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In this paper we address the state estimation problem of a particular class of
irreversible port Hamiltonian systems (IPHS), which are assumed to be par-
tially observed. Our main contribution consists to design an observer such
that the augmented system (plant + observer) is strictly passive. Under some
additional assumptions, a Lyapunov function is constructed to ensure the sta-
bility of the coupled system. Finally, the proposed methodology is applied to
the gas piston system model. Some simulation results are also presented.
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1. Introduction

Port Hamiltonian systems (PHS) encompass a
very large class of systems including electrical,
mechanical, and in general multi-energy systems
[1–4]. This formalism has been suggested as a
way for modeling and analysis of free and con-
trolled physical systems, due mainly to its essen-
tial feature of underlying the crucial role played
by the energy function, the interconnection struc-
ture, and the dissipation in the control of the sys-
tem.

Although the PHS frame expresses the first prin-
ciple of thermodynamics (the conservation of the
energy), it is not suited for systems describing
irreversible phenomena, as it is necessary to ex-
press the irreversible entropy creation, i.e. the
second principle of thermodynamics. To solve
this problem, the PHS frame has been revised
and many quasi-PHS formulations have been pre-
sented in [5–7]. In [7], the PHS frame has been
extended to a class of systems called IPHS. These
systems are defined with respect to a skew sym-
metric structure matrix, and have the advantage

of representing the first and the second princi-
ples of thermodynamics as theoretical properties
of the system. (The reader is referred to [7] for
more details on the IPHS construction and prop-
erties).

In most realistic problems, we do not have full
information about the system state. Hence, the
need to estimate the unknown part of the vector
state is of great interest. For PHS many research
papers have been developed to investigate the ob-
server design problem [8–12]. In [10, 11], an ob-
server design method based on passivation of the
error dynamics is presented. By combining the
interconnection and damping assignment method
and the dissipativity theory, two observer design
strategies are proposed in [8]. In [12], a full or-
der observer design method based on contraction
analysis is suggested for a particular class of PHS.
For the class of systems considered in this paper
(IPHS) regarding the control, a globally stabiliz-
ing controller preserving the IPHS structure in
closed loop is proposed in [13] and [14]. In [15],
an energy shaping and damping injection IPHS
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controller is constructed for an IPHS. Concern-
ing the state estimation problem, to our modest
knowledge, there is no observer design method de-
veloped for IPHS.

In this paper, our contribution is to present an
observer design method for a class of IPHS by ex-
tending the approach suggested in [10,11] for PHS
to the IPHS setting. Although our methodology is
following that of [11], it is not obvious or simple to
establish the same results for our class of systems.
Some specific hypotheses are introduced in order
to take into account the conservation of energy
and the positivity of entropy production. It is as-
sumed that the system is partially observed and
that the observations are depending on the mea-
sured state only. That case is the most popular
in practice and does not constitute any restriction
as the availability of all state variables measure-
ments is infrequent. Our observer is globally ex-
ponentially stable, and it is a copy of the original
system in which the vector state components are
directly the estimates of the plant ones.

The main advantage of the present study is that
it is the first approach devoted to the observer de-
sign problem of IPHS. Unlike to [10,11] where the
irreversibility is not considered, in this paper some
specific hypotheses are introduced in order to take
into account the conservation of energy and the
positivity of entropy production. In addition, the
use of the passivity technique renders the observer
more stronger and robust against perturbations.
Although the efficiency of our design method has
been proven, the proposed strategy is restricted
to minimum phase systems.

The rest of the paper is organized as follows. In
section 2, a brief overview of the considered IPHS,
the used observer, and some motivation will be
given. Section 3 will be devoted to the description
of our main result. In section 4, an application of
the proposed approach on the gas piston system
model will be presented. The paper is wrapped
up in section 5 with a summary and an outlook.

2. Irreversible port Hamiltonian
systems

Irreversible Port Hamiltonian Systems (IPHS)
have been introduced in [7] as an extension of port
Hamiltonian systems. In particular, the IPHS for-
mulation is used to express simultaneously the en-
ergy conservation and the irreversible entropy cre-
ation. This article will be limited to the class of
IPHS given by the following definition.

Definition 1. The input affine representation of
IPHS is defined by the dynamic equation and the
output relation:

ẋ = R(x,
∂U

∂x
,
∂S

∂x
)J
∂U

∂x
+ g(x,

∂U

∂x
)u(t), (1)

y = gT (x,
∂U

∂x
)
∂U

∂x
(x)

where:

(1) x(t) ∈ Rn is the state vector.
(2) u(t) ∈ Rm is an input time dependent

function, g(x, ∂U∂x ) ∈ Rn×m.
(3) U(x) ∈ R, S(x) ∈ R represent respectively

the internal energy (the Hamiltonian) and
the entropy functions.

(4) J ∈ Rn × Rn is a constant skew sym-
metric matrix, the structure matrix of the
Poisson bracket {., .}J , where {S,U}J =
∂ST

∂x (x)J ∂U
∂x (x).

(5) R(x, ∂U∂x ,
∂S
∂x ) is the product of a posi-

tive definite function γ and the Poisson
bracket of S and U .

R(x,
∂U

∂x
,
∂S

∂x
) = γ(x,

∂U

∂x
){S,U}J (2)

with γ(x, ∂U∂x ) : R
n × Rn −→ R, γ ≥ 0, a

non linear positive function.

By construction, it is clear that IPHS satisfy the
first principle of thermodynamics (conservation of
energy):

dU

dt
= yTu, (3)

which expresses that system (1) is lossless dissi-
pative with energy supply rate yTu (See e.g. [13]).
Moreover, IPHS obey the second principle of ther-
modynamics (positivity of the internal entropy
production):

dS

dt
= R(x,

∂U

∂x
,
∂S

∂x
)
∂ST

∂x
J
∂U

∂x
(4)

+
∂ST

∂x
g(x,

∂U

∂x
)u(t),

= γ(x,
∂U

∂x
){S,U}2J + (gT (x,

∂U

∂x
)
∂S

∂x
)Tu,

where γ(x, ∂U∂x ){S,U}2J = σ(x, ∂U∂x ) ≥ 0, and

{S,U}2J = {S,U}TJ {S,U}J , (see [13], [16] for more
details).

The energy and entropy functions are usually ex-
tensive variables. They satisfy the additivity [17]

S(X,Y ) = S(X) + S(Y ),

U(X,Y ) = U(X) + U(Y ),
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where X and Y are two states. In addition, they
satisfy the scaling relation [17]

S(λX) = λS(X),

U(λX) = λU(X),

where λ is an arbitrary scaling function.

In most realistic problems, we do not have full
information about the system state. Hence, the
need of estimating the unknown part of the vec-
tor state is of great interest. This motivates our
observer design method in which the state of the
original system will be decomposed into two parts.
One is measured and hence it is selected to be the
output. The other is non measured and it will be
estimated by the observer.

3. Problem formulation

In this note we address the partial state observer
problem of IPHS of the form:

{
ẋ = R(x1,

∂U
∂x1

, ∂S
∂x1

)J(x1)
∂U
∂x + g(x1,

∂U
∂x1

)u(t),

y = x1.
(5)

Where

J =

[
J1(x1) N(x1)

−NT (x1) J2(x1)

]
, g(x1,

∂U
∂x1

) = g1(x1,
∂U
∂x1

)

g2(x1,
∂U
∂x1

)

,
x = (x1, x2) ∈ Rn, x1 ∈ Rp is the measured state,
x2 ∈ Rn−p is the unmeasured state, u ∈ Rm is
the input (where m, n and p are integers such
that 1 ≤ p < n and m ≤ n). It is assumed that
the system (5) is forward complete, that is tra-
jectories are defined for all t ≥ 0. The matrices
J1 ∈ Rp×p, J2 ∈ R(n−p)×(n−p) are skew symmet-
ric, N ∈ Rp×(n−p), g1 ∈ Rp×m and g2 ∈ R(n−p)×m.
U : Rp × Rn−p −→ R is the internal energy of
the system. S : Rp × Rn−p −→ R is the entropy
function. The energy and entropy functions are
assumed to satisfy

U(x) = U1(x1) + U2(x2), (6)

S(x) = S1(x1) + S2(x2), (7)

where U1 : Rp −→ R, and U2 : Rn−p −→ R
are two energy functions. S1 : Rp −→ R, and
S2 : Rn−p −→ R are two entropy functions.

Our aim is to design a full order observer for sys-
tem (5) in the following form:

˙̂x = R(x̂1,
∂U

∂x̂1
,
∂S

∂x̂1
)J(x̂1)

∂U

∂x̂
(x̂) (8)

+ g(x̂1,
∂U

∂x̂1
)u(t) + L(x̂1)v,

where L(x̂1) =

[
L1(x̂1)
L2(x̂1)

]
, x̂ = (x̂1, x̂2), x̂1 ∈ Rp,

x̂2 ∈ Rn−p, v ∈ Rp.

Where v = −k(y, x̂)yd + vd, yd and vd are desired
output and input respectively, and k : Rp×Rn −→
R+∗ is a continuous scalar function.

Following ( [15], page 20), the total energy of
the augmented system composed of (5) and (8)
is U(x, x̂) = U(x) + U(x̂). This result represents
an extension of the composition theory of dirac
structures from the port Hamiltonian case to the
irreversible one. This result states that the energy
of any two port controlled Hamiltonian systems
or more is the sum of the energy function of each
system. See ( [4], page 241) for more details.

The time derivative of the energy of the aug-
mented system may be defined as follows

U̇(x, x̂) = ∂UT

∂x g(x1,
∂U
∂x1

)u+ ∂UT

∂x̂ g(x̂1,
∂U
∂x̂1

)u

− ∂UT

∂x̂ Lkyd +
∂UT

∂x̂ Lvd.

Then under the conditions

[
∂UT

∂x
g(x1,

∂U

∂x1
) +

∂UT

∂x̂
g(x̂1,

∂U

∂x̂1
)]u = 0,

∂UT

∂x̂
L = yTd ,

we get

U̇(x, x̂) = yTd vd − kyTd yd ≤ yTd vd, (9)

and hence the feedback law v = −k(y, x̂)yd + vd
makes the augmented system composed of (5) and
(8) strictly passive, with respect to the manifold
M = {(x, x̂) : x = x̂}, from the new input vd to
the new output yd. In that case, system (8) is
called a passivity based observer for system (5).

Recall a fundamental characterization of passive
systems. A system of the form ẋ = f(x) + g(x)u,
y = h(x), x ∈ Rn satisfies the KYP property if
there exists a nonnegative function U : Rn → R,
with U(0) = 0, such that

(∇U(x))T f(x) ≤ 0,

(∇U(x))T g(x) = hT (x),
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see [18] for more details.

In order to solve the observer design problem, we
shall find gains L1, L2, and some function k such
that the augmented system is strictly passive (for
more details on the passivity definition and its ap-
plications see [10,14,18,19]) with respect to a cer-
tain manifold that will be specified later. In this
manifold, the unmeasurable state can be recon-
structed, and hence global exponential stability
of the system can be obtained by letting vd ≡ 0.
Note that a nonlinear observer is sensitive to mea-
surement disturbances. In [10], it is shown that
the passivity property can be used to modify the
nonlinear injection gain in order to make the ob-
server robust with respect to measurement distur-
bances.

4. Observer design

In the beginning of this section , we state the
conditions which will make the augmented sys-
tem strictly passive from the input vd to the out-
put yd. To this end, we follow the same idea as
in [11] by using the equivalence between the next
two statements established in [18]:

(1) Any affine control system can be rendered
strictly passive by a smooth static state
feedback.

(2) The system has a vector relative degree
{1, . . . , 1} and is globally minimum phase.

We recall the relative degree is equal to the num-
ber of times that one has to differentiate the sys-
tem in order to have the input explicitly appear-
ing. Moreover, a system is said to be globally
minimum phase if its zero dynamics are globally
asymptotically stable. See [18] for more details.

Note that in the study of passive systems, the con-
cepts of relative degree and zero dynamics arise
naturally. In particular, in our setting, we as-
sume that the system has a vector relative degree
{1, . . . , 1} in order to ensure the existence of the
system zero dynamics.

We make in the sequel the two following assump-
tions.

Assumption 1. For any Z = x̂2−x2, there exist
Q = QT > 0, Q ∈ R(n−p)×(n−p) such that:

∂U

∂x̂2
=
∂U

∂x2
+QZ. (10)

Assumption 2. There exists a smooth globally
invertible matrix L1(x1) ∈ Rp×p and a smooth

matrix L2(x1) ∈ R(n−p)×p such that:

BT (x1) +B(x1) > δI(n−p)×(n−p), δ > 0,
(11)

holds for all x1, where:

B(x1) = L2(x1)L
−1
1 (x1)R(x1,

∂U

∂x1
,
∂S

∂x1
)N(x1).

We are now ready to state the passivation result:

Lemma 1. Assume that assumptions (1) and (2)
are satisfied. Then:

(1) The augmented system (x, x̂) has a vec-
tor relative degree {1, . . . , 1} with respect
to the input v and the output yd = x̂1−x1.

(2) The zero dynamics of the augmented sys-
tem (x, x̂) with respect to the output yd
renders the manifold P = {(x1, x2, x̂2) :
x̂2 = x2} positively invariant and globally
exponentially attractive.

Proof. (1) Now, we compute the derivative
of yd as:

ẏd = RN [
∂U

∂x̂2
− ∂U

∂x2
] + L1v.

As v is the considered input and L1 is in-
vertible by assumption for all x1, the re-
sult is achieved.

(2) The zero dynamics of the augmented sys-
tem with respect to the output yd consist
of (5) and the equations:

0 = RN [
∂U

∂x̂2
− ∂U

∂x2
] + L1v, (12)

˙̂x2 = −RNT ∂U

∂x1
+RJ2

∂U

∂x̂2
+ g2u (13)

+ L2(x1)v,

we note that these zero dynamics are de-
fined uniformly for all u ∈ Rm.
Now, consider the manifold P and denote
Z = x̂2 − x2. By using (12), we compute
the derivative of Z along (5) and (13). We
get

Ż = [RJ2 − L2L
−1
1 RN ]QZ. (14)

Then by skew symmetry of RJ2 and the
use of assumption (2), we have the posi-
tive invariance of the manifold P .

Now consider the Lyapunov function

V =
1

2
(
∂U

∂x̂2
− ∂U

∂x2
)TQ−1(

∂U

∂x̂2
− ∂U

∂x2
), (15)

then by assumptions (1) and (2) we obtain

V̇ =
1

2
ŻTQZ +

1

2
ZTQŻ

=
1

2
[ZTQ(−RJ2 −BT +RJ2 −B)QZ]

= −1

2
ZTQ[BT +B]QZ

≤ −δ λ
2
m(Q)

λM (Q)
V.
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where λm(Q) and λM (Q) denotes respec-
tively the smallest and the largest eigen-
value of Q. Thus the system exponen-
tially decays to zero with convergence rate

δ λ2
m(Q)

λM (Q) .

□

Remark 1. In the last lemma we mean by zero
dynamics, the dynamics of the augmented system
composed by the observer and the plant restricted
to the set of initial conditions such that the cor-
responding output yd = x̂1 − x1 is zero (which
implies that x̂1 = x1).

Hence the observer (8), will be defined by

˙̂x = R(x1,
∂U

∂x1
,
∂S

∂x1
)J(x1)

∂U

∂x̂
(x̂) (16)

+ g(x1,
∂U

∂x1
)u(t) + L(x1)v,

where L(x1) =

[
L1(x1)
L2(x1)

]
.

We note that this definition differs from the usual
understanding of zero dynamics, as the input u(t)
still appearing in the equations.

The following assumption will play a crucial role
in our analysis.

Assumption 3. There exists a smooth function
β : Rp −→ Rn−p such that

L2(x1)L
−1
1 (x1) =

∂β

∂x1
(x1) (17)

holds for all x1 ∈ Rp.

Remark 2. (1) Assumption 1 is important
in the development of our approach. It al-
lows us to easily demonstrate the positive
invariance and the exponential stability of
the manifold P. This assumption is very
crucial and will be helpful in the choice of
our example given in section 5. Moreover,
it expresses a relation between states vari-
ables and co-energy variables, and means
that any co-energy variable ∂U

∂x2
( ∂U
∂x̂2

) may
be linearized with respect to the state x2
(x̂2).

(2) Assumption 2 is usually satisfied since L1

and L2 represent degrees of freedom. The
choice of L1 and L2 is done such that the
augmented system has a vector relative de-
gree and is globally minimum phase.

(3) In assumption 3, a matching condition is
defined and has to be solved. This condi-
tion requires that the selected gains L1 and
L2 should be integrable. This assumption
will be used to achieve the attractivity of
the manifold.

Now, we proceed to the design of the feedback
law and consequently to the construction of the
full order observer.

Theorem 1. Assume g1 ≡ 0.

Then, the augmented system (5), (8) expressed in
the coordinates (x1, x2; ξ1, ξ2) where

ξ1 = x̂1 − x1, (18)

ξ2 = x̂2 − x2 − {β(x̂1)− β(x1)} (19)

has global normal form with respect to the input
v and the output yd.

Moreover, the feedback law defined by

v = −(α+ ϕ1 + ϕ22)ξ1 + vd, (20)

where α > 0 and ϕi(ξ1, x̂1, x̂2), i = 1, 2 are
non negative scalar functions, renders the sys-
tem strictly passive with respect to the manifold
P, uniformly for all u ∈ Rm, from the input vd to
the output ξ1 with the storage function being given
by

W (ξ1, ξ2) =
1

2
ξT2 Qξ2 +

1

2
ξT1 Xξ1,

where X ∈ Rp×p, and Q ∈ Rn−p×n−p.

Proof. We define the functions Fi(ξ1, ξ2, x1, x2) =
Fi, i = 1, 2, 3, as:

F1 = f̂1 − f1 (21)

F2 = f̂2 − f2 (22)

F3 =
∂β

∂x̂1
(x̂1)f̂1 −

∂β

∂x1
(x1)f1; (23)

where fi(x1, x2) = fi, fi(x̂1, x̂2) = f̂i, i = 1, 2,
F1 ∈ Rp, F2 ∈ Rn−p,[

f1(x1, x2)
f2(x1, x2)

]
= R(x1,

∂U

∂x1
,
∂S

∂x1
)J
∂U

∂x
,

and hence using the assumption g1 ≡ 0, the sys-
tem dynamic may be expressed in the coordinate
transformation (ξ1, ξ2) as

ξ̇1 = F1(ξ1, ξ2, x1, x2) + L1(x̂1),

ξ̇2 = (F2 − F3)(ξ1, ξ2, x1, x2).

In addition, we have

Fi = Fi|x2=x2+ξ2 + Fi|ξ1=0,
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where Fi|x2=x2+ξ2 = Fi(ξ1, ξ2, x1, x2 + ξ2),
Fi|ξ1=0 = Fi(0, ξ2, x1, x2). We note that when
ξ1 = 0, then Fi(ξ1, ξ2, x1, x2 + ξ2) = 0. Hence,
the augmented system assumes its global nor-
mal form as we have the existence of continu-
ous matrix functions A1(ξ1, x1, x2) ∈ Rp×p, and
Ai(ξ1, x1, x2) ∈ Rn−p×p, for i = 2, 3 achieving

Fi(ξ1, ξ2, x1, x2 + ξ2) = Ai(ξ1, x1, x2)ξ1. (24)

Now, There exist non-negative continuous scalar
functions ψi(ξ1, x1, x2 + ξ2), i = 1, 2, 3 such that,

∥Ai(ξ1, x1, x2 + ξ2)∥ ≤ ψi(ξ1, x1, x2 + ξ2), (25)

holds for all ξ1, x1, x2+ξ2, where ∥.∥ is the induced
norm of any general matrix.

The next inequalities will be used to demonstrate
that the system is strictly passive with respect to
the input vd and the output yd:

∥ξT2 Q(F2 − F3)(ξ1, ξ2, x1, x2 + ξ2)∥ ≤
ζ{ψ2 + ψ3}(ξ1, x1, x2 + ξ2)

√
δ∥ξ1∥∥ξ2∥ (26)

where ζ = λM (Q)√
δ

, and λM (Q) is the largest eigen-

value of Q.

∥ξT1 XF1(ξ1, ξ2, x1, x2 + ξ2)∥ ≤
λM (X)ψ1(ξ1, x1, x2 + ξ2)∥ξ1∥2, (27)

∥ξT1 XF1(0, ξ2, x1, x2)∥ ≤
ζλM (X)∥R∥∥N∥

√
δ∥ξ1∥∥ξ2∥, (28)

Now consider the feedback law v (20) with
ϕ1 = λM (X)ψ1 and ϕ2 = ζ({ψ2 + ψ3} +
λM (X)∥N∥∥R∥), and the storage function W .
Using the inequalities (26), (27) and (28) we ob-
tain:

Ẇ ≤− α∥ξ1∥2 + ξT1 vd −
3

4
δ∥ξ2∥2−

−{1
2

√
δ∥ξ2∥ − ∥ξ1∥ϕ2}2

Thus, we get the result. □

5. Application

We consider a pure ideal gas contained in a cylin-
der closed by a piston and submitted to grav-
ity. The thermodynamic properties of this system
may be decomposed into the properties of the pis-
ton in the gravitation field and the properties of
the perfect gas. See [16] for more details.

The total energy of the system is:

U(x) = TS − PV +Hmec(z, p), (29)

where x = [S, V, z, p]T is the vector of state vari-
able, S denotes the entropy variable, V is the vol-
ume variable, z is the altitude of the piston and p
its kinetic momentum. Hmec(z, p) =

1
2mp

2+mgz
represents the energy of the piston. The co-energy
variables are defined by the gradient of the total
energy:

∂U
∂S ≜ T
∂U
∂V ≜ −P
∂U
∂z = mg = Fg
∂U
∂p ≜ v

(30)

where T is the temperature, P is the pressure, Fg

is the gravity force and v is the velocity of the
piston. This system may be written in the state
space representation form (5) as follows:

d

dt


S
V
z
p

 = R


0 0 0 1
0 0 0 A T

νv
0 0 0 T

νv
−1 −A T

νv − T
νv 0


︸ ︷︷ ︸

J
T
−P
F
v


︸ ︷︷ ︸

∇xU

where A denotes the area of the piston, and

R = R(x,
∂U

∂x
,
∂U

∂S
),

= γ(x,
∂U

∂x
){S,U}J ,

=
νv

T
,

= R(x1,
∂U

∂x1
,
∂U

∂S
),

and
J = J(x1),

such that x1 = [S, V, p]T and x2 = z.

In order to stay in the context of partial state
observability, we assume x1 to be measured and
x2 is non measured. If we let (x̂1, x̂2) be the
state estimates and define their dynamic as in
(8), the error of the system may be expressed as

(e1, e2, e3, e4) = (Ŝ, V̂ , p̂, ẑ)− (S, V, p, z).
The assumption 1 is satisfied:

∂U

∂x̂2
− ∂U

∂x2
= ρAg(ẑ − z),

where g is the gravity force, ρ is the density.

Now let L1 = I3, where I3 is the identity matrix
of order 3, and L2 = [0, 1, 1]. Then, assumption 2
is clearly satisfied as we have:

BT (x1) +B(x1) = 2A+ 2 > 0.
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The function β of assumption 3 will be defined
as: β(x1) = V + p. To express the system in its
global normal form, we use the following change
of coordinates:

ξ1 = x̂1 − x1,

= [Ŝ − S, V̂ − V, p̂− p]T ,

= [ξ11, ξ12, ξ13]
T ,

ξ2 = x̂2 − x2 − (β(x̂1)− β(x1)),

= ẑ − z − (V̂ − V )− (p̂− p),

where ξ11 = Ŝ −S, ξ12 = V̂ − V , and ξ13 = p̂− p.
We choose the total energy as

W (ξ1, ξ2) =
1

2
ξ211 +

1

2
ξ212 +

1

2
ξ213 +

1

2
ξT2 ξ2.

Now, as all tools are available, we shall design the
feedback law (20). Firstly, the functions f1 and
f2 are given by

f1(x1, x2) =

 ν v2

T
Av

−νv +AP − ρAgz

 , f2 = v.

Then

F1 =

 ν( v̂
2

T̂
− v2

T )

A(v̂ − v)

−ν(v̂ − v) +A(P̂ − P )− ρAg(ẑ − z)

 ,
F2 = v̂ − v,

F3 = (A− ν)(v̂ − v) +A(P̂ − P )− ρAg(ẑ − z).

Using the inequalities (26), (27), and (28) we get

ϕ1 =max(Anr
|T |
|V V̂ |

+ ρAg,Anr
T0

c|V̂ |
+ T0ν

|v̂2|
c|T T̂ |

,

ρAg + (A+ ν +
|V + V̂ |

|T |
)supp(∥∇v∥))

and

ϕ2 =max(Anr
T0

|V V̂ |
+ ρAg,Anr

T0

c|V̂ |
, supp(∥∇v∥)+

+ρAg) + 1 +A+ ν
|v|
|T |

.

Therefore, we get the expression of the feedback
law (20) v as v1

v2
v3

 = −(α+ ϕ1 + ϕ22)ξ1 +

 vd1
vd2
vd3

 ,

where ξ1 = (ξ11, ξ12, ξ13)
T = (Ŝ−S, V̂ −V, p̂−p)T .

The simulations below address respectively the
entropy, volume, the altitude of piston and the
kinetic momentum. The plant curves are in red
and the observer ones are in black.
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Figure 1. Open-Loop trajectories
for the gas piston model and the ob-
server.

The simulation results for the gas piston system
model and the observer are given under the initial
conditions:

S0 V0(l) p0 z0 α
Plant 151.077 5 0 500 0

Observer 281 20 0 600 10

The other parameters are chosen as: g = 10m/S2,
n = 0.1002 mol, ν = 0.05, A = 0.01m2, T0 =
600 K, c = 180 j/Kg/K. r = 8.31 jmol−1K−1 is
the universal gas constant.
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6. Conclusion and Outlook

In this note, we have proposed a passivity based
observer for a special class of irreversible port
Hamiltonian systems. The observer design is done
in two steps: The first one is the passivation of the
system. In this step we check if assumption 1 is
satisfied. Then, the matrices L1 and L2 are cho-
sen in such a way to fulfil assumption 2. Finally,
we compute the function β by using assumption
3.

The basic idea of the second step is to express the
system in its global normal form and compute the
feedback law v by using the procedure described
in Theorem 1. Finally, the result has been applied
to the gas piston system model considered in [7],
and some simulation results of the studied exam-
ple are presented. Since our study involves time
derivatives, future works will tackle the investiga-
tion of the proposed observer design to the study
of fractional differential operators (see [20–28]).
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