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sions. The main problem is to establish the approximation of second-order
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1. Introduction

Optimal control problems with discrete and dif-
ferential inclusions are increasingly studied in
mathematical theory [1, 2]. Also, discrete and
continuous-time processes have wide applications
in the field of mathematical economics and the
problems of control dynamic system optimiza-
tion [3–6]. Thus, the optimal control problems de-
scribed by discrete inclusions with endpoint con-
straints and approximation play a very significant
role in both theory and applications of control
theory [7, 8].

Second-order discrete and differential inclusions
have been studied by many authors when the set-
valued mapping is both convex and nonconvex
valued (see [9–11] and references therein).

Auslender and Mechler [12] establish necessary
and sufficient conditions to ensure the existence
of solutions to the second-order differential inclu-
sions with state constraints via interior tangent
sets.

An approximation to a linear differential inclu-
sion using N-stage single step discrete inclusions
is described in the paper [13]. The result is ap-
plied to the discretization of control constrained
optimal control problems in the second-order and
the use of dynamic programming for approximate
feedback design.

The paper [14] deals with the discrete approx-
imations of nonconvex differential inclusions in
Hilbert spaces and dynamic optimization-optimal
control problems concerning such differential in-
clusions.

Agarwal and O’Regan [15] present new fixed-
point theorems for weakly sequentially upper
semicontinuous maps. These results are used to
establish existing principles for second-order dif-
ferential equations and inclusions.

The optimal control of discrete-time systems are
given in the book of Boltyanskii [16]. That book
explores some results from the classical control
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point of view for a linear, time-invariant, discrete-
time, optimal control system with infinite-time
case.

In general, several studies on the differential in-
clusions of the second-order are devoted to prob-
lems of existence and viability. In the case where
the multifunction is upper semicontinuous and
has compact convex values, Haddad and Yarou
[17] provided the first viability result for second-
order differential inclusions. The Cauchy problem
for the infinite-dimensional case and second-order
differential inclusions are considered in that pa-
per.

As is pointed out in the paper [18], Marco and
Murillo analyzed the existence of Lyapunov func-
tions for second-order differential inclusions by us-
ing the methods of the viability theory. A neces-
sary assumption on the initial states and sufficient
conditions are obtained for the existence of local
and global Lyapunov functions.

Lupulescu [19] demonstrated the existence of
viable solutions for autonomous second-order
functional-differential inclusions in the case where
the multifunction defining the inclusion is upper
semicontinuous, compact valued, and contained
in the subdifferential of a proper lower semicon-
tinuous convex function.

Due to the higher-order derivatives and their dis-
crete analogs, the problems accompanied by the
higher-order discrete and differential inclusions
are more complicated. A convenient procedure
for eliminating this complication in optimal con-
trol theory involving higher-order derivatives is
a formal reduction of the problems by substitu-
tion to the system of first-order differential in-
clusions or equations. But in practice, return-
ing to the higher-order problem and expressing
the arising optimality conditions in terms of the
original problem data, in general, is very difficult.
Although the construction of adjoint inclusions
and transversality conditions is more complicated,
Mahmudov formulates the conditions of optimal-
ity for the optimal control problem of higher-order
differential inclusions with functional constraints
in the paper [20].

The principle approach we use is that of locally
adjoint mapping(LAM), which facilitates obtain-
ing necessary and sufficient conditions for all
types of discrete and differential inclusions. Op-
timization of various forms of discrete inclusions
can be reduced to finite-dimensional problems of
mathematical programming, namely, to the mini-
mization of functions on the intersection of a finite
number of sets.

We use difference approximations of ordinary
derivatives and grid functions on a uniform grid

to approximate differential inclusions and to de-
rive necessary and sufficient conditions of opti-
mality for discrete-approximation problems. It
turns out that this requires some particular equiv-
alence theorems of a LAM , which arise in discrete
and discrete-approximation problems.

One of the central objects of this paper is the
relationship between continuous and discrete sys-
tems. By using particular equivalence theorems
of the LAM , which play a significant role in the
following investigations and without which few
necessary or sufficient conditions would be ob-
tained, the transition to the optimal conditions
for discrete-approximation problems from their
discrete counterparts is realized. The point argu-
ment is that discrete and discrete-approximation
problems naturally are described by different set-
valued mappings (say F and G, respectively).
Therefore, we have to express the LAM G∗ by F ∗

to formulate the optimality conditions for each
discrete and discrete-approximation problem as-
sociated with the continuous problem.

The rest of this paper is organized as follows.

For the convenience of the reader, the necessary
facts and supplementary results from the book
of Mahmudov [1] are summarized in Section 2.
In particular, the Hamiltonian function, argmaxi-
mum set of a set-valued mapping, and the locally-
adjoint mapping are introduced and the viability
problems for second-order discrete and differen-
tial inclusions are described with endpoint con-
straints.

In Section 3, the discrete problem with the
second-order discrete inclusions posed in Section 2
is reduced to a convex problem of a finite number
of geometric constraints. We prove the necessary
and sufficient conditions of optimality in terms of
LAMs by using constructions of convex and non-
smooth analysis.

In Section 4, we use difference approximations of
derivatives and grid functions on a uniform grid to
approximate problems with second-order differen-
tial inclusions. Then we derive the necessary and
sufficient condition for optimality in both forms of
Euler-Lagrange inclusions and transversality con-
ditions for the discrete-approximation problem.

In Section 5, we present some applications of the
results obtained for problems with second-order
discrete inclusions and set-valued mappings.

2. Needed facts and problem statement

For the convenience of the reader, the books
Mahmudov [1] and Mordukhovich [2] contain all
the necessary notions and results from set-valued
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analysis theory. Let Rn be an n-dimensional Eu-
clidean space, 〈x, v〉 be an inner product of ele-
ments x, v ∈ R

n, (x, v) be a pair of x, v. Assume
that F : Rn × R

n ⇒ R
n is a set-valued mapping

from R
2n = R

n×R
n into the set of subsets of Rn.

The set-valued mapping F is said to be convex if
its graph gphF = {(x, v1, v2) : v2 ∈ F (x, v1)}
is a convex subset of R

3n. A set-valued map-
ping F is convex-closed if its gphF is a convex-
closed set in R

3n. It is convex-valued if F (x, v1)
is a convex set for each (x, v1) ∈ domF , where
domF = {(x, v1) : F (x, v1) 6= ∅}.

Let us introduce the Hamiltonian function and
argmaximum set for a set-valued mapping F as

HF (x, v1, v
∗

2) = sup
v2

{
〈v2, v

∗

2〉 : v2 ∈ F (x, v1)
}
,

F (x, v1; v
∗

2) =
{
v2 ∈ F (x, v1) : 〈v2, v

∗

2〉

= HF (x, v1, v
∗

2)
}

v∗2 ∈ R
n, respectively. For convex F , we set

HF (x, v1, v
∗

2) = −∞ if F (x, v1) = ∅. Clearly,
the Hamiltonian function HF (·, ·, v

∗

2) is concave
for the convex set-valued mapping F .

Definition 1. The convex cone KA(z0), z0 =
(x0, u0, v0) is called the cone of tangent direc-
tions at a point z0 ∈ A to the set A if from
z = (x, u, v) ∈ KA(z0) it follows that z is a tan-
gent vector to the set A at point z0 ∈ A , i.e.,
there exists such function γ(λ) ∈ R

3n such that
z0 + λz + γ(λ) ∈ A for sufficiently small λ > 0
and λ−1γ(λ) → 0 as λ ↓ 0.

It should be pointed out that the cone KA(z0) is
not uniquely defined. Since λz, λ ≥ 0 is a vector
of tangent direction, if z is the same, then it is
clear that such vectors form a cone. In any case
we can see that the wider a cone of tangent direc-
tions we have the essentially necessary condition
for a minimum [1].

Obviously, for a convex mapping F at a point
(x0, v01, v

0
2) ∈ gphF setting γ(λ) ≡ 0, we have

KgphF (x
0, v01, v

0
2) = cone

[
gphF − (x0, v01, v

0
2)
]

=
{
(x, v1, v2) : x = λ(x− x0), v1 = λ(v1 − v01),

v2 = λ(v2 − v02)
}
, ∀ (x, v1, v2) ∈ gphF.

For a convex mapping F a set-valued function de-
fined by

F ∗
(
v∗2; (x

0, v01, v
0
2)
)
:=

{
(x∗, v∗1) : (x

∗, v∗1,−v
∗

2)

∈ K∗

gphF (x
0, v01, v

0
2)
}

is a locally adjoint set-valued mapping (LAM)
to F at a point (x0, v01, v

0
2) ∈ gphF , where

K∗

gphF (x
0, v01, v

0
2) is the dual to the cone of tan-

gent vectors KgphF (x
0, v01, v

0
2).

Let intA be the interior of the set A ⊂ R
3n and

riA be the relative interior of the set A, i.e. the
set of interior points of A with respect to its affine
hull AffA. A function ϕ is called a proper func-
tion, if it does not assume the value−∞ and is not
identically equal to +∞. Obviously ϕ is proper
function if and only if domϕ 6= ∅ and ϕ(x, y) is
finite for (x, y) ∈ domϕ.

We note that a convex function is continuous on
the relative interior of its domain, it may have
discontinuities only on its relative boundary (see,
for example, Theorem 1.18 [1]).

In this paper, we study the following main second-
order discrete model:

infimum ϕ(xN−1, xN ), (1)

xt+2 ∈ F (xt, xt+1, t) , t = 0, . . . , N − 2, (2)

x0 = α0 , x1 = α1,

xt ∈ A, t = 0, . . . , N, xN ∈ B, (3)

where xt ∈ R
n, F (·, ·, t) : R

2n ⇒ R
n is a time

dependent set-valued mapping, ϕ : R2n → R is
continuous function, α0, α1 are fixed vectors and
N is fixed natural number, A,B ⊂ R

n are non-
empty subsets and A ∩ B 6= ∅. We label this
problem as (PD).

A sequence {xt}
N
t=0 = {xt : t = 0, 1, . . . , N} is

called a feasible trajectory for the stated problem
(PD). The problem is to find a solution {x̃t}

N
t=0

of the problem (PD) for the second-order discrete
inclusions satisfying (2)− (3) and minimizing the
Mayer functional ϕ(xN−1, xN ).

The problem (PD) is said to be convex, if the
F (·, ·, t), ϕ and A,B are convex set-valued map-
ping, proper convex function, and convex sets re-
spectively.

Definition 2. We say that for the convex prob-
lem (PD) satisfies the regularity condition, if for
points xt ∈ R

n, one of the following cases is ful-
filled:

(i) (xt, xt+1, xt+2) ∈ rigphF (·, ·, t), t =
0, . . . , N − 2, xt ∈ riA, t = 0, . . . , N ,
xN ∈ riB, (xN−1, xN ) ∈ ridomϕ,

(ii) (xt, xt+1, xt+2) ∈ intgphF (·, ·, t), t =
0, . . . , N −2, xt ∈ intA; xN ∈ intB, (with
the possible exception of one fixed t) and
ϕ is continuous at (xN−1, xN ).

It follows from the regularity condition that, if
{x̃t}

N
t=0 is the optimal trajectory in the prob-

lem (PD), then the cones of tangent directions
KgphF (·,t)(x̃t, x̃t+1, x̃t+2) are not separable and
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consequently the condition of Theorem 3.2 [1] is
satisfied.

We are interested in the approximate problem for
the following evolution differential inclusions with
endpoint constraint

infimum φ
(
x(1), x′(1)

)
,

x′′(t) ∈ F (x(t), x′(t), t) , a.e. t ∈ [0, 1], (4)

x(0 = β0 , x
′(0) = β1,

x(t) ∈ A, t ∈ [0, 1], x(1) ∈ B,

where F (·, ·, t) : R
2n ⇒ R

n is a time depen-
dent set-valued mapping, φ : R

2n → R is con-
tinuous function and β0, β1 are fixed vectors and
A,B ⊂ R

n are nonempty subsets and A ∩B 6= ∅.
That problem is called the viability problem.

The problem is to find an arc x̃(·) of the viabil-
ity problem satisfying (4) almost everywhere on
[0, 1] and the initial and endpoint constraints that
minimizes the cost functional φ. Here a feasible
trajectory x(·) is understood to be an absolutely
continuous function on a time interval [0, 1] to-
gether with the first-order derivatives for which
x′′(·) ∈ Ln1 ([0, 1]). Clearly, such a class of func-
tions is a Banach space, endowed with the differ-
ent equivalent norms.

Clearly, the condition (2) in the main discrete
model is a discrete analog of second-order differ-
ential inclusions (4).

Definition 3. We say F (·, ·, t) is viable if for ev-
ery x(0) = β0, x

′(0) = β1, (4) has an absolutely
continuous solution x(·) : [0, 1] → R

n such that
x(t) ∈ A for all t ∈ [0, 1] and the inclusion in (4)
is satisfied for almost everywhere on [0, 1].

Let us formulate the conditions of optimality for
the discrete problem (PD) before we begin the
discussion on the approximation problem with
second-order inclusions.

3. Necessary and sufficient conditions

of optimality for discrete problem

We consider the discrete problem (PD) in this
section. First, let us introduce a vector u =
(x0, x1, . . . , xN ) ∈ R

n(N+1) and define the follow-

ing convex sets in the space R
n(N+1)

Mt =
{
u = (x0, . . . , xN ) : (xt, xt+1, xt+2)

∈ gphF (·, ·, t)
}
, t = 0, 1, . . . , N − 2,

Pt =
{
u = (x0, . . . , xN ) : xt ∈ A

}
, t = 0, . . . , N,

Q =
{
u = (x0, . . . , xN ) : xN ∈ B

}
,

Q0 =
{
u = (x0, . . . , xN ) : x0 = α0

}
,

Q1 =
{
u = (x0, . . . , xN ) : x1 = α1

}
.

The discrete problem (PD) is now reduced to solv-
ing a convex programming problem by setting
f(u) = ϕ(xN−1, xN ). In fact, it is easy to see
that the problem (PD) is equivalent to the follow-
ing one:

minimize f(u) (5)

u ∈ C :=
(N−2⋂
t=0

Mt

)
∩
( N⋂
t=0

Pt

)
∩Q∩Q0∩Q1, where

C is the convex set. This transformation allows
us to prove rigorously that if {x̃t}

N
t=0 is the opti-

mal solution to the problem (PD), then ũ is the
solution to the problem (5). It should be noted
that under the regularity condition Definition 2
the dual cone associated with intersection of cones
of tangent directions is equal to the algebraic sum
of their dual cones. Thus, from Theorem 1.11 [1],
we have

K∗

C(ũ) =
N−2∑
t=0

K∗

Mt
(ũ) +

N∑
t=0

K∗

Pt
(ũ) +K∗

Q(ũ)

+K∗

Q0
(ũ) +K∗

Q1
(ũ). (6)

Moreover, the results taken from [1] provide nec-
essary conditions of optimality for the convex
mathematical programming (5). We can prove
necessary conditions of optimality for problem
(5) with geometric constraints based on results
concerning convex mathematical programming.
Thus, by continuity of ϕ at points of some fea-
sible solution {x̃t}

N
t=0 it follows from Theorem

3.4 [1], there exist vectors u∗(t) ∈ K∗

Mt
(ũ), t =

0, 1, . . . , N − 2, w∗(t) ∈ K∗

Pt
(ũ), t = 0, . . . , N and

v∗(0) ∈ K∗

Q0
(ũ), v∗(1) ∈ K∗

Q1
(ũ), v∗(N) ∈ K∗

Q(ũ)

and the number µ ∈ {0, 1}, not all equal to zero,
such that

µû∗ =
N−2∑
t=0

u∗(t) +
N∑
t=0

w∗(t) + v∗(N)

+v∗(0) + v∗(1), (7)

where û∗ ∈ ∂uf(ũ). From definition of the func-
tion f it is easy to see that the vector û∗ ∈

∂uf(ũ) has a form û∗ =
(
0, . . . , 0,︸ ︷︷ ︸
N−1

x̂∗N−1, x̂
∗

N

)
,

(
x̂∗N−1, x̂

∗

N

)
∈ ∂(x,v1)ϕ(x̂N−1, x̂N ). First of all it

is not hard to compute the dual cones K∗

Pt
(ũ),

K∗

Q(ũ), K
∗

Q0
(ũ) and K∗

Q1
(ũ) as follows

K∗

Pt
(ũ) = {w∗(t) : w∗

t (t) ∈ K∗

A(x̃t), w
∗

k(t) = 0 ,

k 6= t}, t = 0, . . . , N

K∗

Q(ũ) = {v∗(N) : v∗k(N) = 0, k 6= N},

K∗

Q0
(ũ) = {v∗(0) : v∗k(0) = 0, k 6= 0},

K∗

Q1
(ũ) = {v∗(1) : v∗k(1) = 0, k 6= 1}.
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Then we should compute the dual cone K∗

Mt
(ũ)

in the following lemma.

Lemma 1. Let KgphF (xt, xt+1, xt+2),
(xt, xt+1, xt+2) ∈ gphF be cone of tangent di-
rections. Then

K∗

Mt
(u) =

{
u∗ = (x∗0, . . . , x

∗

N ) : (x
∗

t , x
∗

t+1, x
∗

t+2)

∈ K∗

gphF (xt, xt+1, xt+2),

x∗k = 0, k 6= t, t+ 1, t+ 2
}
.

Proof. From the dual cone definition,
u∗ ∈ K∗

Mt
(u) is valid if and only if

〈u∗, u〉 =
N∑
k=0

〈x∗k, xk〉 ≥ 0, ∀ u ∈ KMt
(u).

Clearly, KMt
(u) =

{
u : (xt, xt+1, xt+2) ∈

KgphF (xt, xt+1, xt+2)
}
and from the arbitrariness

of components xk, k 6= t, t + 1, t + 2 of vectors
u it follows that x∗k = 0, k 6= t, t + 1, t + 2.
Therefore the inequality 〈x∗t , xt〉 + 〈x∗t+1, xt+1〉 +
〈x∗t+2, xt+2〉 ≥ 0 yields (x∗t , x

∗

t+1, x
∗

t+2) ∈
K∗

gphF (xt, xt+1, xt+2). �

Now, we are ready to give the conditions of opti-
mality for the discrete problem (PD).

Theorem 1. Let F (·, ·, t) be a convex set-valued
mapping and ϕ be proper convex functional and
continuous at the points of some feasible trajec-
tory. Then for optimality of the trajectory {x̃t}

N
t=0

in the Mayer problem (1)− (3) with second-order
discrete inclusions, initial and endpoint con-
straints, it is necessary that there exist a number
µ ∈ {0, 1} and vectors x∗t , ξ

∗

t , η
∗

t , t = 0, . . . , N
not all equal zero satisfying the Euler-Lagrange
discrete inclusions and transversality conditions:
(i) (x∗t−ξ

∗

t−η
∗

t , ξ
∗

t+1) ∈ F ∗(x∗t+2; (x̃t, x̃t+1, x̃t+2), t),

t = 0, 1, . . . , N − 2,

(ii) η∗t ∈ K∗

A(x̃t); t = 0, . . . , N, ξ∗N ∈ K∗

B(x̃N ),

(iii)
(
ξ∗N−1 − x∗N−1 + η∗N−1 , ξ

∗

N + η∗N − x∗N

)

∈ µ∂(x,v1)ϕ(x̃N−1, x̃N ).

In addition, under the regularity condition these
conditions are sufficient for optimality of the tra-
jectory {x̃t}

N
t=0.

Proof. Obviously, (5) is a convex problem with
geometric constraints and by hypotheses of the
theorem, ũ = (x̃0, . . . , x̃N ) is a solution of the
problem (5). According to Lemma 1, one has

u∗(t) =
(
0, . . . , 0, x∗t (t), x

∗

t+1(t), x
∗

t+2(t), 0, . . . , 0
)
,

where(
x∗t (t), x

∗

t+1(t), x
∗

t+2(t)
)
∈ K∗

gphF

(
x̃t, x̃t+1, x̃t+2

)
,

t = 0, 1, . . . , N − 2,

v∗(0) =
(
v∗0(0), 0, . . . , 0

)
,

v∗(1) =
(
0, v∗1(1), 0 . . . , 0

)
,

v∗(N) =
(
0, 0 . . . , 0, v∗N (N)

)
.

Now using the component-wise representation of
(7), we deduce that

x∗0(0) + w∗

0(0) + v∗0(0) = 0,

x∗1(0) + x∗1(1) + w∗

1(1) + v∗1(1) = 0, (8)

x∗t (t) + x∗t (t− 1) + x∗t (t− 2) + w∗

t (t) = 0,

t = 2, . . . , N − 2, (9)

x∗N−1(N−2)+x∗N−1(N−3)+w∗

N−1(N−1) = µx̂∗N−1,

x∗N (N − 2) + w∗

N (N) + v∗N (N) = µx̂∗N ,

(x̂∗N−1, x̂
∗

N ) ∈ ∂(x,v1)ϕ(x̂N−1, x̂N ), µ ∈ {0, 1}.

On the other hand, by definition of LAM we de-
rive that(
x∗t (t), x

∗

t+1(t)
)
∈ F ∗

(
−x∗t+2(t); (x̃t, x̃t+1, x̃t+2), t

)
,

t = 2, . . . , N − 2. (10)

Introducing the new notations −x∗t+2(t) ≡ x∗t+2,
x∗t+1(t) ≡ ξ∗t+1, t = 0, . . . , N − 2 and w∗

t (t) ≡ η∗t ,
t = 0, . . . , N , v∗N (N) ≡ ξ∗N , we find from the for-
mulas (9) and (10) that
(
x∗t−ξ

∗

t −η
∗

t , ξ
∗

t+1

)
∈ F ∗

(
x∗t+2; (x̃t, x̃t+1, x̃t+2), t

)
,

t = 2, . . . , N − 2, (11)

and

η∗t ∈ K∗

A(x̃t); t = 0, . . . , N, ξ∗N ∈ K∗

B(x̃N ). (12)

Moreover, it is easy to see that setting, v∗0(0) =
ξ∗0 − x∗0 and v∗1(1) = −x∗1 in the first relation-
ships of (8), we can generalize the formula (11)
to the cases t = 0, 1. Finally, for t = N − 1 and
t = N we have µx̂∗N−1 = −x∗N−1 + ξ∗N−1 + η∗N−1,
µx̂∗N = −x∗N + ξ∗N + η∗N which imply

(
− x∗N−1 + ξ∗N−1 + η∗N−1,−x

∗

N + ξ∗N + η∗N

)

∈ µ∂(x,v1)ϕ(x̃N−1, x̃N ). (13)

Thus taking into account the formulas (11), (12)
and (13), we complete the first part of the proof
of theorem. The proof of the sufficiency con-
ditions, is based on the Theorem 1.30 [1], un-
der the regularity condition, the representation
(13) holds with parameter µ = 1 for the point
û∗ ∈ ∂uf(ũ) ∩K

∗

C(ũ). �

4. The conditions of optimality for

discrete approximation problem

In what follows, we give an idea of the construc-
tion of the discrete-approximation problem for the
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viability problem (4) with second-order differen-
tial inclusions by introducing the first and second-
order difference operators:

∆x(t) =
1

δ

(
x(t+ δ)− x(t)

)
,

∆2x(t) =
1

δ

(
∆x(t+ δ)−∆x(t)

)
, t = 0, δ, . . . 1− δ,

where δ is a step on the t-axis and x(t) ≡ xδ(t) is
a grid functions on a uniform grid on [0, 1]. We
define the following discrete-approximation prob-
lem associated with the continuous problem (4)

minimize φ0
(
x(1− δ),∆x(1− δ)

)
, (14)

∆2x(t) ∈ F (x(t),∆x(t), t),

t = 0, δ, 2δ, . . . , 1− 2δ, (15)

x(0) = β0, ∆x(0) = β1,

x(t) ∈ A, t = δ, . . . , 1, x(1) ∈ B. (16)

We apply the results of Theorem 1 to the problem
(14) − (16). To do this we rewrite the discrete-
approximation inclusion (15) in the relevant form
by introducing the following auxiliary set-valued
mapping

G(x, v1, t) := 2v1 − x+ δ2F (x,
v1 − x

δ
, t). (17)

Then we rewrite the problem (14)−(16) as follows
:

minimize ϕ0

(
x(1− δ), x(1)

)
, (18)

x(t+ 2δ) ∈ G(x(t), x(t+ δ), t), (19)

x(0) = β0, ∆x(0) = β1,

x(t) ∈ A, t = δ, . . . , 1, x(1) ∈ B,

where φ0
(
x(1−δ),∆x(1−δ)

)
≡ ϕ0

(
x(1−δ), x(1)

)
.

By Theorem 1 for optimality of the trajectory
{x̃(t)} := {x̃(t) : t = 0, δ, . . . , 1} in the problem,
(18)− (19) it is necessary that there exist vectors

x∗(t), ξ
∗
(t), η∗(t) and a number µ = µδ ∈ {0, 1},

not all zero, such that
(
x∗(t)− η∗(t)− ξ

∗
(t) , ξ

∗
(t+ δ)

)

∈ G∗

(
x∗(t+ 2δ); (x̃(t), x̃(t+ δ), x̃(t+ 2δ)), t

)
,

t = 0, . . . , 1− 2δ, (20)

η∗(t) ∈ K∗

A(x̃(t)) , ξ
∗
(1) ∈ K∗

B(x̃(1)), (21)(
η∗(1− δ) + ξ

∗
(1− δ)− x∗(1− δ),

η∗(1) + ξ
∗
(1)− x∗(1)

)

∈ µ∂(x,v1)ϕ0(x̃(1− δ), x̃(1)). (22)

We should express the LAM G∗ in the above re-
lationship (20) in terms of LAM F ∗, which plays
a central role in our developments in the next re-
sults.

Usually, some equivalence theorems are needed for
any development in problems given by differen-
tial inclusions. Let us first prove two propositions
concerning the Hamiltonian functions of the set-
valued mappings F and G, and the sets of sub-
differential of the Hamiltonian functions HG and
HF .

Lemma 2. Let F and G be formula-specified con-
vex set-valued mappings (17). Then there is the
following relation between the Hamiltonian HG

and HF functions:

HG(x, v1, v
∗

2) =
〈
2v1−x , v

∗

2

〉
+δ2HF (x,

v1 − x

δ
, v∗2).

Proof. We get the lemma proof immediately as
follows, keeping in mind the definition of the
Hamiltonian functions of the set-valued mappings
G, F

HG(x, v1, v
∗

2) = sup
{
〈v2, v

∗

2〉 : v2 ∈ G(x, v1)
}

=
〈
2v1−x, v

∗

2

〉
+δ2 sup

{
〈v3, v

∗

2〉 : v3 ∈ F (x,
v1 − x

δ
)
}

=
〈
2v1 − x , v∗2

〉
+ δ2HF (x,

v1 − x

δ
, v∗2).

�

Lemma 3. The following relation holds for subd-
ifferentials of the Hamiltonian functions HG and
HF :

∂HG(x, v1, v
∗

2) = {−v∗2} × {2v∗2}

+δ2Θ∗∂HF (x,
v1 − x

δ
, v∗2),

where Θ =
(

I 0
−I
δ

I
δ

)
is a 2n× 2n matrix parti-

tioned into submatrices, I, −I
δ
, −I
δ

and n× n zero
matrix, where I is an n × n identity matrix and
Θ∗ is transposes of Θ.

Proof. The subdifferential ∂HF (x,
v1−x
δ
, v∗2)

should be computed. Notice that Hamilton-
ian function is concave and it is understood as
∂(x,v1)HG(x, v1, v

∗

2) = −∂(x,v1)[−HG(x, v1, v
∗

2)].

Let ψi : R
2n → R, i = 1, 2, be a convex

functions at a point (x, v1) and g : R
2n → R

be a convex function continuous at a point
(ψ1(x, v1), ψ2(x, v1)). Then for subdifferential of
composition f(x, v1) = g

(
ψ1(x, v1), ψ2(x, v1)

)
the

following formula is valid

∂f(x, v1) = Θ∗∂g
(
ψ1(x, v1), ψ2(x, v1)

)
(23)

where

Θ =
( ∂ψ1

∂x

∂ψ1

∂v1
∂ψ2

∂x

∂ψ2

∂v1

)
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is 2n × 2n matrix ∂ψ1

∂x
, ∂ψ1

∂v1
, ∂ψ2

∂x
, ∂ψ2

∂v1
are Jaco-

bian matrices and Θ∗ is transposes of Θ. Tak-
ing ψ1(x, v1) ≡ x, ψ2(x, v1) ≡

v1−x
δ

in Θ, then it

is easy to compute that Θ =
(

I 0
−I
δ

I
δ

)
where

I is an n × n identity matrix. Then, for fixed
v∗2 setting f(x, v1) = HF (x,

v1−x
δ
, v∗2) and using

Moreau-Rockafeller Theorem 1.29 [1], Lemma 2
and the formula (23), we obtain the desired re-
sult. �

In the construction of LAM for the original dis-
crete approximation problem (14)-(16), the fol-
lowing theorem which is definitely of independent
interest plays a crucial role.

Theorem 2. If G is a convex set-valued mapping
defined by (17), then the following statements for
the LAMs are equivalent:

(a) (x∗, v∗1) ∈ G∗(v∗2; (x, v1, v2)), v2 ∈ G(x, v1; v
∗

2),

(b)
(x∗ + v∗1 − v∗2

δ2
,
v∗1 − 2v∗2

δ

)

∈ F ∗

(
v∗2; (x,

v1−x
δ
, x−2v1+v2

δ2
)
)
,

x−2v1+v2
δ2

∈ F (x, v1−x
δ

; v∗2), v
∗

2 ∈ R
n

where G(x, v1; v
∗

2) is the argmaximum set for map-
ping G.

Proof. By useful Frobenius formula, the follow-
ing inverse of 2 × 2 block matrices holds if A, B
are invertible

(
A D

C B

)
−1

=
(

(A−DB−1C)−1 −A−1D∆−1

−∆−1CA−1 ∆−1

)

where ∆ = B − CA−1D is the Schur comple-
ment of A. Therefore, denoting A = δ2I, B = δI,
C = 0, D = −δI, we compute that

(δ2Θ∗)−1 =
(
δ2I −δI
0 δI

)
−1

=
( I

δ2
I
δ2

0 I
δ

)
. (24)

Furthermore, by Lemma 3 it is easy to see that
(x∗, v∗1) ∈ ∂(x,v1)HG(x, v1, v

∗

2) and

(δ2Θ∗)−1(x∗ + v∗2, v
∗

1 − 2v∗2)

∈ ∂(x,v1)HF (x,
v1 − x

δ
, v∗2) (25)

are equivalent. Then from (24) and (25), it means
that (x∗, v∗1) ∈ ∂(x,v1)HG(x, v1, v

∗

2) if and only if
(x∗ + v∗1 − v∗2

δ2
,
v∗1 − 2v∗2

δ

)

∈ ∂(x,v1)HF (x,
v1 − x

δ
, v∗). (26)

Since F ∗(v∗2; (x, v1, v2)) = ∂(x,v1)HF (x, v1, v
∗

2),
v2 ∈ F (x, v1; v

∗

2) and by using the fact that
∂(x,v1)HF (x, v1, v

∗

2) = −∂(x,v1)(−HF (x, v1, v
∗

2)),
we express (26) in term of LAMs. Here

take into account that v2 ∈ G(x, v1; v
∗

2) and
x−2v1+v2

δ2
∈ F (x, v1−x

δ
; v∗2) ensure that the LAMs

are nonempty at a given points. �

Lemma 4. It turns out that the following inclu-
sions are equivalent:

(1)
(
x∗, y∗

)
∈ ∂ϕ0

(
z0
)
,

(2)
(
x∗ + y∗, δy∗

)
∈ ∂φ0

(
w0

)
.

where z0 = (x0, y0) ∈ domϕ0 and w0 =

(x0, y
0
−x0

δ
) ∈ domφ0.

Proof. By the definition of subdifferential sets we
can write

∂ϕ0(z0) =
{(
x∗, y∗

)
: ϕ0(x, y)− ϕ0(x

0, y0)

≥ 〈x∗, x− x0〉+
〈
y∗, y − y0

〉
,

∀ (x, y) ∈ R
2n
}
. (27)

∂φ0
(
w0

)
=

{(
x∗, y∗

)
: φ0

(
w
)
− ϕ0

(
w0

)

≥ 〈x∗, x− x0〉+
〈
y∗,

y − x

δ
−
y0 − x0

δ

〉

∀ w =
(
x,
y − x

δ

)
∈ R

2n
}
.

This latter relationship gives that

∂φ0
(
w0

)
=

{(
x∗, y∗

)
: ϕ0(x, y)− ϕ0(x

0, y0)

≥
〈
x∗ −

y∗

δ
, x− x0

〉
+
〈y∗
δ
, y − y0

〉
,

∀ w ∈ R
2n

}
. (28)

When (27) and (28) are compared, we deduce that

x∗ = x∗ −
y∗

δ
, y∗ =

y∗

δ

or, in other words,

x∗ = x∗ + y∗, y∗ = δy∗.

The proof of theorem is completed. �

Theorem 3. Let F be a convex set-valued map-
ping and φ0 be proper convex functional and con-
tinuous at the points of some feasible trajectory.
Then for optimality of the trajectory {x̃(t)} in the
discrete approximation problem, it is necessary
that there exist a number µ = µδ ∈ {0, 1} and
vectors x∗(t), η∗(t), v∗(t) which are not all equal
zero, satisfying the approximate Euler-Lagrange
and transversality inclusions:

(a)
(
∆2x∗(t) + ∆v∗(t)− η∗(t), v∗(t+ δ)

)

∈ F ∗(x∗(t+ 2δ); (x̃(t),∆x̃(t),∆2x̃(t), t)),

t = 0, δ, . . . , 1− 2δ,

(b) η∗(t) ∈ K∗

A(x̃(t)) , ξ
∗(1) ∈ K∗

A∩B(x̃(1)),
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(c)
(
v∗(1− δ) + ∆x∗(1− δ) + ξ∗(1)

+δη∗(1− δ) , δξ∗(1)− x∗(1)
)

∈ µ∂φ0(x̃(1− δ),∆x̃(1− δ)).

And, under the regularity condition these condi-
tions are also sufficient for optimality of the tra-
jectory {x̃(t)}.

Proof. By taking into account the condition (20)
and by Theorem 2, it can be shown that
(x∗(t)− η∗(t)− ξ

∗
(t) + ξ

∗
(t+ δ)− x∗(t+ 2δ)

δ2
,

ξ
∗
(t+ δ)− 2x∗(t+ 2δ)

δ

)

∈ F ∗

(
x∗(t+ 2δ); (x̃(t),∆x̃(t),∆2x̃(t), t)

)
,

t = 0, . . . , 1− 2δ.

Denoting v∗(t) = ξ
∗

(t)−2x∗(t+δ)
δ

, we get
(
∆2x∗(t) + ∆v∗(t)−

η∗(t)

δ2
, v∗(t+ δ)

)

∈ F ∗(x∗(t+ 2δ); (x̃(t),∆x̃(t),∆2x̃(t), t)),

t = 0, . . . , 1− 2δ.

Now observe that LAMF ∗ is positive homoge-
neous on the first argument and setting δx∗(t),
δv∗(t) and η∗(t) are denoted by x∗(t), v∗(t) and
δη∗(t), respectively, we derive the approximate
Euler-Lagrange inclusion of theorem. Moreover,
by the formula (22) and Lemma 4, we have
(
η∗(1−δ)+ξ

∗
(1−δ)−x∗(1−δ)+η∗(1)+ξ

∗
(1)−x∗(1),

δ
(
η∗(1) + ξ

∗
(1)− x∗(1)

))

∈ µ∂φ0(x̃(1− δ),∆x̃(1− δ)).

Then setting ξ
∗
(1) = ξ∗(1)− δη∗(1), we find that

the transversality condition of theorem:
(
v∗(1− δ) + ∆x∗(1− δ) + ξ∗(1) + δη∗(1− δ) ,

δξ∗(1)− x∗(1)
)

∈ µ∂φ0(x̃(1− δ),∆x̃(1− δ)).

By the condition (21), we have δη∗(t) ∈ K∗

A(x̃(t))
and ξ∗(1) − δη∗(1) ∈ K∗

B(x̃(1)). Then ξ∗(1) ∈
K∗

A(x̃(1)) +K∗

B(x̃(1)) = K∗

A∩B(x̃(1)) which com-
pletes the proof of theorem. �

Remark 1. For future directions, we note that
the results obtained in this section could be useful
for deriving optimality conditions for the second-
order viability problem (4) given by differential
inclusions with endpoint constraint. At least we
emphasize that the key to our success is to pass
formally to the limit in the conditions of Theo-
rem 3. Consequently, by setting µ = 1 and pass-
ing formally to the limit as δ → 0, the sufficient

conditions of optimality can be formulated for the
continuous problem (4). Moreover, by using the
functional analysis approach in the convex prob-
lem, the necessity of these conditions for optimal-
ity can be justified.

Corollary 1. Let F be a convex set-valued map-
ping and φ be proper convex functional and con-
tinuous at the points of some feasible trajectory.
Then for optimality of the trajectory x̃(t) in the
problem (4), it is sufficient that there exist a num-
ber µ and vectors x∗(t), η∗(t), v∗(t) which are not
all equal zero, satisfying the second-order Euler-
Lagrange type adjoint

(i) (x∗
′′

(t) + v∗
′

(t)− η∗(t), v∗(t))

∈ F ∗(x∗(t); (x̃(t), x̃′(t), x̃′′(t), t)), t ∈ [0, 1]

(ii) x̃′′(t) ∈ F (x(t), x′(t);x∗(t), t) , a.e. t ∈ [0, 1],

η∗(t) ∈ K∗

A(x̃(t)), t ∈ [0, 1) ,

and the transversality conditions at the endpoint
t = 1 consist of the following

(iii)
(
v∗(1) + x∗

′

(1) + ξ∗(1),−x∗(1)
)

∈ µ∂φ(x̃(1), x̃′(1)),

ξ∗(1) ∈ K∗

A∩B(x̃(1)).

Note that the transformation to the continuous
problem (4) is in any case, a separate subject
of discussion and is therefore omitted. Note also
that this construction of optimality conditions in
the presented paper for second-order discrete and
discrete approximation inclusions can be useful
for the optimization of an arbitrary order discrete
and ordinary differential inclusions.

5. Applications

In this section, we describe some interesting ap-
plications of the problem (1)-(3). At first, let us
consider the problem with the “linear discrete”
structure

minimum ϕ(xN−1, xN ),

xt+2 ∈ F (xt, xt+1, t) , t = 0, . . . , N − 2,

F (x, v1) = C0x+ C1v1 +Du, u ∈ U (29)

x0 = α0 , x1 = α1,

xt ∈ A, t = 0, . . . , N, xN ∈ B,

where C0, C1 are n×n, D is n×r matrix, D ⊂ R
r

is convex closed set, ϕ is continuously differen-
tiable function. It is required to find control-
ling parameters ũt ∈ U (t = 0, . . . , N) such that
the corresponding trajectory {x̃t}

N
t=0 minimizes ϕ.

We observe that in this case F (x, v1) = {v2 =
C0x + C1v1 + Du : u ∈ U}. It is not hard to
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compute that

F ∗(v∗2; (x, v1, v2))

=

{(
C∗

0v
∗

2, C
∗

1v
∗

2

)
, −D∗v∗2 ∈ K∗

U (u),

∅, −D∗v∗2 6∈ K∗

U (u),
(30)

where v2 = C0x + C1v1 + Du, u ∈ U , C∗

0 , C
∗

1

and D∗ are transposed matrices. Then by using
Theorem 1 and from the formula (30), we have
x∗t − ξ∗t − η∗t = C∗

0x
∗

t+2 and ξ∗t+1 = C∗

1x
∗

t+2, t =
0, . . . , N − 2 and −D∗x∗t+2 ∈ K∗

U (u), η
∗

t ∈ K∗

A(x̃t)
and ξ∗N ∈ K∗

B(x̃N ). Clearly the transversality
conditions consist of the following:

ξ∗N−1 − x∗N−1 + η∗N−1 = µϕx

ξ∗N + η∗N − x∗N = µϕv1 .

Moreover −D∗v∗2 ∈ K∗

U (u) means that the Weier-
strass Pontryagin maximum condition

〈Dũt, x
∗

t 〉 = sup
u∈U

〈Du, x∗t 〉 (31)

is satisfied. The regularity condition is superflu-
ous for linear problems. It is, therefore, necessary
and sufficient for the optimality of the trajectory
{xt}

N
t=0 in linear problem that there exists {x∗t }

N
t=0

satisfying the second-order Euler-Lagrange differ-
ential equation with µ = 1 and Weierstrass Pon-
tryagin maximum principle (31).

Now, let us consider another example where a set-
valued mapping is defined by nonlinear inequality:

minimum ϕ(xN−1, xN ),

xt+2 ∈ F (xt, xt+1, t) , t = 0, . . . , N − 2,

F (x, v1) = {v2 : Ψ(x, v1, v2) ≤ 0} (32)

x0 = α0 , x1 = α1,

xt ∈ A, t = 0, . . . , N, xN ∈ B,

where the function Ψ and ϕ are continuously dif-
ferentiable functions. Then according to the The-
orem 2.13. [1] by elementary computations we find
that

F ∗(v∗2; (x, v1, v2)) =
{(

− µΨ′

x(x, v1, v2),

−µΨ′

v1
(x, v1, v2)

)
: v∗2 = µΨ′

v2
(x, v1, v2),

µΨ(x, v1, v2) = 0 , µ ≥ 0,
}

(33)

where Ψ′

x(x, v1, v2),Ψ
′

v1
(x, v1, v2) and Ψ′

v2
(x, v1, v2)

are gradient vectors with respect to x, v1, v2, cor-
respondingly. So by using Theorem 1, we get the
following relations

x∗t − ξ∗t − η∗t = −µtΨ
′

x(x̃t, x̃t+1, x̃t+2),

ξ∗t+1 = −µtΨ
′

v1
(x̃t, x̃t+1, x̃t+2),

x∗t+2 = µtΨ
′

v2
(x̃t, x̃t+1, x̃t+2),

µtΨ(x̃(t), x̃t+1, x̃t+2) = 0, (34)

µt ≥ 0, t = 0, . . . , N − 2,

η∗t ∈ K∗

A(x̃t), t = 0, . . . , N, ξ∗N ∈ K∗

B(x̃N ), (35)

and transversality conditions

ξ∗N−1 − x∗N−1 + η∗N−1 = ϕx(x̃N−1, x̃N )

ξ∗N + η∗N − x∗N = ϕv1(x̃N−1, x̃N ). (36)

So we have proved the following theorem.

Theorem 4. If Ψ and ϕ are continuously dif-
ferential functions and the cone KgphF (x, v1, v2)
is non-empty for all (x̃t, x̃t+1, x̃t+2) then the ex-
istence of {x∗t , ξ

∗

t , η
∗

t } satisfying the adjoint dis-
crete inclusions (34)-(36) is necessary and suffi-
cient for the optimality of the trajectory {x̃t}

N
t=0

of problem (32).
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[7] Özdemir, N. & Evirgen, F. (2010). A dynamic
system approach to quadratic programming
problems with penalty method. Bulletin of
the Malaysian Mathematical Sciences Society.
Second Series, 33(1), 79-91.

[8] Ulus, A.Y. (2018). On discrete time infinite
horizon optimal growth problem. An Inter-
national Journal of Optimization and Con-
trol: Theories & Applications (IJOCTA),
8(1), 102-116.



The optimality principle for second-order discrete and discrete-approximate inclusions 215

[9] Mahmudov, E.N. (2015). Optimization of sec-
ond order discrete approximation inclusions.
Numeric. Funct. Anal. Optim., 36, 624-643.

[10] Mahmudov, E.N. (2018). Optimization of
Mayer problem with Sturm-Liouville-type dif-
ferential inclusions. J. Optim. Theory Appl.,
177, 345-375.

[11] Mahmudov, N.I., Vijayakumar, V., & Mu-
rugesu, R. (2016). Approximate controllabil-
ity of second-order evolution differential in-
clusions in Hilbert spaces. Mediterr. J. Math.,
13, 3433-3454.

[12] Auslender, A., & Mechler, J. (1994). Second
order viability problems for differential inclu-
sions. J. Math. Anal. Appl., 181, 205-218.

[13] Veliov, V. (1992). Second-order discrete ap-
proximation to linear differential inclusions.
SIAM Journal on Numerical Analysis, 29(2),
439–451.

[14] Donchev, T., Farkhi, E., & Mordukhovich,
B.S. (2007). Discrete approximations, relax-
ation, and optimization of one-sided Lip-
schitzian differential inclusions in Hilbert
spaces. Journal of Differential Equations,
243(2), 301-328.

[15] Agarwal, R.P., & O’Regan, D. (2002). Fixed-
point theory for weakly sequentially upper-
semicontinuous maps with applications to dif-
ferential inclusions. Nonlinear Oscillat., 5(3),
277-286.

[16] Boltyanskii, V.G. (1978). Optimal control
of discrete systems. John Wiley, New York,
USA.

[17] Haddad, T., & Yarou, M. (2006). Existence
of solutions for nonconvex second-order dif-
ferential inclusions in the infinite dimensional
space. Electron. J. Differ. Equat., 2006(33),
1-8.

[18] Marco, L., & Murillo, J.A. (2001). Lyapunov
functions for second-order differential inclu-
sions: a viability approach. J. Math. Anal.
Appl., 262(1), 339-354.

[19] Lupulescu, V. (2005). Viable solutions for
second order nonconvex functional differential
inclusions. Electron. J. Differ. Equat., 110, 1-
11.

[20] Mahmudov, E.N. (2020). Optimal control of
higher order differential inclusions with func-
tional constraints. ESAIM: Control, Optimi-
sation and Calculus of Variations, 26, 1-23.
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