surfaces of q-HATT solution for (a) Caputo, (b)CF and (c) AB fractional operator
at n = 1, } = −1, β = 2, α = 1 and Fr = −1.
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Figure 3. Response of obtained solution with distinct α and time at n = 1, } = −1, β = 2
and Fr = −1.

Hence, Eq. (73) evidence required conse-
quence. �

4. Results and discussion

In this section, we consider two cases as men-
tioned above to analyze the hired model with a
hole, and presented in Figure 1. In the first case
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Figure 4. Nature of water elevation with b (x) at n = 1, } = −1, β = 2, t = 1.5 and α = 1.

(a) (b)

(c)

Figure 5. Surfaces of q-HATT solution for (a) Caputo, (b) CF and (c) AB fractional operator
at n = 1, } = −1, β = 8, α = 1 and Fr = −1.

for β = 2, the behaviour of b (x) is a lock-like re-
ciprocal of bell-shape and also sharp at the bot-
tom. For the second case (i.e., β = 8), the hole
at the bottom is more flattened and wider. In
the present investigation, we consider constant
wave speed c ≈

√
g × h =

√
9.8 with a mean

water depth of the sea h = 1. For β = 2, the
nature of archived results for the FF-KdV equa-
tion with different distinct fractional operator and
fractional-order is captured respectively in Fig-
ures 2 and 3. In Figure 3 we can observe that at
x = −2 and 2 the behaviour of water evaluation is
overlapped for different value of α and moreover
the change in time shows stimulating variation in
the behaviours. The nature of the water elevation
with sea bed topography with β = 2 and 8 are
presented in Figures 4 and 7 for different Froude

number in order to understand the importance of
b (x) and β in the obtained solution at the partic-
ular values of the time. In the same manner, for
n = 8 surfaces for an obtained solution with a dis-
tinct fractional operator is cited in Figure 5. The
response of q-HATT solution for FF-KdV equa-
tion with distinct α is dissipated in Figure 6 for
β = 8. In this case, also we can notice the huge
change in the behaviours with a small change in
time with fractional order.

The considered method is highly noticeable for
the parameters associated with the algorithm and
which help to make more convergence (they are
proposed based on the topological concept). To
illustrate the nature of the solution obtained with
homotopy parameter (}), the }-curves are plotted
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Figure 6. Response of obtained solution with distinct α and time at n = 1, } = −1, β = 8
and Fr = −1.

Fr = -1
u(x,t)

b(x)

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

x

Fr = 0
u(x,t)

b(x)

-4 -2 0 2 4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

x

Fr = 1
u(x,t)

b(x)

-4 -2 0 2 4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

x

Figure 7. Nature of water elevation with b (x) at n = 1, } = −1, β = 8 and α = 1.
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Figure 8. }-curves for q-HATT solution with distinct α when n = 1 and t = 0.01 with
(a) β = 2 at x = 1 and (b)β = 8 at x = 5.

with different α for both cases (i.e., β = 2 and 8)
and are respectively captured in Figure 8. Line
flat segment designates the convergence provi-
dence of the solution.

5. Conclusion

In this study, the q-HATT is applied lucratively to
the analyzed effect of parameters associated with

the method (rigid bottom topography and Froude
number) by finding the solution for an arbitrary
order shallow water forced KdV equation describ-
ing the free surface critical flow over a hole. The
derived results show the effect of rigid bottom to-
pography and Froude number with change in time
and space with different fractional order. By us-
ing the considered model, two distinct kinds of
hole are analyzed and which shows that for β = 2
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exhibits a hole in inverse-bell shape and at β = 8
shows a hole has a sharp edge on two-sides and
also it has a flattened base. The condition is de-
rived for the considered model to illustrate the ex-
istence and uniqueness within the frame of fixed-
point theory using Banach space. The effect of
three fractional operators is presented and other
effects are illustrated with respect to the Caputo
operator. These fractional operators are playing
a vital role in generalizing the models associated
with power-law distribution, kernel singular, and
non-local and non-singular (respectively, Caputo,
CF and AB operators). Finally, the present study
is to demonstrate the effect of fractional order, pa-
rameters associated with models as well as meth-
ods with their corresponding consequences.
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