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 Optimization for all disciplines is very important and applicable. Optimization has 

played a key role in practical engineering problems. A novel hybrid meta-heuristic 

optimization algorithm that is based on Differential Evolution (DE), Gradient 

Evolution (GE) and Jumping Technique named Differential Gradient Evolution 

Plus (DGE+) are presented in this paper. The proposed algorithm hybridizes the 

above-mentioned algorithms with the help of an improvised dynamic probability 

distribution, additionally provides a new shake off method to avoid premature 

convergence towards local minima. To evaluate the efficiency, robustness, and 

reliability of DGE+ it has been applied on seven benchmark constraint problems, 

the results of comparison revealed that the proposed algorithm can provide very 

compact, competitive and promising performance. 
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1. Introduction 

Optimization is the best fit solution for all possible 

solutions to a given problem. Many modern optimization 

approaches fail to solve complex problems. Several 

researchers then started proposing new approaches to 

solve complex optimization problems in reasonable time 

and cost. There are two groups for optimizing methods: 

deterministic algorithms and stochastic algorithms [2]. If 

the same initial values are used, Deterministic methods 

may obtain the same results. Such algorithms have good 

efficacy for certain problems, but for all forms of 

optimization problems, it is difficult to generalize them 

[3]. One disadvantage of these search algorithms, they 

can simply be trapped in the local optimum [4]. For their 

strategies, stochastic algorithms usually use some 

randomness and avoid striking at a local optimum. 

Although they can have high-quality solutions in a 

reasonable amount of time for hard optimization 

problems, they do not ensure that the best solution will be 

found always. 

The complexity of real-world problems has risen over the 

last few decades. To resolve these problems, a new meta-

heuristic technique needs to be developed that is used to 

achieve optimal solutions with a low computational cost. 

Meta-heuristics are broadly divided into three categories: 

algorithms based on evolution theory, physical 

phenomena and swarm intelligence. A population-based 

meta-heuristic, inspired by the biological evolution based 

on mutation, reproduction, selection, and recombination. 
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Algorithms derived from physical phenomena are the 

second category. In these algorithms, search agents will 

move around the search space according to the rules of 

gravity, inertia, and electromagnetism.  The final class is 

swarming intelligence algorithms that are based on social 

creatures' collective behavior. There are also other meta-

heuristic approaches influenced by human behavior. 

Modern meta-heuristic algorithms having two main 

components, exploration and exploitation [5, 6]. 

Exploration makes sure the algorithm hits various 

promising search space regions while exploitation 

concentrating on the local area's search [7]. To achieve 

optimal solutions, both components must be optimized. 

Schematic view of the classification of the meta-heuristic 

algorithms is as follows: 

Evolutionary Algorithms: Biogeography Based 

Optimizer [8], Differential Evolution [9], Evolution 

Strategy [10], Genetic Algorithms [11], Genetic 

Programming [12]. 

Physics-Based Algorithms: Artificial Chemical Reaction 

Optimization Algorithm [13], Big-Bang Big Crunch [14], 

Gravitational Search Algorithm [15], Ray Optimization 

Algorithm [16], Simulated Annealing [17], Small-World 

Optimization Algorithm [18], Nonlinear Optimization 

Algorithm [19,20], Constrained Optimization Problem 

[21], Fractional Gradient Based Algorithm [22], 

Optimization Problems Based on Hyperbolic Penalty 

Dynamic Framework [23], Jaya Optimization Algorithm 

[24,25], Feedback Controller Algorithm [26]. 

Swarm-Based Algorithms: Ant Colony Optimization 

[27], Bat-Inspired Algorithm [28], Bee Collecting Pollen 

Algorithm [29], Cuckoo Search [30], Particle Swarm 

Optimization [31]. 

Human Behaviors-Based Algorithms: Colliding Bodies 

Optimization [32], Mine Blast Algorithm [33], Seeker 

Optimization Algorithm [34], Soccer League 

Competition Algorithm [35], Social-Based Algorithm 

[36]. 

Differential Evolution (DE) is one of Price and Storn's 

most suitable and commonly used evolutionary 

algorithms [9]. Several methodologies were suggested 

and used to solve the various optimization problems in 

literature with the classic DE algorithm, such as Adaptive 

Chaotic DE [37], Adaptive Hybrid DE [38], DE with Ant 

Colony Optimization [39], DE with Firefly Algorithm 

[40], Modified Teaching–Learning Algorithm [41], 

Hybrid differential evolution with biogeography-based 

optimization [42]. 

The system for gradient evolution uses a series of vectors 

and consists of three main steps: updating, jumping and 

refreshing the search space. The major rule for gradient 

evolution is vector updating. Using the Newton–Raphson 

method search direction has been determined. The 

jumping and refreshing vector system allows local optima 

to be avoided [43]. This concept is based on gradient-

based methods of search, such as the newton method, the 

conjugate direction and the Quasi-Newton method [44].  

This paper introduces a new metaheuristic algorithm to 

optimize unconstrained and chemical design problems. 

The main characteristic of this paper are as follows: 1) A 

novel hybrid meta-heuristic optimization algorithm based 

on local and global search. This algorithm is the best 

combination of exploration and exploitation. 2) The 

proposed hybridized algorithm works with the help of an 

improvised dynamic probability distribution. 3) 

Additionally, it provides a novel shake off method to 

avoid premature convergence towards local minima. 4) It 

has been applied on several benchmark unconstraint 

problems and four complex practical engineering 

problems to evaluate the efficiency of proposed 

algorithm. The remaining of this paper is organized as 

follows: in section 2, the comprehensive detail of 

Differential Evolution and Gradient Evolution. In section 

3, the proposed DGE+ and the concepts behind it are 

introduced in details. In section 4, the performance of the 

proposed optimizer is validated on different constrained 

optimization problems. Finally, conclusions and future 

directions are given in section 5. 

2. Conventional algorithms 

2.1. Differential evolution algorithm 

Differential evolution is a relatively efficient meta-

heuristic technique designed to optimize existing 

problems. Through applying mutation, crossover and 

selection operators, the population is successively 

improved over generations to achieve an optimal solution 

[45, 46]. The comprehensive detail of DE is present in [9, 

47] and the main steps of the DE algorithm are given 

below in the form of a self-explanatory flow diagram 

shown in Figure 1. 

2.2. Gradient evolution algorithm 

Gradient evolution (GE) is an optimization algorithm 

based on the concept of gradients. The vector updating 

operator was driven from the Tylor series expansion and 

transforms the updating law for population-based search. 

The vector jumping operator prevents local optima and 

the vector refreshing operator is implemented in multiple 

iterations when a vector cannot move to a different 

location. The detail of this idea and the mathematical 

formulation of the GE algorithm is in [43, 48] the main 

steps of the GE algorithm are given below in the form of 

the self-explanatory flow diagram shown in Figure 2. 
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Figure 1. Flowchart for differential evolution 

 

3. Differential gradient evolution plus 

Differential Evolution is a powerful search technique to 

solve optimization problems with non-discreet variables. 

Differential Evolution is known for its excellent coverage 

of global search space and its tendency to find optimum 

solutions in higher dimensional optimization problems. 

On the other hand Gradient Evolution (GE) is a well-

known technique that converges towards local minima by 

the use of instantaneous gradient information. In this way, 

GE is an effective method to explore local search space. 

The proposed algorithm hybridizes the above-mentioned 

algorithms with the help of an improvised dynamic 

probability distribution. The proposed algorithm 

additionally provides a new shake off' method to avoid 

premature convergence towards local minima. In this 

proposed method, the best solution of the last generation 

is maintained as a solution vector 𝑌, this vector 𝑌 is used 

in the differential algorithm to generate new solutions. 

The proposed algorithm constantly monitors the best 

solution produced in each completed generation and if no 

significant improvement against best solution 𝑌 of 

previous generations is observed over a specified number 

of generations then a shake-off sequence is initiated 

which slightly changes the position of 𝑌 in solution space. 

In this way, the search direction of all individual members 

of the population is changed which results in an increased 

probability of escaping local minima and finding the 

optimum solution. During the search, best solution found 

in any iteration is preserved and reported after the search. 

Combination of these three above mentioned techniques 

resulted in a novel algorithm, named DGE+ (𝐷𝐸 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐺𝐸 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

and + =  𝐽𝑢𝑚𝑝𝑖𝑛𝑔 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒), to solve unconstrained 

and constrained problems of any size and complexity. 

Each solution is represented with the symbol 𝑋𝑖
𝑡 , where 

𝑡 = 1, 2, 3, . . . , 𝐺𝑁 and 𝑖 = 1, 2, 3, . . . , 𝑃𝑠 denotes 

generation and iteration respectively. Here 𝐺𝑁 and 𝑃𝑠 are 

user parameters which specify the total number of 

generation to be run and population size respectively.  

𝑋𝑖
𝑡 = 𝑥𝑚, where 𝑚 = 1, 2, 3, . . . , 𝐷.            (1) 

In the above equation, 𝑥 represents values of variables 

and 𝐷 is the dimensions of search space and it is equal to 

the numbers of independent variables of the problem to 

Set values of the  𝐷𝐸 control parameters 

Start 

No 

Generate the initial random population for 𝐷𝐸 

Evaluate the fitness the initial population 

Yes 

Move the population typical mutation operator  

Apply the crossover operator  

Swap the positions of that previous best and new best 

Is there a new population which has 
less cost than that of 𝑥𝑏𝑒𝑠𝑡? 

Stop condition satisfied 

Yes 

Select the best vector  

Stop 

No 

 𝑁𝑃, 𝐷, 𝐹 (= 𝑟𝑎𝑛𝑑(0,1)), 𝐶𝑟, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 

  𝑥𝑗,𝑖,0 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑖,𝑗[0, 1] ∙ ൫𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛൯ 

 𝑉ሬሬሬԦ𝑖,𝐺 = 𝑋Ԧ𝑟1𝑖 ,𝐺 + 𝐹 ቀ𝑋
Ԧ
𝑟2
𝑖 ,𝐺 −𝑋Ԧ𝑟3𝑖 ,𝐺ቁ 

 𝑓൫ 𝑥𝑗,𝑖,0൯ 

 𝑢𝑗,𝑖,𝐺 = ቊ
𝑣𝑗,𝑖,𝐺            𝑖𝑓൫𝑟𝑎𝑛𝑑𝑖,𝑗[0, 1] ≤ 𝐶𝑟൯

𝑥𝑗,𝑖,𝐺             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
 

 𝑋Ԧ𝑖,𝐺+1 = ቊ
𝑈ሬሬԦ𝑖,𝐺                𝑖𝑓     𝑓൫𝑈ሬሬԦ𝑖,𝐺 ൯ ≤ 𝑓൫𝑋Ԧ𝑖,𝐺൯

𝑋Ԧ𝑖,𝐺            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
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be solved. The proposed algorithm starts with the 

initialization of the population with random values of 

independent variables. Each solution vector is initialized 

randomly by using the following formula;  

𝑋 = {𝐿𝐵 + 𝑟𝑎𝑛𝑑𝑜𝑚(0⋯1)  ×  (𝑈𝐵 —  𝐿𝐵)},        (2) 

where 𝐿𝐵 and 𝑈𝐵 are lower and upper bounds of the 

particular variable in specified problem and 𝑟𝑎𝑛𝑑𝑜𝑚 

number is generated between 0 and 1. This formula 

ensures uniform distribution of initial values of variables 

within upper and lower bounds which results in no need 

for any repair strategy.  

 

 

 

 

 
Figure 2. Flowchart for gradient evolution 

 

After initialization, the complete population is evaluated 

for objective and constraints functions. At this stage, a 

solution vector 𝑌 is selected which is currently the best 

solution of this initial population. This initial population 

is then fed to the main body of the search loops. The new 

solutions are built using 𝐷𝐸 or 𝐺𝐸, the selection of the 

algorithm to be used is dependent upon the following 

formula given in Eq. (3).  In the following equation 𝑈𝑖
𝑡  

the new solution generated by the application of 𝐷𝐸 or 

𝐺𝐸 at 𝑖𝑡ℎ iteration of 𝑡𝑡ℎ generation. 

𝑈𝑖
𝑡 = {

𝐷𝐸൫ 𝑃𝑡 ൯, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 (0⋯1) >
𝑆𝑃

𝐺𝑁
× 𝑡

𝐺𝐸൫ 𝑃𝑡 ൯,                                    𝑒𝑙𝑠𝑒            
  (3) 

Algorithm selection probability of user parameter is 

represented by 𝑆𝑃. If differential evolution is to be used 

for the generation of new solutions then the following 

formula is used:  

𝑈𝑖
𝑡 = 𝐷𝐸൫ 𝑃𝑡 ൯ = 𝑌 + 𝑆𝐹൫𝑋𝑟1 − 𝑋𝑟2൯

 

+𝑆𝐹൫𝑋𝑟3 − 𝑋𝑟4൯,
     (4) 

where 𝑆𝐹  is scaling factor and  𝑟1, 𝑟2, 𝑟3 & 𝑟4 are random 

integer numbers and their values range between 1 to 𝑃𝑠, 

No 

Yes 

Set values of the GE parameters 

Start 

Generate the initial population for 𝐺𝐸 

Vector updating 

Yes 

Calculate 𝑓(𝑈𝑖
𝑡) 

Stop condition satisfied 

Stop 

No 

  𝑇, 𝑁, 𝛾, 𝐽𝑟, 𝑆𝑟, 𝜀 

Yes 

 𝑋𝑖
𝑡 = ൛𝑥𝑖𝑗

𝑡 |𝑖 = 1,2,⋯ ,𝑁; 𝑗 = 1,2,⋯ , 𝐷ൟ 

  𝑢𝑖𝑗
𝑡 = −𝑢𝑖𝑗

𝑡 + 𝑟𝑚 ∙ ൫𝑢𝑖𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 ൯ 

 𝑢𝑖𝑗
𝑡 = 𝑥𝑖𝑗

𝑡 − ቆ𝑟𝑔 ∙
∆𝑥𝑖𝑗

𝑡

2
ቇ ∙ ቆ

𝑥𝑖𝑗
𝑊 − 𝑥𝑖𝑗

𝐵

𝑥𝑖𝑗
𝑊 − 𝑥𝑖𝑗

𝑡 + 𝑥𝑖𝑗
𝐵ቇ + 𝑟𝑎 ∙ ൫𝑗𝑗 − 𝑥𝑖𝑗

𝑡 ൯ 

No 

𝑟𝑗 ≤ 𝐽𝑟 

𝑈𝑖
𝑡 = 𝑉𝑒𝑐𝑡𝑜𝑟 𝑗𝑢𝑚𝑝𝑖𝑛𝑔  

𝑓(𝑈𝑖
𝑡) ≤ 𝑓(𝑋𝑖

𝑡−1) 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 

Yes 

𝑋𝑖
𝑡 = 𝑈𝑖

𝑡  

No 

𝑖 = 𝑖 + 1 𝑉𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑓𝑟𝑒𝑠ℎ𝑖𝑛𝑔 

𝑠𝑖 = 𝑆𝑟   

 𝑠𝑖 = 𝑠𝑖 − 𝜀 ∙ 𝑠𝑖 
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such that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4. In case when a new solution 

is to be generated by the use of gradient evolution 

following formula is used:  

𝛿𝑥 =
𝛾+| 𝑋𝑖

𝑡 − 𝑋𝑖−1
𝑡 |

2
    (5) 

𝑏 = 𝑋𝑖
𝑡 − 𝛿𝑥     (6) 

𝑤 = 𝑋𝑖
𝑡 + 𝛿𝑥     (7) 

𝑈𝑖
𝑡 =

{
  
 

  
 𝑋𝑖

𝑡 −
(𝑟𝑎𝑛𝑑×𝛿𝑥)

2
(

𝑋𝑖+1
𝑡 −𝑏

𝑋𝑖+1
𝑡 − 𝑋𝑖

𝑡 +𝑏
) ,       𝑖𝑓 𝑖 = 1

𝑋𝑖
𝑡 −

(𝑟𝑎𝑛𝑑×𝛿𝑥)

2
(

𝑤− 𝑋𝑖−1
𝑡

𝑤− 𝑋𝑖
𝑡 + 𝑋𝑖−1

𝑡 ) ,       𝑖𝑓 𝑖 =  𝑃𝑆

𝑋𝑖
𝑡 −

(𝑟𝑎𝑛𝑑×𝛿𝑥)

2
(

𝑋𝑖+1
𝑡 − 𝑋𝑖−1

𝑡

𝑋𝑖+1
𝑡 − 𝑋𝑖

𝑡 + 𝑋𝑖−1
𝑡 ) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

In the above expressions, gamma 𝛾 is a gradient evolution 

user parameter. The newly generated solution 𝑈𝑖
𝑡  is 

compared with the available solution at 𝑖𝑡ℎ location of the 

current population, if this solution is found better then this 

solution is inserted into the population at 𝑖𝑡ℎ  location. 

Additionally, this algorithm allows acceptance of 

solutions with poorer performance into the main 

population to maintain diversity. This insertion 

probability of poorer solution is depended on a user 

control parameter 𝐴𝑅. A random number is generated 

between 0 and 1 if this number is less than  𝐴𝑅 then the 

poorer solution is accepted in the main population.  

To maintain diversity in population, fresh vectors are 

regularly inserted into the main population. The rate of 

insertion of a new random vector in population is 

dependent upon a parameter 𝑅𝑅. After scanning all the 

members of the population, existing solution vector 𝑌 is 

compared with the best solution of the current population, 

if this new best solution is better than 𝑌 then this new 

solution is selected as 𝑌 and a variable which track 

changes in 𝑌 is reset to 0. For every failed attempt to 

update 𝑌, this variable is incremented by 1 and if its count 

becomes equal to user control parameter 𝑆𝑇 then the value 

of current 𝑌 is shaken off randomly as per following 

equations; 

𝑑 = 𝑀𝑖𝑛൫| 𝑋𝑖
𝑡 − 𝑈𝐵|, | 𝑋𝑖

𝑡 − 𝐿𝐵|൯,  (9) 

𝑌 = 𝑌 + 𝑑 × 𝑟𝑎𝑛𝑑(−1⋯+ 1) ×
𝐺𝑁−𝑡

𝐺𝑁
.              (10) 

The above-mentioned cycles are repeated continuously 

for all generations and in the end, the best solution, which 

is preserved during the whole search, is reported as the 

solution to the given optimization problem.  

3.1. Parameter selection 

A wrong selection of algorithm parameters may result in 

a higher tendency to diverge, pre-mature convergence to 

a local minimum value, or undesired solutions. Therefore, 

the following considerations should be taken into account 

to fine-tune the algorithm parameters.  

3.1.1. Population size 𝐏𝐬  

Optimization problems of low to medium complexity 

may require a population size of 30 to 50 individual 

solutions which are sufficient enough to solve the 

problem optimally. For the problem with a higher number 

of dimensions more individual members may be required 

to maintain diversity and room to explore global solution 

space. But on the other hand, larger population size 

results in higher computation time and increased number 

function evaluations. The benchmark problem set, 

selected for this study, of constrained and unconstrained 

problems contain optimization problems from low to high 

complexity. The experiments on the proposed algorithm 

show that 𝑃𝑠 = 50 is sufficient enough to solve the entire 

problem set with excellent solution quality and in 

reasonable computational time. 

3.1.2. Number of generations 𝐆𝐍  

The number of generations required to solve a problem 

optimally is directly proportional to the number of 

independent variables of the optimization problem. A 

lower value of the 𝐺𝑁 produces non-optimal solutions and 

an unrealistically high value of 𝐺𝑁 results in unnecessary 

high computational cost. The experiments on the 

proposed algorithm show that for unconstraint problems 

with up to 10 variables 𝐺𝑁 = 6000, up to 20 

variables 𝐺𝑁 = 12000 and up to 30 variables  𝐺𝑁 =
20000 is sufficient to produce optimal results. For 

constrained problems  𝐺𝑁 = 600 is sufficient to solve all 

the selected Problems with excellent optimal values of 

objective functions.  

3.1.3. Gradient evolution parameter gamma 𝛄 

This parameter is used to control the performance of the 

gradient evolution part of the proposed algorithm. This 

number ensures that the value of change in any variable 

is non-zero; a zero value may lead to stagnation at the 

same point in solution space. The experiments on the 

proposed algorithm show that the complexity of the 

problem does not affect the value of this variable and for 

the chosen set of constrained and unconstrained problems 

𝛾 = 0.4 has produced optimal results.  

3.1.4. Differential evolution parameter scale factor 𝐒𝐅  

This parameter acts as a control of acceleration of 

convergence and has the most prominent effect on the 

performance of the differential evolution algorithm. The 

value of this parameter is dependent on the complexity of 

objective and constraint functions, a lower value of 𝑆𝐹 , 

may result in non-optimal solutions due to the slower rate 

of convergence and conversely a higher value of 𝑆𝐹 may 

cause 𝐷𝐸 to jump over optimal solutions in search space. 

The experiments with the proposed algorithm suggest 
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that for constrained problems  𝑆𝐹 = 0.5 and for 

unconstrained problems  𝑆𝐹 = 0.48 𝑡𝑜 0.62 has produced 

optimal results for all selected benchmark problems.  

3.1.5. Differential evolution parameter crossover 

rate 𝐂𝐑 

This parameter controls how much change, produced by 

𝐷𝐸 should be passed on to the next generations. If the 

value of this parameter is set to a lower value then the 

convergence rate of the algorithm drops and vice versa. 

The value of this parameter should be set at a higher value 

to pass on the effect of 𝐷𝐸 to the next generations. The 

experiments on the proposed algorithm show that a value 

of 𝐶𝑅 = 0.91 is good enough to produce optimal results 

for all selected benchmark constrained and unconstrained 

optimization problems. 

3.1.6. Selection probability 𝐒𝐏 

The proposed algorithm uses a differential evolution 

algorithm to explore (global search) and gradient 

evolution to exploit (local search) the given search space 

of the optimization problem. The decision when to use 

𝐷𝐸 or 𝐺𝐸 is made by a dynamic probability function. At 

the start of the search, the probability of usage of 𝐷𝐸 is 

maximum and as the generations go the probability of 𝐷𝐸 

usage drops and the probability of 𝐺𝐸 usage increases. In 

other words, in the beginning, more resources are utilized 

to perform a global search and in the end, relatively more 

computation is performed for local search. This dynamic 

probability distribution is controlled by the parameter 𝑆𝑃. 

A un-optimized low value of 𝑆𝑃 usually causes less 

exploitation of local search space which results in poorer 

solution quality and a un-optimized higher value of 𝑆𝑃 

causes less exploration of global search space which in 

turn results in premature convergence to local minima. As 

both of these scenarios are undesirable therefore the value 

of this variable should be chosen carefully. The 

experiments conducted on all the constrained and 

unconstrained problems shows that 𝑆𝑃 = 0.2 is good 

value to solve the entire set of benchmark problems 

optimally. This value 𝑆𝑃 = 0.2 results in usage 

probability 𝐺𝐸 to increase from 0 to 20%, and 

consequentially the usage of 𝐷𝐸 drops from 100% to 

80% during execution.  

3.1.7. Sub-optimal solution acceptance rate 𝐀𝐑 

All the new solutions which are produced either by 𝐷𝐸 or 

𝐺𝐸 are tested for fitness against the corresponding 

member of the current population. If this new solution is 

better than the existing solution in the current population 

then this member of the population is killed and replaced 

by the newly generated solution. The proposed algorithm 

additionally allows for the acceptance of poorer solutions 

with a probability of  𝐴𝑅. This additional feature of the 

proposed algorithm maintains diversity in future 

populations and increases the probability of escaping 

local minima. The value of this parameter should be 

chosen carefully, in the case when the value of this 

parameter is set too high then the quality of search 

degrade and algorithm does not converge to the optimal 

values. The experiments on the proposed algorithm 

suggest that  𝐴𝑅 between 0.01 and 0.05 is a good value to 

produce statistically better results in comparison to  𝐴𝑅 =
0 for the given set of constrained and unconstrained 

problems.   

3.1.8. Refresh rate 𝐑𝐑  

For all population base algorithms regular supply of new 

individual solutions is essential to preserve diversity 

which in turn results in better solution quality. This fresh 

supply of new random solutions is controlled by 𝑅𝑅. A 

lower value of this parameter  𝑅𝑅 causes the loss of 

diversity and poorer solution quality and a higher value 

of this parameter results in loss of better solutions and 

divergence of the optimization algorithm. The 

experiments with the proposed algorithm demonstrate 

that  𝑅𝑅 = 0.02 is a decent value to solve the entire 

benchmark set of constrained and unconstrained 

problems.  

3.1.9. Shake off threshold 𝐒𝐓 

As an attempt to escape from local minima this proposed 

algorithm provides a shake off technique. The algorithm 

keeps monitoring the best solution of every subsequent 

generation and if no new improvement is observed then a 

counter is incremented by one. If the value of this variable 

becomes equal to shake off threshold  𝑆𝑇  then shake off 

is initiated. A un-optimized high value of this threshold 

 𝑆𝑇  will make this shake off ineffective and in contrast a 

low value of this parameter will result in poorer solution 

quality. The experiments conducted on our proposed 

algorithm indicates that the value of  𝑆𝑇 = 500 and  𝑆𝑇 =
60 for all unconstrained and constrained problems 

respectively can provide optimal results.  

3.2. Constraint handling 

Constraint handling of the problem is done as per rules 

given by Mottos & Coello [49]. The following four rules 

are used:  

3.2.1. Rule 1 

Whatever the value of the objective function is any 

feasible solution will always be preferred over infeasible 

solutions.  

3.2.2. Rule 2  

Infeasible solutions having a slight violation of 0.001 are 

considered as feasible solutions.   
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3.2.3. Rule 3  

If two solutions are feasible then the one with better 

objective function value will be preferred.  

3.2.4. Rule 4  

If two solutions are infeasible then the one with less 

violation of feasibility will be preferred.  

By incorporating first and fourth rules, the search is 

guided towards feasible regions rather than wasting 

resources by exploring infeasible regions of search space, 

the third rule forces the algorithm to both keep the search 

within the feasible regions and attempt to find a solution 

with a better value of objective function [49]. If the 

optimal solution lies near the boundary of the feasible 

region then the second rule facilitates the search of 

boundaries of the feasible region [50]. The algorithm of 

DGE+ is as follows: 

 

Algorithm: Differential Gradient Evolution Plus 

Step 1:   Initialize population  

Step 2:   Calculate objective and constraint functions  

Step 3:   Select 𝑌 which is the best solution in the 

current population  

Step 4:   Check the current generation is equal to 𝐺𝑁 if 

yes then go to step 11. Otherwise, go to step 

5  

Step 5:   Check current iteration is equal to 𝑃𝑠 if yes 

then go to step 9. Otherwise, go to step 6  

Step 6:   Calculate 𝑈 by using equations 3-8  

Step 7:   Evaluate 𝑈 if it is acceptable then replace 

current solution of the population with this 

new solution 𝑈  

Step 8:   Go to step 5  

Step 9:   Check for shake off conditions, if true then 

change 𝑌 as per equations 9 and10 

Step 10: Go to step 4  

Step 11: Report the best solution and stop 

 

The detail of the idea and the mathematical formulation 

of the DGE+ algorithm is in the last section, the main 

steps of the DGE+ algorithm are given below in the form 

of the self-explanatory flow diagram shown in Figure 3. 

4. Experiments on constrained optimization 

problems 

The comparison of the results produced by each 

constraint problem has been reported and listed in Table 

1 which provided the comparative methods with 

references.  
 

 

 

 

4.1. Experimental setup 

The performance of the proposed novel and dynamic 

algorithm (DGE+) is exhibited by solving several 

optimization problems that are widely used to test 

optimization methods and considered as the benchmark 

problems in the literature. These test cases consist of 

seven benchmark constraint test problems [33]. All 

analyses are implemented in Matlab® environment on the 

computer equipped with the Intel CORE i5 @ 1.8 GHz 

CPU and 4 GB of RAM. The parameter settings of the 

proposed algorithm are: 

Number of runs are 30, population size is 50, generations 

are 600, gamma value is 0.4, scale factor is 0.5 and cross 

over is 0.91. In the following subsections, DGE+ is 

implemented on seven benchmark constraint problems 

and eight complex practical engineering problems.  

4.2. Constrained optimization problems 

4.2.1. Constrained problem 1 

Braken and McCormick [84] originally introduced this 

problem which is a relatively simple constrained problem 

of minimization, having two variables and two 

constraints, one is equality constraint and the other is 

inequality constraint. 

min 𝑓(𝑥) = (𝑥1 − 2)
2 + (𝑥2 − 1)

2  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

ℎ1(𝑥) = 𝑥1 − 2𝑥2 + 1 = 0

ℎ2(𝑥) =  −ቆ
𝑥1
2

4
ቇ − 𝑥2

2 + 1 ≥ 0
 

−10 ≤  𝑥1,𝑥2  ≤ 10    
Table 2 demonstrates the comparison of the best solution 

among the different optimizers and the corresponding 

design variables. The results obtained by DGE+ are 

compared with 4 state-of-the-art algorithms that are 

abbreviated and listed in Table 1.  

Evolutionary programming violets both the constraints 

and remaining methods violet first constraint for the final 

solution but DGE+ satisfies all constraints for the final 

solution. It is evident from Table 2 that the proposed 

DGE+ algorithm performed better and superior to all the 

state-of-the-art methods without any violation.  

The convergence curve shows the function values versus 

the number of generations for the constrained problem 1. 

The 30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 4.   
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Figure 3. Flowchart for differential gradient evolution plus 

 

Figure 4. Convergence curve and 30 best solutions for constraint problem 1 

 

𝐺𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑃𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
𝑆𝐶 = 𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡𝑒𝑟, 𝑡 & 𝑖 = 𝐿𝑜𝑜𝑝 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
𝑆𝑃 =  𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐴𝑅 =  𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒, 

 𝑅𝑅 =  𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑅𝑎𝑡𝑒, 𝑆𝑇 =  𝑆ℎ𝑎𝑘𝑒 𝑜𝑓𝑓 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Start 

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐷𝐺𝐸 +  𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦  

Yes 

No 

No Yes 

𝐼𝑠 𝑡 = 𝐺𝑁? 

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,  𝑌 = 𝐵𝑒𝑠𝑡 𝑜𝑓 (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  

𝑃 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐺𝐸 𝑈𝑠𝑎𝑔𝑒, 𝑃 = 𝑆𝑝/𝐺𝑁 

𝑆𝑒𝑡 𝑡 = 1 

Yes No 

𝑅𝑒𝑝𝑜𝑟𝑡 𝐵𝑒𝑠𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑜𝑢𝑛𝑑 

𝑆𝑒𝑡 𝑖 = 1 

Replace population 
ith vector with U 

𝑈 = 𝐺𝐸(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

𝐷 = 𝐵𝑒𝑠𝑡 𝑜𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑈 = 𝐷𝐸(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 
 

Yes No 

𝐼𝑠 𝑖 = 𝑃𝑠? 

Is Rand 𝑟 >
𝑡 × 𝑃? 

Yes 

Yes 

No 

No 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑈 
  

If U’s fitness is better 
than Population’s ith 

Solution or rand r <AR 

IsRandom
 𝑟 < 𝑅𝑅? 

Replace population i
th

 vector 
with fresh random vector 

𝑖 = 𝑖 + 1 
  

𝑖𝑓 𝐷 𝑖𝑠 𝐵𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑌 𝑡ℎ𝑒𝑛 𝑌 = 𝐷 

Y=Slight random 
modification in current Y 

𝑖𝑓 |𝑓(𝑌) − 𝑓(𝐷)| < 0.01|𝑓(𝑌)| 
𝑇ℎ𝑒𝑛 𝑆𝐶 = 𝑆𝐶 + 1 𝑒𝑙𝑠𝑒 𝑆𝐶 = 0 

Is 𝑆𝐶 > 𝑆𝑇? 𝑡 = 𝑡 + 1 
  

Stop 
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Table 1. Comparative algorithms with references 

Key Algorithm Name Key Algorithm Name 

MBA [33] Mine Blast Algorithm HM [51] Homomorphous Mappings 

ISR [52] Improved Stochastic Ranking HPSO [53] Hybrid Particle Swarm Optimization 

ABC [54, 55] Artificial Bee Colony HS [56, 57] Harmony Search 

IGA [58] Interactive Genetic Algorithm CRGA [59] Changing Range Genetic Algorithm 

ASCHEA [60] 
Adaptive Segregational Constraint Handling 
Evolutionary Algorithm 

CPSO-GD 
[61] 

Co-evolutionary Particle Swarm Optimization 
Using Gaussian Distribution 

CAEP [62] 
Cultural Algorithm using Evolutionary 

Programming 
Co-DE [63] Effective Co-Evolutionary Differential Evolution 

NM-PSO [64] Nelder-Mead Particle Swarm Optimization PSO [53] Particle Swarm Optimization 

CULDE [65] Cultured Differential Evolution PESO [66] Particle Evolutionary Swarm Optimization 

SAPF [67] Self-Adaptive Penalty Function EP [67] Evolutionary Programming 

DE [68] Differential Evolution GA [69-71] Genetic Algorithms 

DEDS [73] Differential Evolution with Dynamic Stochastic DELC [74] Differential Evolution with Level Comparison 

FSA [75] Filter Simulated Annealing SR [52] Stochastic Ranking 

GA with TS, PS 

[75] 

Efficient Constraint Handling Method For 

Genetic Algorithms 

α-Simples 

[77] 
Α Constrained Method 

GA1 [76] Genetic Algorithms 1 SMES [78] Simple Multi-membered Evolution Strategy 

GA2 [79] Genetic Algorithms 2 TLBO [80] Teaching-Learning-Based Optimization 

HEAA [81] 
Hybrid Evolutionary Algorithm and Adaptive 
technique 

PSO-DE [82] 
[83] 

Particle Swarm Optimization with Differential 
Evolution 

Table 2. Reported results for constrained problem 1 from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 
𝐻𝑆 0.8343 0.9121 1.3770 5𝐸 − 03 5.4𝐸 − 03 
𝐺𝐴 0.8080 0.8854 1.4339 3.7𝐸 − 02 5.2𝐸 − 02 
𝑀𝐵𝐴 0.822875 0.911437 1.3934649 1.11𝐸 − 06 0 
𝐸𝑃 0.8350 0.9125 1.3772 1.0𝐸 − 02 −7.0𝐸 − 02 
𝐷𝐺𝐸 + 𝟎. 𝟖𝟐𝟐𝟖𝟕𝟓𝟔𝟓𝟔 𝟎. 𝟗𝟏𝟏𝟒𝟑𝟕𝟖𝟐𝟖 𝟏. 𝟑𝟗𝟑𝟒𝟔𝟒𝟗𝟖𝟏 𝟎 𝟎 

 

4.2.2. Constrained problem 2 

This problem is taken from [33] which is a relatively 

simple constrained problem of minimization having two 

variables and one equality constraint. 

min 𝑓(𝑥) =  𝑥1
2 + (𝑥2 − 1)

2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {ℎ(𝑥) = 𝑥2 − 𝑥1
2  = 0, 

−1 ≤  𝑥1, 𝑥2  ≤  1. 
Table 3 demonstrates the comparison of the best solution 

among the different optimizers and the corresponding 

design variables. CULDE, SAPF, PSO-DE, and MBA 

violates the constraint but DGE+ satisfies constraint for 

the final solution. The results obtained by 𝐷𝐺𝐸 + are also 

compared with 10 state-of-the-art algorithms that are 

abbreviated and listed in Table 1. The comparison of 

statistical results for constrained problem 2 is given in 

Table 4. It is evident from Tables 3 and 4 that the 

proposed DGE+ algorithm performed better and superior 

to all the state-of-the-art methods without any violation.

Table 3. Reported results for constrained problem 2 from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕 

𝒙𝟏 𝒙𝟐 𝒉(𝒙) 
𝑃𝑆𝑂 − 𝐷𝐸 −0.7069 0.49975 0.749957673 4.2𝐸 − 05 
𝐶𝑈𝐿𝐷𝐸 −0.707036 0.5 0.749899905 0.0001 
𝑆𝐴𝑃𝐹 −0.706 0.4996 0.74883616 0.00116 
𝑀𝐵𝐴 −0.706958 0.49979 0.749999658 3.9𝐸 − 07 
𝑫𝑮𝑬 + −𝟎. 𝟕𝟎𝟕𝟏𝟎𝟔𝟕𝟖𝟐 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟎 
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Table 4. Statistical comparison of results for constrained problem 2 of various algorithms  

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 
𝐻𝑀 0.75 0.75 0.75 𝑁. 𝐴 

𝐴𝑆𝐶𝐻𝐸𝐴 𝑁. 𝐴 0.75 0.75 𝑁. 𝐴 
𝐶𝑅𝐺𝐴 0.757 0.752 0.750 2.5𝐸 − 03 
𝑆𝑀𝐸𝑆 0.75 0.75 0.75 1.52𝐸 − 04 
𝑃𝑆𝑂 0.998823 0.860530 0.750000 8.4𝐸 − 02 
𝑆𝑅 0.750 0.750 0.750 8𝐸 − 05 
𝐷𝐸𝐿𝐶 0.750 0.750 0.750 0 
𝐻𝐸𝐴𝐴 0.750 0.750 0.750 3.4𝐸 − 16 
𝐼𝑆𝑅 0.750 0.750 0.750 1.1𝐸 − 16 
𝐴𝐵𝐶 0.75 0.75 0.75 0 
𝑫𝑮𝑬 + 𝟎. 𝟕𝟓 𝟎. 𝟕𝟓 𝟎. 𝟕𝟓 𝟎 

“N.A” means not available. 

The convergence curve shows the function values versus 

the number of generations for the constrained problem 2. 

The 30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 5.   

 

 

Figure 5. Convergence curve and 30 best solutions for 

constraint problem 2 

4.2.3. Constrained problem 3  

This problem is taken from [33] which is a relatively 

simple constrained problem of minimization having two 

variables and two inequality constraints. 
𝑚𝑖𝑛 𝑓(𝑥) = (𝑥1

2 + 𝑥2 − 11)
2 + (𝑥1 + 𝑥2

2 − 7)2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
ℎ1(𝑥) = 4.84 − (𝑥1 − 0.05)

2 − (𝑥2 − 2.5)
2   ≥  0

ℎ2(𝑥) = 𝑥1
2 + (𝑥2 − 2.5)

2  −  4.84 ≥  0
 

0 ≤  𝑥1, 𝑥2  ≤  6. 

 

Table 5 demonstrates the comparison of the best solution 

among the different optimizers and the corresponding 

design variables. The results obtained by DGE+ are 

compared with 5 state-of-the-art algorithms that are 

abbreviated and listed in Table 1. Harmony search violets 

both the constraints and mine blast algorithm violet 

second constraint for the final solution but DGE+ 

satisfies all constraints for the final solution.

Table 5. Reported results for constrained problem 3 from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 
𝐺𝐴 𝑤𝑖𝑡ℎ 𝑃𝑆 (𝑅 
=  0.01) 

𝑁. 𝐴 𝑁. 𝐴 13.58958 𝑁. 𝐴 𝑁. 𝐴 

𝐺𝐴 𝑤𝑖𝑡ℎ 𝑃𝑆 (𝑅 
=  1) 

𝑁. 𝐴 𝑁. 𝐴 13.59108 𝑁. 𝐴 𝑁. 𝐴 

𝐺𝐴 𝑤𝑖𝑡ℎ 𝑇𝑆 2.246826 2.381865 13.59085 𝑁. 𝐴 𝑁. 𝐴 
𝐻𝑆 2.24684 2.382136 13.590845 −2.09𝐸 − 06 −0.222181 
𝑀𝐵𝐴 2.246833 2.381997 13.590842 0 −0.222183 
𝑫𝑮𝑬 + 𝟐. 𝟐𝟒𝟔𝟖𝟐𝟓𝟖𝟑𝟕 𝟐. 𝟑𝟖𝟏𝟖𝟔𝟑𝟒𝟓𝟓 𝟏𝟑. 𝟓𝟗𝟎𝟖𝟒𝟏𝟔𝟗 𝟎. 𝟎𝟐𝟕𝟗𝟏𝟐𝟒𝟖𝟔 𝟎. 𝟐𝟐𝟐𝟏𝟖𝟐𝟓𝟖𝟒 

     
 

It is evident from Table 5 that the proposed DGE+ 

algorithm performed better and superior to all the state-

of-the-art methods without any violation.  

 

 

 

 

 

 

The convergence curve shows the function values versus 

the number of generations for the constrained problem 3. 

The 30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 6. 
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Figure 6. Convergence curve and 30 best solutions for 

constraint problem 3 

4.2.4. Constrained problem 4 

This problem taken from  [33] which is a relatively simple 

constrained problem of minimization having two 

variables and two inequality constraints. 

min 𝑓(𝑥) = −
𝑆𝑖𝑛3(2𝜋𝑥1)𝑆𝑖𝑛(2𝜋𝑥2)

𝑥1
3(𝑥1 + 𝑥2)

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
ℎ1(𝑥) = 𝑥1

2 − 𝑥2  +  1 ≤  0

ℎ2(𝑥) = 1 − 𝑥1 + (𝑥2 − 4)
2  ≤  0

 

0 ≤  𝑥1, 𝑥2  ≤  10

Table 6. Reported result for constrained problem 4 from DGE+ 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 
𝑫𝑮𝑬 + 1.227971353 4.245373367 −0.0958250 −1.737459724 −0.167763263 

Table 7. Statistical comparison of results for constrained problem 4 of various algorithms 

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 
𝐻𝑀 −0.0291438 −0.0891568 −0.0958250 𝑁. 𝐴 

𝐴𝑆𝐶𝐻𝐸𝐴 𝑁. 𝐴 −0.095825 −0.095825 𝑁. 𝐴 
𝑆𝑅 −0.0958250 −0.0958250 −0.0958250 2.6𝐸 − 17 
𝐶𝐴𝐸𝑃 −0.0958250 −0.0958250 −0.0958250 0 
𝐷𝐸 −0.0958250 −0.0958250 −0.0958250 𝑁. 𝐴 
𝐻𝑃𝑆𝑂 −0.0958250 −0.0958250 −0.0958250 1.2𝐸 − 10 

𝑁𝑀 − 𝑃𝑆𝑂 −0.0958250 −0.0958250 −0.0958250 3.5𝐸 − 08 
𝐶𝑅𝐺𝐴 −0.095808 −0.095819 −0.095825 4.40𝐸 − 06 
𝑆𝐴𝑃𝐹 −0.092697 −0.095635 −0.095825 1.055𝐸 − 03 
𝐺𝐴 −0.0958250 −0.0958250 −0.0958250 2.70𝐸 − 09 
𝑆𝑀𝐸𝑆 −0.095825 −0.095825 −0.095825 0 
𝐶𝑈𝐿𝐷𝐸 −0.095825 −0.095825 −0.095825 1𝐸 − 07 
𝐷𝐸𝐿𝐶 −0.095825 −0.095825 −0.095825 1.0𝐸 − 17 
𝐷𝐸𝐷𝑆 −0.095825 −0.095825 −0.095825 4.0𝐸 − 17 
𝐻𝐸𝐴𝐴 −0.095825 −0.095825 −0.095825 2.8𝐸 − 17 
𝐼𝑆𝑅 −0.095825 −0.095825 −0.095825 2.7𝐸 − 17 

𝑆𝑖𝑚𝑝𝑙𝑒𝑥 −0.095825 −0.095825 −0.095825 3.8𝐸 − 13 
𝐴𝐵𝐶 −0.0958250 −0.095825 −0.095825 0 
𝑀𝐵𝐴 −0.0958250 −0.0958250 −0.0958250 0 
𝑫𝑮𝑬 + −𝟎. 𝟎𝟗𝟑𝟕𝟒𝟑𝟔𝟎𝟓 −𝟎. 𝟎𝟗𝟓𝟕𝟒𝟖𝟐𝟎𝟐 −𝟎. 𝟎𝟗𝟓𝟖𝟐𝟓𝟎 𝟎. 𝟎𝟎𝟎𝟑𝟕𝟑𝟑𝟒 

 
Table 6 represents the best solution and the value of 

corresponding design variables by using the DGE+ 

algorithm. The results obtained by DGE+ satisfies all 

constraints for the final solution, also compared with 19 

state-of-the-art algorithms which are abbreviated and 

listed in Table 1. 

It is evident from Table 7 that the proposed DGE+ 

algorithm performed better and superior to all the state-

of-the-art methods without any violation. The 

convergence curve shows the function values versus the 

number of generations for the constrained problem 4. The 

30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 7. 

 

 

Figure 7. Convergence curve and 30 best solutions for 

constraint problem 4 
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4.2.5. Constrained problem 5  

This problem is taken from  [33] which is a relatively 

simple constrained problem of minimization having two 

variables and two inequality constraints. 

min 𝑓(𝑥) = (𝑥1 − 10)
3 + (𝑥2 − 20)

3  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
ℎ1(𝑥) = −(𝑥1 − 5)

2 − (𝑥2 − 5)
2 + 100 ≥ 0

ℎ2(𝑥) = (𝑥1 − 6)
2 + (𝑥2 − 5)

2  − 82.81 ≤ 0
 

13 ≤ 𝑥1 ≤ 100, 0 ≤ 𝑥2 ≤ 100.

Table 8.  Reported result for constrained problem 5 from DEG+ 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 

𝑫𝑮𝑬 + 14.095 0.842961 −6961.813644 165.4380518 
−1.75248𝐸
− 06 

Table 9. Statistical comparison of results for constrained problem 5 of various algorithms 

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 
𝐻𝑀 −5473.9 −6342.6 −6952.1 𝑁. 𝐴 

𝑃𝑆𝑂 − 𝐷𝐸 −6961.81388 −6961.81388 −6961.81388 2.3𝐸 − 09 
𝐼𝑆𝑅 −6961.814 −6961.814 −6961.814 1.9𝐸 − 12 
𝐻𝐸𝐴𝐴 −6961.814 −6961.814 −6961.814 4.6𝐸 − 12 
𝐴𝐵𝐶 −6961.805 −6961.813 −6961.814 2𝐸 − 03 
𝐹𝑆𝐴 −6961.8139 −6961.8139 −6961.8139 0 
𝑃𝑆𝑂 −6961.81381 −6961.81387 −6961.81388 6.5𝐸 − 06 
𝐶𝑅𝐺𝐴 −6077.123 −6740.288 −6956.251 2.70𝐸 + 2 
𝐷𝐸𝐷𝑆 −6961.814 −6961.814 −6961.814 0 
𝑀𝐵𝐴 −6961.813875 −6961.813875 −6961.813875 0 

𝐴𝑆𝐶𝐻𝐸𝐴 𝑁. 𝐴 −6961.81 −6961.81 𝑁. 𝐴 
𝑆𝑅 −6350.262 −6875.940 −6961.814 160 
𝑆𝑀𝐸𝑆 −6962.482 −6961.284 −6961.814 1.85 
𝐷𝐸𝐿𝐶 −6961.814 −6961.814 −6961.814 7.3𝐸 − 10 
𝑆𝐴𝑃𝐹 −6943.304 −6953.061 −6961.046 5.876 
𝐺𝐴 −6961.8139 −6961.8139 −6961.8139 0 
𝐷𝐸 −6961.814 −6961.814 −6961.81 𝑁. 𝐴 

𝐶𝑈𝐿𝐷𝐸 −6961.813876 −6961.813876 −6961.813876 1𝐸 − 07 
𝑁𝑀 − 𝑃𝑆𝑂 −6961.8240 −6961.8240 −6961.8240 0 
𝑆𝑖𝑚𝑝𝑙𝑒𝑥 −6961.814 −6961.814 −6961.814 1.3𝐸 − 10 
𝑫𝑮𝑬 + −𝟔𝟗𝟔𝟏. 𝟖𝟏𝟑𝟖𝟗𝟒 −𝟔𝟗𝟔𝟏. 𝟖𝟏𝟑𝟖𝟗𝟒 −𝟔𝟗𝟔𝟏. 𝟖𝟏𝟑𝟖𝟗𝟒 𝟎 

 
Table 8 represents the best solution and the value of 

corresponding design variables by using the DGE+ 

algorithm. The results obtained by DGE+ satisfies all 

constraints for the final solution, also compared with 21 

state-of-the-art algorithms which are abbreviated and 

listed in Table 1.  

It is evident from Table 9 that the proposed DGE+ 

algorithm performed better and superior to all the state-

of-the-art methods without any violation. The 

convergence curve shows the function values versus the 

number of generations for the constrained problem 4. The 

30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 8. 

4.2.6. Constrained problem 6 

This problem is taken from [33] which is a relatively 

complex constrained problem of minimization having 

seven variables and four inequality constraints. 

𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 10)
2 + 5(𝑥2 − 12)

2 + 𝑥3
4 +

3(𝑥4 − 11)
2 + 10𝑥5

6 + 7𝑥6
2 + 𝑥7

4 − 4𝑥6𝑥7 − 10𝑥6 −
8𝑥7, 

 

 

Figure 8. Convergence curve and 30 best solutions for 

constraint problem 5 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 

 
ℎ1(𝑥) = 127 − 2𝑥1

2 − 3𝑥2
4 − 𝑥3 − 4𝑥4

2 − 5𝑥5 ≥ 0,

ℎ2(𝑥) = 282 − 7𝑥1 − 3𝑥2 − 10𝑥3
2 − 𝑥4 + 𝑥5 ≥ 0,

ℎ3(𝑥) = 196 − 23𝑥1 − 𝑥2
2 − 6𝑥6

2 + 8𝑥7  ≥ 0,

ℎ4(𝑥) = −4𝑥1
2 − 𝑥2

2 + 3𝑥1𝑥2 − 2𝑥3
2 − 5𝑥6 + 11𝑥7 ≥ 0,

 

−10 ≤  𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 ≤ 10. 
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Table 10 demonstrates the comparison of the best 

solution among the different optimizers and the 

corresponding design variables. The results obtained by 

DGE+satisfies all constraints for the final solution are 

compared with 25 state-of-the-art algorithms that are 

abbreviated and listed in Table 1.

Table 10. Reported results for constrained problem 6 from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 

𝐼𝐺𝐴 2.330499 1.951372 −0.477541 4.365726 −0.624487 1.038131 1.594227 680.63006 
𝐻𝑆 2.323456 1.951242 −0.448467 4.361919 −0.630075 1.03866 1.605348 680.6413574 
𝑀𝐵𝐴 2.326585 1.950973 −0.497446 4.367508 −0.618578 1.043839 1.595928 680.6322202 
𝑫𝑮𝑬 + 𝟐. 𝟑𝟑𝟎𝟒𝟎𝟒 𝟏. 𝟗𝟓𝟏𝟑𝟓 −𝟎.𝟒𝟕𝟕𝟕𝟗 𝟒. 𝟑𝟔𝟓𝟕𝟖𝟔 −𝟎.𝟔𝟐𝟒𝟐𝟕 𝟏. 𝟎𝟑𝟖𝟐𝟏𝟓 𝟏. 𝟓𝟗𝟒𝟐𝟎𝟒 𝟔𝟖𝟎. 𝟔𝟑 

Table 11. Reported results for constrained problem 6 from different optimizers (continued) 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙) 
𝐼𝐺𝐴 680.63006 4.46𝐸 − 05 252.561723 144.878190 7.63𝐸 − 06 
𝐻𝑆 680.6413574 0.208928 252.878859 145.123347 0.263414 
𝑀𝐵𝐴 680.6322202 1.17𝐸 − 04 252.400363 144.912069 1.39𝐸 − 04 
𝑫𝑮𝑬 + 𝟔𝟖𝟎. 𝟔𝟑 𝟕. 𝟗𝟎𝑬 − 𝟖 𝟐𝟓𝟐. 𝟓𝟔𝟎𝟑 𝟏𝟒𝟒. 𝟖𝟕𝟗𝟐 𝟐. 𝟒𝟐𝑬 − 𝟎𝟕 

 

Table 12. Statistical comparison of results for constrained problem 6 of various algorithms 

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 
𝐺𝐴 680.6538 680.6381 680.6303 6.61𝐸 − 03 

𝐴𝑆𝐶𝐻𝐸𝐴 𝑁. 𝐴 680.641 680.630 𝑁. 𝐴 
𝐶𝑈𝐿𝐷𝐸 680.630057 680.630057 680.630057 1𝐸 − 07 
𝐶𝑅𝐺𝐴 682.965 681.347 680.726 5.70𝐸 − 01 
𝑆𝑖𝑚𝑝𝑙𝑒𝑥 680.630 680.630 680.630 2.9𝐸 − 10 
𝐻𝑀 683.1800 681.1600 680.9100 4.11𝐸 − 02 
𝐺𝐴1 680.6508 680.6417 680.6344 𝑁. 𝐴 
𝑀𝐵𝐴 680.7882 680.6620 680.6322 3.30𝐸 − 02 
𝐺𝐴2 𝑁. 𝐴 𝑁. 𝐴 680.642 𝑁. 𝐴 
𝑆𝐴𝑃𝐹 682.081 681.246 680.773 0.322 
𝑆𝑅 680.763 680.656 680.63 0.034 
𝐻𝑆 𝑁. 𝐴 𝑁. 𝐴 680.6413 𝑁. 𝐴 
𝐷𝐸 680.144 680.503 680.771 0.67098 
𝐼𝐺𝐴 680.6304 680.6302 680.6301 1.00𝐸 − 05 
𝑃𝑆𝑂 684.5289146 680.9710606 680.6345517 5.1𝐸 − 01 
𝐶𝑃𝑆𝑂
− 𝐺𝐷 

681.371 680.7810 680.678 0.1484 

𝑆𝑀𝐸𝑆 680.719 680.643 680.632 1.55𝐸 − 02 
𝐷𝐸𝐿𝐶 680.630 680.630 680.630 3.2𝐸 − 12 
𝐷𝐸𝐷𝑆 680.630 680.630 680.630 2.9𝐸 − 13 
𝐻𝐸𝐴𝐴 680.630 680.630 680.630 5.8𝐸 − 13 
𝐼𝑆𝑅 680.630 680.630 680.630 3.2𝐸 − 13 
𝑃𝐸𝑆𝑂 680.630 680.630 680.631 𝑁. 𝐴 
𝐶𝑜𝐷𝐸 685.144 681.503 680.771 𝑁. 𝐴 
𝐴𝐵𝐶 680.638 680.640 680.634 4𝐸 − 03 
𝑇𝐿𝐵𝑂 680.638 680.633 680.630 𝑁. 𝐴 
𝑫𝑮𝑬 + 𝟔𝟖𝟎. 𝟔𝟗𝟕𝟒𝟗𝟓𝟏 𝟔𝟖𝟎. 𝟔𝟑𝟒𝟎𝟏𝟖𝟏 𝟔𝟖𝟎. 𝟔𝟑 𝟎. 𝟎𝟏𝟐𝟎𝟔𝟓𝟏𝟎𝟐 

 
It is evident from Tables 10 & 11 that the proposed DGE+ 

algorithm performed better and superior to all the state-

of-the-art methods without any violation. The 

convergence curve shows the function values versus the 

number of generations for the constrained problem 1. The 

30 trials of the best solution obtained from the DGE+ 

algorithm are given in Figure 9. 
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Figure 9. Convergence curve and 30 best solutions for 

constraint problem 6 

4.2.7. Constrained problem 7 

This problem is taken from  [33] which is a relatively 

complex constrained problem of minimization having 

five variables and six inequality constraints. Table 12 

demonstrates the comparison of the best solution among 

the different optimizers and the corresponding design 

variables. The results obtained by DGE+ are compared 

with 5 state-of-the-art algorithms that are abbreviated and 

listed in Table 1. CULDE, Harmony search and GA2 

violet two constraints and remaining methods violet first 

constraint for the final solution but DGE+ satisfies all 

constraints for the final solution.

 
min 𝑓(𝑥) = 5.3578547𝑥3

3 +  0.8356891 𝑥1𝑥5 + 37.293239𝑥1 + 40729.141, 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
  
 

  
 
 ℎ1(𝑥) = 85.334407 + 0.0056858𝑥2𝑥5 + 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5 − 92 ≤ 0,

ℎ2(𝑥) = −85.334407 − 0.0056858𝑥2𝑥5 − 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5  ≤ 0,

ℎ3(𝑥) = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3
2 − 110 ≤ 0,

ℎ4(𝑥) = −80.51249 − 0.0071317𝑥2𝑥5 − 0.0029955𝑥1𝑥2 − 0.0021813𝑥3
2 + 90 ≤ 0,

ℎ5(𝑥) = 9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4 − 25 ≤ 0,

ℎ6{𝑥} = −9.300961 − 0.0047026𝑥3𝑥5 − 0.0012547𝑥1𝑥3 − 0.0019085𝑥3𝑥4 + 20 ≤ 0,

 

78 ≤ 𝑥1 ≤ 102, 33 ≤ 𝑥2 ≤ 45, 27 ≤ 𝑥3, 𝑥4, 𝑥5 ≤ 45. 

Table 13. Reported results for constrained problem 7 from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝒇(𝒙) 
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 

𝐶𝑈𝐿𝐷𝐸 78.000000 33.000000 29.995256 45.000000 36.775813 −30665.5386 
𝐻𝑆 78.0 33.0 29.995 45.0 36.776 −30665.500 
𝐺𝐴1 80.39 35.07 32.05 40.33 33.34 −30005.700 
𝐺𝐴2 78.0495 33.007 27.081 45.00 44.94 −31020.859 
𝑀𝐵𝐴 78.00000 33.00000 29.99526 44.99999 36.77581 −30665.5386 
𝑫𝑮𝑬 + 𝟕𝟖 𝟑𝟑 𝟐𝟗. 𝟗𝟗𝟓𝟐𝟓𝟔𝟎𝟑 𝟒𝟓 𝟑𝟔. 𝟕𝟕𝟓𝟖𝟏 −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟑𝟖𝟔 

Table 14. Reported results for constrained problem 7 from different optimizers (continued) 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙) 𝒉𝟓(𝒙) 𝒉𝟔(𝒙) 
𝐶𝑈𝐿𝐷𝐸 −30665.5386 1.35𝐸 − 08 −92.00000001 −11.15945 −8.840500 −4.999999 4.12𝐸 − 09 
𝐻𝑆 −30665.500 4.34𝐸 − 05 −92.000043 −11.15949 −8.840510 −5.000064 6.49𝐸 − 05 
𝐺𝐴1 −30005.700 −0.343809 −91.656190 −10.463103 −9.536896 −4.974473 −0.025526 
𝐺𝐴2 −31020.859 1.283813 −93.283813 −9.592143 −10.407856 −4.998088 1.91𝐸 − 03 

𝑀𝐵𝐴 −30665.5386 
1.33𝐸 − 08 −91.99999 −11.159499 

−8.84050 
−4.99999 −3.06𝐸

− 09 
𝑫𝑮𝑬 + −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟑𝟖𝟔 𝟎 −𝟗𝟐 −𝟏𝟏. 𝟏𝟓𝟗𝟒𝟗𝟗𝟔𝟗 −𝟖. 𝟖𝟒𝟎𝟓𝟎𝟎𝟑𝟎𝟗 −𝟓 𝟎 

 

The results obtained by DGE+ are also compared with 

20 state-of-the-art algorithms, the comparison of 

statistical results for constrained problem 7 is given in 

Table 13. 

It is evident from Table 12 & 13 that the proposed 

DGE+ algorithm performed better and superior to all 

the state-of-the-art methods without any violation. The 

convergence curve shows the function values versus 

the number of generations for the constrained problem 

1. The 30 trials of the best solution obtained from the 

DGE+ algorithm are given in Figure 10. 
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Table 15. Statistical comparison of results for constrained problem 7 of various algorithms 

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 
𝑀𝐵𝐴 −30665.3300 −30665.5182 −30665.5386 5.08𝐸 − 02 

𝐴𝑆𝐶𝐻𝐸𝐴 𝑁. 𝐴 −30665.5 −30665.5 𝑁. 𝐴 
𝑆𝑅 −30665.539 −30665.539 −30665.539 2𝐸 − 05 
𝐼𝑆𝑅 −30665.539 −30665.539 −30665.539 1.1𝐸 − 11 
𝐶𝐴𝐸𝑃 −30662.200 −30662.500 −30665.500 9.3 
𝐻𝐸𝐴𝐴 −30665.539 −30665.539 −30665.539 7.4𝐸 − 12 
𝑆𝐴𝑃𝐹 −30656.471 −30655.92 −30665.401 2.043 
𝐻𝑃𝑆𝑂 −30665.539 −30665.539 −30665.539 1.7𝐸 − 06 
𝐻𝑆 𝑁. 𝐴 𝑁. 𝐴 −30665.500 𝑁. 𝐴 
𝐷𝐸 −30665.509 −30665.536 −30665.539 5.067𝐸 − 03 
𝑆𝑀𝐸𝑆 −30665.539 −30665.539 −30665.539 0 
𝐶𝑅𝐺𝐴 −30660.313 −30664.398 −30665.520 1.6 
𝐴𝐵𝐶 −30665.539 −30665.539 −30665.539 0 
𝐶𝑈𝐿𝐷𝐸 −30665.5386 −30665.5386 −30665.5386 1𝐸 − 07 
𝐷𝐸𝐷𝑆 −30665.539 −30665.539 −30665.539 2.7𝐸 − 11 
𝑃𝑆𝑂
− 𝐷𝐸 

−30665.5387 −30665.5387 −30665.5387 8.3𝐸 − 10 

𝐻𝑀 −30645.900 −30665.300 −30664.500 𝑁. 𝐴 
𝐷𝐸𝐿𝐶 −30665.539 −30665.539 −30665.539 1.0𝐸 − 11 
𝑆𝑖𝑚𝑝𝑙𝑒𝑥 −30665.539 −30665.539 −30665.539 4.2𝐸 − 11 
𝑃𝑆𝑂 −30252.3258 −30570.9286 −30663.8563 81 
𝑫𝑮𝑬 + −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟑𝟖𝟐𝟑 −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟑𝟗 −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟑𝟖𝟔𝟕 𝟗. 𝟐𝟔𝑬 − 𝟎𝟓 

 

 

 

Figure 10. Convergence curve and 30 best solutions for 

constraint problem 7 

5. Conclusions 

A new hybrid meta-heuristic has been presented in this 

paper, called DGE+, for dealing with seven benchmark 

constraint optimization problems. The main motivation 

behind the present study is to combine the desirable 

explorative features of DE with exploitative features of 

GE algorithms. The proposed method is mainly based on 

Differential Evolution, Gradient Evolution, and novel 

jumping technique. The proposed algorithm hybridizes 

the above-mentioned algorithms with the help of an 

improvised dynamic probability distribution, additionally 

provides a new shake off method to avoid premature 

convergence towards local minima. To evaluate the 

efficiency and robustness of DGE+ it has been applied on 

seven benchmark constraint optimization problems, the 

results of comparison revealed that DGE+ can provide 

very compact, competitive and promising results. As 

future works, various research directions can be followed. 

Based on certain preliminary observations, the parameter 

values for DGE+ are modified. A full sensitivity analysis 

on the impact of parameters may, therefore, be a guideline 

for future research. The implementation of the proposed 

algorithm to several real-world problems is also 

extremely valuable.   
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