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 We consider a make-to-stock environment with a single production unit that 

corresponds to a single machine or a line. Production and hence inventory are 

controlled by the two-critical-number policy. Production times are independent 

and identically distributed general random variables and demands are generated 

according to a stationary Poisson process. We model this production-inventory 

system as an M/G/1 make-to-stock queue. The main contribution of the study is to 

extend the control of make-to-stock literature by considering general production 

times, lost sales and fixed production costs at the same time. We characterize the 

long-run behaviour of the system and also propose a simple but very effective 

approximation to calculate the control parameters of the two-critical-number 

policy. An extensive numerical study exhibits the effects of the production time 

distribution and the system parameters on the policy control levels and average 

system cost. 
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1. Introduction 

Most real-life production-inventory systems 

experience non-deterministic production and inter-

demand-arrival times. In order to minimize the 

production and inventory related costs, performance 

evaluation and effective control of such systems are 

vital. This study addresses the production-inventory 

control problem of an environment with production 

start-up costs and general production times. Demands 

are generated according to a stationary Poisson process 

and the unsatisfied ones are immediately lost. The 

underlying system is controlled by the two-critical-

number policy and modelled as an M/G/1 make-to-

stock (MTS) queue. We develop a method to calculate 

the long-run average system cost. Furthermore, we 

determine the steady-state distribution of the inventory 

level and the production status (on or off) when 

production start-up cost is negligible. 

The two-critical-number policy is known to be optimal 

for single-resource systems with backorders. Here, 

single-resource corresponds to a single machine or a 

single production line, which is the ‘single-server’ in 

queueing theory terminology. According to the two-

critical-number policy, the production line is activated 

whenever inventory drops to the lower control level and 

production continues until the inventory reaches to the 

upper control level again. 

To explain the practical significance of the problem, we 

can first scrutinize powder coating (powdered paint) 

production consisting of pre-mixing, extrusion and 

particle size reduction stages. Pre-mixing is the fastest 

stage of powder coating lines (can be further 

accelerated using additional caldrons) and therefore it 

can be assumed that extruder never starves. Although 

this process is a multi-stage one, in most real-life 

applications, it progresses in a continuous manner once 

the homogeneous mixture is obtained. After pre-

mixing, without any interruption and intermediate 

buffers, particles are guided by air flow throughout the 

extrusion and size reduction stages. Thus, these two 

stages can be considered as a single operation while 

developing production policies. Furthermore, just 

before the start of a new production cycle the entire line 

is cleaned to get rid of dried paint chemicals and 

particle residues, which incur a start-up cost. In this 

paper, we aim to control production for single machine 

systems with ample supply and production start-up cost 

such as described above. Moreover, motivated from the 

powder coating example, it is also possible to 

generalize the practical use of our study to any lost sales 

make-to-stock system where the final station rarely 

http://www.ams.org/msc/msc2010.html


Analysis of make-to-stock queues with general processing times and start-up and lost sales costs              9 

starves and production can be restarted with a fixed 

cost. Systems that are already single-station or have 

negligible start-up cost are special cases of this general 

perspective. 

Our study extends the related literature by considering 

general production times, production start-up costs and 

lost-sales at the same time. Our contribution can be 

highlighted as: i. Majority of the earlier studies are for 

backordering environment. On the other hand, the 

studies with lost-sales either assume specific 

processing times (deterministic or Markovian) or zero 

start-up cost. We relax these restrictive assumptions 

and allow generally distributed processing times and 

non-zero start-up cost for the lost-sales case. ii. The first 

technical contribution is to develop an analogy between 

MTS queues and the capacitated M/G/1 queues. Using 

this analogy, the steady-state distribution of the 

considered MTS system is obtained when the 

production start-up cost is negligible. iii. For the 

systems with production start-up costs, we calculate the 

long-run expected average cost benefiting from 

renewal and queueing theories. We calculate the cycle 

cost with a first passage analysis and also show that the 

length of a production period can be written as the 

convolution of the lengths of capacitated M/G/1 busy 

periods. iv. We propose a well-performing 

approximation for the difference between the control 

levels of the two-critical-number policy. 

The earlier studies consider single-server and single-

demand-class systems with start-up and/or shut-down 

costs. The analyses are mostly based on queueing and 

inventory theory techniques. Gavish and Graves [1] is 

one of the initial milestone studies. They consider a 

single-demand-class backordering setting with 

production start-up cost. Production times are assumed 

to be constant and demands are generated according to 

a compound Poisson process with fixed sizes. For the 

two-critical-number policy, they calculate the average 

system cost and propose a search procedure to find the 

optimal values of the policy parameters. Gavish and 

Graves [2], and Lee and Srinivasan [3] extend [1] to 

general processing times. Both of these studies assume 

unit demand sizes. Graves and Keilson [4] and 

Srinivasan and Lee [5] consider compound demand 

extensions of [3]. Altıok [6] restricts production times 

to phase-type but studies both backordering and lost 

sales cases. Tijms [7] considers a system with general 

production times and finds the optimal control levels by 

a denumerable state Semi-Markov decision process. 

All the above-mentioned studies are actually MTS 

extensions of Heyman [8] and Sobel [9] who 

characterize the two-critical-number policy for the 

classical M/G/1 and G/G/1 queuing systems. 

There are also related studies considering the systems 

where production occurs at a constant rate. De Kok et 

al. [10] analyses such a backordering production–

inventory system where demands for a single product 

arrive according to a compound Poisson process and 

the production rate can be dynamically switched 

between two alternatives. Under some service level 

requirements, they derive approximations for the 

control parameters of the two-critical-number policy. 

De Kok [11] and De Kok and Tijms [12] study 

approximations for the lost-sales case. De Kok [13] 

provides an approximation for the time average of 

inventory holding and switching costs subject to a 

service level constraint. The recent work of Lin [14] 

considers a similar setting but the variation in the 

inventory level is modelled with a Brownian motion. 

In more recent studies, the production-inventory 

problem is also considered as a control problem and 

Markov Decision Process (MDP) models are 

developed. The recent studies mostly assume negligible 

start-up costs. Ha [15] considers a setting with an 

exponential server, no start-up cost, several demand 

classes generating independent Poisson demands and 

lost-sales. He proves that the optimal production and 

rationing policies are of base-stock and static threshold 

level type, respectively. Bulut and Fadıloğlu [16] 

extends [15] and consider multiple production 

channels. They provide partial characterizations of the 

optimal policies and an extensive numerical study. 

Özkan and Bulut [17] considers the same environment 

with production start-up costs and proposes near 

optimal production and rationing policies. 

Ha [18] considers the backordering version of [15] and 

characterizes the optimal policy by monotone 

switching curves for the two demand classes. For the 

same setting but with several demand classes, De 

Véricourt et al. [19] provides an algorithm to compute 

optimal rationing levels. Erlangian service times are 

considered by Ha [20] and Gayon et al. [21] for single-

server lost-sales and backordering systems, 

respectively. They both show that threshold type 

policies based on work storage level are optimal. Pang 

et al. [22] allows batch demand and phase-type 

processing time distributions. Yücel and Bulut [23] 

assumes Coxian production times with non-zero 

production start-up cost. They propose an easy-to-

apply, near optimal production policy. 

In addition to the literature cited above, different 

system characteristics studied/assumed in the classical 

inventory control literature such as deteriorating items, 

more general demand structures, and environmental 

performance measures can also be adapted to 

production-inventory control literature. The following 

are example studies from the classical inventory and 

supply chain control literature that consider such 

characteristics: Pervin et al. [24], Tirkolaee et al. [25], 

Lofti et al. [26], and Paksoy et al. [27]. 

Our study is mostly related to [2] and [3]. We extend 

these studies to the lost-sales environment. The only 

existing study considering non-Exponential production 

times and lost sales is [6]. However, [6] is restricted to 

phase-type production times and thus Markovian 

analysis is still possible. 

The rest of this paper is organized as follows: In Section 

2, M/G/1 Make-to-Stock Queue with no production 

start-up cost is analysed and limiting probabilities and 
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expected average system cost are calculated. In Section 

3, we present a renewal approach to calculate the 

expected average system cost for the systems with 

production start-up costs. We also propose a near-

optimal alternative for the difference of policy control 

levels. Section 4 is devoted to numerical experiments. 

Finally, Section 5 summarizes the study along with a 

discussion on future research directions. 

2. Steady state analysis of M/G/1 make-to-stock 

queue with no start-up cost 

We consider a make-to-stock (MTS) facility producing 

a single-item on a single production unit (e.g. a machine 

or a line). Demands are generated according to a 

stationary Poisson process with rate 𝜆 and production 

times are independent and identically distributed 

general random variables with rate 𝜇. Unsatisfied 

demands are immediately lost and a cost of 𝑐 is incurred 

per unit lost. Inventory holding cost rate is ℎ. 

In most of the production systems, inventory is 

replenished one-by-one at production completion 

instants. Hence, these systems are closely related to the 

classical queueing systems and are referred to as MTS 

queues. Our system is a lost-sales M/G/1 MTS queue 

that is controlled by the two-critical-number policy, in 

short (𝑠, 𝑆) policy. 𝑆 is the maximum inventory level at 

which production is stopped. The time period starting 

from 𝑆 until reaching 𝑠 is the non-production period. 

Whenever the inventory level drops to 𝑠, production is 

triggered with a start-up cost of 𝐾. The production-

period continues until the inventory level reaches 𝑆 

again. 

This section assumes negligible production start-up 

costs, i.e. 𝐾 = 0. For such settings, Base-stock policy 

is optimal, i.e. (𝑠, 𝑆) = (𝑆 − 1, 𝑆). We conduct the 

steady-state analysis of the lost-sales M/G/1 MTS 

queue under (𝑆 − 1, 𝑆) policy using the dynamics of 

the (typical) M/G/1/S queue. The analogy between two 

queues is given in Table 1. If there are  𝑖 ∈ {0,1 … , 𝑆} 

units of stock in the production-inventory system, then 

there are (𝑆 − 𝑖) many “customers”, which are the 

outstanding production orders, in the corresponding 

M/G/1/S queue.        

 

Table 1. The analogy between ‘M/G/1 MTS queue controlled by (𝑆 − 1, 𝑆)’ and ‘M/G/1/S queue’ 

 M/G/1 MTS Queue M/G/1/S Queue 

Customers Demands Outstanding production orders 

System State On-hand inventory Outstanding production orders 

Steady-state 

Probabilities 
𝜋𝑖

𝑀𝑇𝑆𝑄
 𝜋𝑖

𝑄
 

𝑖 = 0,1, … , 𝑆 𝜋𝑖
𝑀𝑇𝑆𝑄 = 𝜋𝑆−𝑖

𝑄
 

 

In order to calculate the long-run probabilities of the 

M/G/1/S queue, we follow the method proposed by 

Bose [28]. First, the steady-state distribution of the 

embedded Markov chain that tracks the system at the 

customer arrival instants is calculated. This distribution 

is equivalent to the steady state distribution of the 

considered M/G/1/S queue by PASTA (Poisson 

Arrivals See Time Averages) property. To obtain the 

steady state distribution of the embedded chain when 

the system is observed at the arrival instants, we benefit 

from the steady state distribution of another embedded 

chain that tracks the system at the departure instants.  

The number of customers left behind in the M/G/1/S 

system at any customer departure instant in the long run 

follows a Markov Chain. The chain is described in (1). 

The state variable 𝑛𝑗 is the number of customers left 

behind in the system at the time of 𝑗𝑡ℎ customer 

departure. The evolution of 𝑛𝑗 depends on the number 

of new arrivals that occur during the service time of 

the 𝑗𝑡ℎ customer, which is denoted by 𝑎𝑗 in (1), and the 

queue capacity (𝑆 − 1). 

 

𝑛𝑗+1 = {
𝑚𝑖 𝑛{𝑎𝑗+1, 𝑆 − 1} , 𝑛𝑗 = 0,

𝑚𝑖 𝑛{𝑛𝑗 − 1 + 𝑎𝑗+1, 𝑆 − 1} , 1 ≤ 𝑛𝑗 ≤ (𝑆 − 1)
.   (1) 

 

The steady-state probabilities of the chain described in 

(1) are denoted by 𝑝𝑖
𝑑 where 𝑖 ∈ {0,1 … , 𝑆 − 1} is the 

number of customers left behind in the system at the 

time of any customer departure in the long run. That is, 

 

𝑝𝑖
𝑑 = lim

𝑗→∞
𝑃{𝑛𝑗 = 𝑖}.  (2) 

 

These limiting probabilities can be easily calculated by 

using the transition probability matrix induced by (1). 

Once we characterize the steady state solution for the 

embedded Markov chain of M/G/1/S queue that tracks 

the system at the departure epochs, the next is to 

characterize the embedded chain that tracks the system 

at the arrival epochs. Due to Kleinrock's Result,  

 

𝑝𝑖
𝑎𝑐 = 𝑝𝑖

𝑑   (3) 

 

where 𝑝𝑖
𝑎𝑐, 𝑖 ∈ {0,1 … , 𝑆 − 1}, is the probability that an 

arrival (a new customer) finds 𝑖 customers in the system 

in the long run. It should be noted that (3) holds only 

when the arrivals that find the system not full are 

accounted (Bose [28]). Therefore, the upper bound of 𝑖 
is 𝑆 − 1. 
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The unconditional state probabilities at the arrival 

instants (regardless of whether the customer enters the 

system or leaves without joining the queue) are defined 

by 𝑝𝑖
𝑎, 𝑖 ∈ {0,1 … , 𝑆}. For all 𝑖 ∈ {0,1 … , 𝑆 − 1}, the 

relation between the unconditional and conditional 

state probabilities (between 𝑝𝑖
𝑎 and 𝑝𝑖

𝑎𝑐) at the arrival 

instants is given in (4). Equation (4) also states that the 

steady state probability of the original system (𝜋𝑖
𝑄

) 

equals to the steady state probability when the system 

is observed at the arrival instants (𝑝𝑖
𝑎). This holds due 

to the PASTA property. 

 

𝜋𝑖
𝑄 = 𝑝𝑖

𝑎 = (1 − 𝜋𝑆
𝑄)𝑝𝑖

𝑎𝑐    (4) 

 

In (4), (1 − 𝜋𝑆
𝑄) is the probability that the system is not 

full in the long run and hence an arriving customer 

enters the system. In Equation (5), 𝜋0
𝑄

, which is the 

idleness rate of the system, is written in terms of 𝜋𝑆
𝑄

. 

 

𝜋0
𝑄 = 1 − 𝜌 = 1 −

𝜆(1−𝜋𝑆
𝑄

)

𝜇
       (5) 

 

In (5), 𝜌 and 𝜆(1 − 𝜋𝑆
𝑄) denote the utilization and 

effective arrival rate of the system, respectively. Once 

the system of equations defined by (3), (4), and (5) is 

solved, the steady-state distribution of the M/G/1/S 

queue is obtained. Using the analogy given in Table 1, 

the steady state distribution of the M/G/1 MTS queue 

controlled by (𝑆 − 1, 𝑆) policy is found. Using the 

steady state distribution, the expected average system 

cost is calculated in (6). 

 

      𝐴𝐶(𝑆 − 1, 𝑆) = 𝜆𝑐𝜋𝑆
𝑄 + ℎ ∑ 𝑖𝜋𝑆−𝑖

𝑄𝑆
𝑖=1  

              = 𝜆𝑐𝜋0
𝑀𝑇𝑆𝑄 +  ℎ ∑ 𝑖𝜋𝑖

𝑀𝑇𝑆𝑄𝑆
𝑖=1        (6) 

 

The above analysis covers the cases where 𝑠 = (𝑆 −
1). However, if a fixed start-up cost (𝐾) is incurred to 

activate a line, then 𝑠 < (𝑆 − 1) for most of the 

practical settings. For such instances of the two-

critical-number policy, the adaptation of the described 

method is not direct. The main reason of the 

complication is the increase in the length of the non-

production period, which can be measured by ∆= (𝑆 −
𝑠). If ∆ > 1, for any inventory level 𝑖 such that 𝑠 < 𝑖 <
𝑆, it is not possible to certainly identify whether the 

server is on or off. Such states are visited both in the 

production and non-production periods. We overcome 

this extra level of complexity with a new method that 

directly calculates the long-run average cost without 

finding the steady-state distribution.  

3. Expected long-run average cost of M/G/1 make-

to-stock queue with start-up cost 

In this section we consider the case where the 

production start-up cost K is positive. As [3] and [5] do 

for the backordering environment, we develop a 

renewal approach to calculate the average system cost.  

We define the regeneration point of renewal cycles as 

the maximum inventory level 𝑆 and decompose cycles 

into production and non-production periods (sub-

cycles). When the inventory level reaches 𝑆, production 

is stopped and a new renewal cycle starts with its non-

production period in which inventory is depleted by the 

demands. Upon hitting the lower control level 𝑠, non-

production period ends and production period of the 

cycle starts. During this period, inventory level follows 

a realization increasing with production completions 

and decreasing with demand arrivals. Production 

period and the current renewal cycle is completed when 

the inventory level reaches 𝑆 again. The basic notation 

used in the remaining part of the section is provided in 

Table 2.

Table 2. Basic notation of the renewal analysis 

𝑋 the random variable denoting the production time with cdf 𝐺𝑋(𝑥) and rate 𝜇 

𝑁(𝑡)  Poisson demand process with rate 𝜆, 

𝑋𝑑 the random variable denoting the production time given that 𝑁(𝑋) = 𝑑, 

𝐸[𝑋𝑑] 𝐸[𝑋|𝑁(𝑋) = 𝑑], 
𝐶𝑁(𝑠, 𝑆) expected cost of a non-production period, 

𝐶𝑃(𝑠, 𝑆) expected cost of a production period, 

𝐿𝑁(𝑠, 𝑆) expected length of a non-production period, 

𝐿𝑃(𝑠, 𝑆) expected length of a production period, 

𝐴𝐶(𝑠, 𝑆) expected average cost. 

By the Renewal Reward Theorem, the long-run 

expected average system cost can be written as follows: 

 

𝐴𝐶(𝑠, 𝑆) =
𝐶𝑁(𝑠,𝑆)+𝐶𝑃(𝑠,𝑆)+𝐾

𝐿𝑁(𝑠,𝑆)+𝐿𝑃(𝑠,𝑆)
       (7) 

 

Expected cost of a non-production period is relatively 

easy to calculate because the only relevant component 

is the holding cost and the average time spent at each 

inventory level 𝑖 ∈ {𝑠 + 1 … , 𝑆} is 1 𝜆⁄ . Then, 

 

𝐶𝑁(𝑠, 𝑆) =  ∑
ℎ𝑖

𝜆

𝑆
𝑖=𝑠+1         (8) 

 

On the other hand, calculating the expected cost of a 

production period is more cumbersome. For 𝑖, 𝑗 ∈
{0, … , 𝑆} and 𝑗 ≥ 𝑖, if we let 𝐸[ℱ𝑖,𝑗] = 𝑓𝑖,𝑗 denote the 

expectation of the accumulated cost starting from the 

time instant when the process enters 𝑖 until the 

inventory level is raised to 𝑗 for the first time, then 
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𝐶𝑃(𝑠, 𝑆) can be written as  

 

𝐶𝑃(𝑠, 𝑆) = 𝑓𝑠,𝑆 =  ∑ 𝑓𝑖,(𝑖+1)
𝑆−1
𝑖=𝑠        (9) 

 

In order to apply the stepwise approach defined by (9) 

we condition on the number of demand arrivals during 

the production time of an item.  

𝑓𝑖,(𝑖+1) = 𝐸[ℱ𝑖,(𝑖+1)] = 𝐸 [𝐸[ℱ𝑖,(𝑖+1)|𝑁(𝑋)]]   (10) 

 

The inner expectation of (10) can be calculated in two 

parts. In the first part, for each inventory level 𝑖 and 

number of demand arrivals 𝑑, the cost accumulated 

throughout a production time period is calculated and 

denoted by 𝑃𝑖𝑑 . The second part is to calculate the first 

passage cost of the new state, which is determined by 

the current state 𝑖 and the number of demand arrivals 𝑑. 

Mathematically speaking, the inner expectation of (10) 

can be written as (11). In (11), given 𝑖 and 𝑑, the new 

state is calculated as (𝑚𝑎𝑥(𝑖 − 𝑑, 0) + 1). The 

calculation is based on the lost sales assumption and the 

additional unit of inventory due to the production 

completion. For the sake of completeness, 𝑓𝑖,𝑖 is set to 

zero for all inventory levels 𝑖. 
 

𝐸[ℱ𝑖,(𝑖+1)|𝑁(𝑋) = 𝑑] = 𝑃𝑖𝑑 + 𝑓(𝑚𝑎𝑥(𝑖−𝑑,0)+1),(𝑖+1)   (11) 

 

We calculate 𝑃𝑖𝑑 in (12). The first part corresponds to 

the expected holding cost of all the items in the 

inventory. For each item 𝑛 ∈ {1, … , 𝑖}, given that 𝑑 

demand arrivals occur during the production time, we 

let 𝜏𝑛𝑑 be the length of the time that the 𝑛𝑡ℎ item spends 

in the inventory (holding time of the 𝑛𝑡ℎ item). In the 

second part, expected lost sales cost calculated where  

(𝐸[𝑋𝑑] − 𝜏𝑖𝑑) is the conditional expected length of the 

shortage period within the production time.  

 

𝑃𝑖𝑑 = ∑ ℎ𝜏𝑛𝑑 + 𝑐𝑖
𝑛=1 𝜆(𝐸[𝑋𝑑] − 𝜏𝑖𝑑)       (12) 

 

To calculate 𝜏𝑛𝑑 we make use of the following 

observation: holding time of the nth item is the arrival 

time of the nth demand.  Since 𝑁(𝑡) is a Poisson 

process, the joint distribution of the conditional arrival 

times has the same distribution as the order statistics of 

independent Uniform random variables defined on the 

interval [0, 𝑋𝑑] where 𝑋𝑑 is the length of the production 

time given 𝑑 demand arrivals, i.e., 𝑁(𝑋) = 𝑑. Based on 

this fact, when 𝑑 > 𝑛, the expected holding of the nth 

item is proportional to 𝑛 divided by the total number of 

stochastically identical time intervals, which is (𝑑 +
1). When 𝑑 ≤ 𝑛, on the other hand, nth item is held in 

the inventory during the whole production time. That 

is,  

𝜏𝑛𝑑 = {
𝑛𝐸[𝑋𝑑]

𝑑+1
, 𝑑 > 𝑛

𝐸[𝑋𝑑], 𝑑 ≤ 𝑛
   (13) 

 

Furthermore, using Bayes` Theorem and the shorthand 

notation 𝛼𝑑 = 𝑃(𝑁(𝑋) = 𝑑), conditional expected 

production time 𝐸[𝑋𝑑] can be calculated as follows:  

 

𝐸[𝑋𝑑] = 𝐸[𝑋|𝑁(𝑋) = 𝑑] 

     =
1

𝛼𝑑
∫ 𝑢

𝑒−𝜆𝑢(𝜆𝑢)𝑑

𝑑!
𝜕𝐺(𝑢)

𝑢
     (14) 

where 

𝛼𝑑 = ∫ 𝑃(𝑁(𝑢) = 𝑑 | 𝑈 = 𝑢)

𝑢

𝜕𝐺(𝑢) 

= ∫
𝑒−𝜆𝑢(𝜆𝑢)𝑑

𝑑!
𝜕𝐺(𝑢)

𝑢
           (15) 

 

After obtaining the inner expectation, the outer 

expectation of (10), which is over the realizations of  

𝑁(𝑋), can be written as, 

 

     𝑓𝑖,(𝑖+1) = 𝐸[𝑃𝑖𝑑 +  𝑓(max(𝑖−𝑑,0)+1),(𝑖+1)]      

= ∑ 𝛼𝑑(𝑃𝑖𝑑 + 𝑓(max(𝑖−𝑑,0)+1),(𝑖+1))𝑑        (16) 

 

In order to find the values of the unknown 𝑓𝑖,𝑗`s the 

system of linear equations defined by (16) can be 

solved recursively. The starting point is the calculation 

of 𝑓0,1: 𝑓0,1 = ∑ 𝛼𝑑(𝑃𝑖𝑑 + 𝑓1,1) = 𝑑 ∑ 𝛼𝑑𝑃𝑖𝑑𝑑 . Once 

the first passage costs are calculated, the expected cost 

of a production period can be compiled using (9).  

After 𝐶𝑁(𝑠, 𝑆) and 𝐶𝑃(𝑠, 𝑆), the next step is to calculate 

the period lengths. Expected length of a non-production 

period can be directly written as  

 

𝐿𝑁(𝑠, 𝑆) =
𝑆−𝑠

𝜆
          (17) 

 

Although calculating production period length requires 

more effort, we succeed to develop a quick method that 

benefits from the analysis of capacitated M/G/1 queue. 

As it is discussed in Section 2, M/G/1 MTS queues are 

closely related with the capacitated M/G/1 queues. Our 

method to calculate 𝐿𝑃(𝑠, 𝑆) is based on the following 

observations:  

 

(i) Production period starts when the inventory 

level drops to s from (s+1). This is equivalent to 

start a busy period of an M/G/1/(s+1) queue 

where the customers are the outstanding 

production orders. The capacity of the queue is 

(s+1) due to the lost sales assumption: there can 

be at most s more orders in addition to the one 

that triggers the busy period. 

(ii) Within the busy period, each arrival event of the 

M/G/1/(s+1) queue decreases the inventory 

level of the original MTS system but each 

departure event on the other hand increases it. 

Furthermore, departure events are realized after 

the corresponding arrival events. Because of this 

zero-net flow, inventory level of the original 

MTS system at the end of the busy period would 

be (s+1), which is the inventory position when 

the busy period starts. 
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(iii) Similar to the above, once the inventory level 

hits (s+1), a busy period of M/G/1/(s+2) queue 

starts; and inductively this scheme repeats until 

the level reaches 𝑆.  

 

If we let 𝐵𝑖  denote the expected busy period length of 

an M/G/1/i queue, 𝑖 ∈ {𝑠 + 1 … , 𝑆}, then   

 

𝐿𝑃(𝑠, 𝑆) = ∑ 𝐵𝑖
𝑆
𝑖=𝑠+1 = ∑ (

1−𝜋0
𝑄𝑖

𝜆𝜋0
𝑄𝑖 )𝑆

𝑖=𝑠+1       (18) 

 

where  𝜋0
𝑄𝑖

 is the steady state probability of having zero 

customer in an M/G/1/i queue. 

For given s and S values, all the components of (7), 

which are required to calculate the expected average 

system cost, are obtained. From the optimization 

perspective, on the other hand, we suggest the 

following EOQ-type formula for ∆ = (𝑆 − 𝑠) instead 

of a two-dimensional enumerative search for the 

control parameters: 

∆𝐸𝑂𝑄= [√
2𝐾𝜆

ℎ
]   (19) 

where [. ] returns the nearest integer.             

∆𝐸𝑂𝑄 is a near-optimal alternative for ∆∗, which is the 

optimal difference between the control parameters. 

Using ∆𝐸𝑂𝑄 we only search for 𝑠 and then obtain 𝑆 as 

𝑠 + ∆𝐸𝑂𝑄 . In Section 4, it is shown that the proposed 

near-optimal solution performs very well. 

4. Numerical study 

In this section, we present the results of the numerical 

study and mainly show that how the optimal and near-

optimal control levels and average cost react to changes 

in system parameters and processing time distributions. 

The discussion is enriched with managerial insights. 

Study 1: We first show how changes in control levels 

𝑠 and 𝑆 affect the average cost. For this study, the 

processing time is assumed to follow an Erlang-𝑟 

distribution with parameters 𝜇 = 2 and 𝑟 = 2 where 𝑟 

is the number of processing stages (phases) and 𝜇 is the 

system processing rate (the rate of each stage is 4). That 

is, we consider an M/E2/1 make-to-stock queue. Erlang 

distribution, which is a member of phase-type 

distribution family, enables to model production time 

distributions with different variance. While keeping 𝜇 

constant, as  𝑟 increases, variance of the production 

time decreases. 

For the base case of the numerical study section, we 

let (𝐾, ℎ , 𝑐, 𝜆, 𝜇, 𝑟) = (10, 2, 40, 2,2,2). For the base 

case, Figure 1 exhibits that how the average cost 

changes with respect to 𝑠 and 𝑆. The optimal control 

levels are (𝑠∗, 𝑆∗) = (5,9) and the optimal average cost 

is 15.66, which are found by enumerative search. 

Furthermore, for the base case, the approximation for 

the difference between control levels is calculated as 

∆𝐸𝑂𝑄= 4 that equals to the optimal difference ∆∗=
(𝑆∗ − 𝑠∗) = 4. 

 

Figure 1. The average cost with respect to 𝑠 and 𝑆 

 
Study 2: In the second study, we aim to examine the 

impact of 𝜆 and ∆= (𝑆 − 𝑠) on the average cost. We 

present the study for 𝜆 ∈ {0.5,1.0,1.5,2.0,2.5} and ∆∈
{1,2, … ,15}. Given 𝜆 and ∆, we search for the optimal 

value of 𝑠 and then calculate the optimal produce-up-to 

level as 𝑆 = ∆ + 𝑠. We conduct the study for the base 

case introduced in Study 1 but this time traffic intensity 

of the system varies as 𝜆 changes.  

In Figure 2, one can observe that when the traffic 

intensity 𝜌 =
𝜆

𝜇
 is lower, the average cost first decreases 

and then increases as ∆ increases. On the other hand, as 

𝜌 increases, the flatness of the average cost function 

increases. That is, change in ∆ does not affect the 

average cost significantly when the arrivals are more 

frequent. For such cases, due to heavy traffic, average 

inventory level would be low and shortage cost would 

be the dominant cost component.  

In this study, we also would like to point out the use of 

constant ∆ for the practitioners. When ∆ is fixed, it is 

easy to calculate the expected length of a non-

production period, which is ∆ 𝜆⁄ . Such a fixation can be 

useful to solve the capacity allocation problem of multi-

product systems. During the non-production period of 

an item, the available production capacity can be used 

for the others. Such a heuristic solution would simplify 

multi-product make-to-stock problems for the 

practitioners.  

 
 

Figure 2. The impact of ∆= (𝑆 − 𝑠) on the average cost 

with different demand rates 
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Study 3: We now concentrate on the impact of various 

processing time distributions with the same mean 

(𝐸[𝑋] = 0.50) and variance (𝜎2(𝑋) = 0.125), and 

hence the same coefficient of variation (𝑐𝑋 =
𝜎(𝑋)

𝐸[𝑋]
=

0.71). For this study, Log-normal, Erlang-𝑟 and 

Coxian-𝑟 distributions are considered. The first reason 

to select these distributions is that they have at least two 

parameters that enable us to work with the same mean 

and variance. Besides, the selected distributions are 

from different families; Conditional Normal and Phase-

type. It is clear from Table 3 that as long as the first two 

moments of the processing time distributions are the 

same, the impact of different distributions on the 

average cost values and the optimality gaps is not 

remarkable. The optimality gap between 𝐴𝐶∆𝐸𝑂𝑄
 and 

𝐴𝐶∗, which are the costs of near-optimal and optimal 

solutions, are almost zero for all the cases. It can be 

concluded that our near optimal solution performs well 

under different processing time distributions having the 

same first two moments. 

Study 4: We now focus on the impact of different 𝐸[𝑋] 
and 𝜎2(𝑋) values. For this purpose, we use the 

following parameters of the base case: (𝐾, ℎ , 𝑐, 𝜆) =
(10, 2, 40, 2). The other parameters are displayed in 

Table 4 where 𝐸[𝑋] and 𝜎2(𝑋) are different for the 

considered distributions but 𝑐𝑋 is the same for all. 

In Table 4, distributions are placed from left to right in 

the descending order of means and variances. As one 

can expect that the average cost decreases as the first 

two moments of the processing time decrease. More 

interestingly, for all the considered cases, the 

optimality gap is almost zero. We can again conclude 

that EOQ-type formulation performs well under 

different processing time distributions and different 

distribution parameters.

Table 3. The impact of processing time distributions with same 𝐸[𝑋], 𝜎2(𝑋) and 𝑐𝑋 

 Lognormal 

(0.50,0.354) 
Erlang-2 

Coxian-2 

(3.92,3.92,0.96) 

𝐸[𝑋] 0.50 0.50 0.50 

𝜎2(𝑋) 0.125 0.125 0.125 

𝑐𝑋 0.71 0.71 0.71 

𝐴𝐶∗ 15.62 15.66 16.03 

𝐴𝐶∆𝐸𝑂𝑄
 15.62 15.66 16.05 

Optimality Gap: 𝐴𝐶∆𝐸𝑂𝑄
 vs 𝐴𝐶∗ 0.00% 0.00% 0.12% 

Table 4. The impact of processing time distributions with different 𝐸[𝑋] and 𝜎2(𝑋) but same 𝑐𝑋 

  
Lognormal 

(0.75,0.53) 
Erlang-2 

Coxian-2  

(8,8,0.98) 

𝐸[𝑋] 0.75 0.50 0.25 

𝜎2(𝑋) 0.280 0.125 0.031 

𝑐𝑋 0.71 0.71 0.71 

𝐴𝐶∗ 29.70 15.66 11.54 

𝐴𝐶∆𝐸𝑂𝑄
 29.73 15.66 11.54 

Optimality Gap: 𝐴𝐶∆𝐸𝑂𝑄
 vs 𝐴𝐶∗ 0.10% 0.00% 0.00% 

     

Table 5. Processing time distributions with the corresponding parameter values 

  Erlang-1 Erlang-2 Erlang-3 Erlang-5 Erlang-10 Erlang-500 

𝐸[𝑋] 0.50 0.50 0.50 0.50 0.50 0.50 

𝜎2(𝑋) 0.250 0.125 0.083 0.050 0.025 0.001 

𝑐𝑋 1.00 0.71 0.58 0.45 0.32 0.05 

 

Table 6. The impact of processing time distributions 

  
∆∗ 𝑠∗ 𝐴𝐶∗ ∆𝐸𝑂𝑄 𝑠∆𝐸𝑂𝑄

 𝐴𝐶∆𝐸𝑂𝑄
 

Optimality Gap:  
𝐴𝐶∆𝐸𝑂𝑄

 vs 𝐴𝐶∗ 

Erlang-1 5 5 17.41 4 6 17.43 0.11% 

Erlang-2 4 5 15.66 4 5 15.66 0.00% 

Erlang-3 4 5 14.96 4 5 14.96 0.00% 

Erlang-5 4 5 14.32 4 5 14.32 0.00% 

Erlang-10 4 4 13.84 4 4 13.84 0.00% 

Erlang-500 4 4 13.31 4 4 13.31 0.00% 
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Study 5: This time we only fix the expected value of 

the processing time but let different variances. In order 

to assess the impact of such cases, we consider the base 

case of Study 1 and Erlang processing time distribution 

with different r (number of stages) values. While 

keeping the expected value constant, as r increases, the 

variance decreases and converges to zero in the limit 

(deterministic case).  

Table 5 presents the considered processing time 

distributions with their means, variances and 

coefficient of variations. For the cases considered in 

Table 5, we provide optimal and near-optimal 

solutions, and optimality gaps in Table 6 where the 

distributions are ordered from high to low variances. 

While the variance decreases, ∆∗, 𝑠∗, and 𝐴𝐶∗ are non-

increasing. As the processing time variance, 𝑠∗ and ∆∗ 

decrease, the lengths of both non-production and 

production periods also decrease. Therefore, the 

amount of cyclic safety stock and 𝐴𝐶∗  become less.  

As it is seen in Table 6, Erlang-1, i.e. Exponential, 

distribution has the highest variance and therefore 

relatively higher optimality gap. On the other hand, 

optimality gaps are less than 0.12% for all the cases. 

Hence, it can be concluded that our EOQ-type 

formulation performs very well and is robust to changes 

in distribution and variance. 

Study 6: Using the base case, in Figure 3, we 

investigate the joint effect of changes in production 

start-up cost 𝐾 and ∆. When ∆ > 10, the cost function 

increases almost linearly and the effect of start-up cost 

on the average cost is limited. As ∆ increases, the 

system pays less fixed cost and hence the portion of the 

start-up cost within the average cost decreases.  As ∆ 

increases, in the limit, the average cost would be same 

for all 𝐾 values because the holding cost would 

dominate the other cost components. On the other hand, 

for smaller values of  ∆, the effect of 𝐾 is prominent:  

Lower start-up cost, lower the average cost.

 
 

Figure 3. The average cost vs. 𝛥 = (𝑆 − 𝑠) for each value of the fixed cost for Erlang-2 

 
Study 7: We lastly examine the effects of changes in 

start-up cost 𝐾, lost-sales cost 𝑐, and holding cost ℎ on 

optimal and near-optimal control levels, average costs, 

and optimality gaps. We conduct an extensive 

experimental study capturing different combinations of 

𝐾 ∈ {0,10,20}, ℎ ∈ {1,2,3}, and 𝑐 ∈ {ℎ, 10ℎ, 20ℎ}. 

Tables 7 and 8 show the results for Erlang-2 and 

Uniform processing time distributions, respectively. 

For both of the distributions, expected processing time 

is 0.5. 

As can be seen in Table 7, whatever ℎ and 𝑐 are, if the 

fixed cost to activate the line is negligible (𝐾 = 0), the 

optimal policy is a Base-Stock-type, i.e. ∆∗= (𝑆∗ −
𝑠∗) = 1. For any given ℎ and 𝑐 values, as 𝐾 increases, 

∆∗ increases to continue production for a longer time 

once it is triggered. On the other hand, 𝑠∗ is non-

increasing in 𝐾. Due to these behaviours, 𝑆∗ = 𝑠∗ + ∆∗ 

is non-decreasing in 𝐾.  

For a given 𝐾 value, as 𝑐 decreases or ℎ increases, 

production is demotivated as inventory level increases. 

This is because of the trade-off between holding and 

shortage costs. Hence, the optimal production trigger 

point 𝑠∗ and the optimal produce-up-to level 𝑆∗, 

diminish as 𝑐 decreases or ℎ increases. At the opposite 

direction, it is better to keep the line active at higher 

inventory levels to minimize the risk of stock out, 

which is now costlier.   

The optimal average cost 𝐴𝐶∗ is increasing in 𝐾, 𝑐, and 

ℎ as expected. However, the effect of 𝐾 on the average 

cost is not as prominent as the effects of 𝑐 and ℎ. As 𝐾 

increases, both non-production and production period 

prolong and frequency of incurring the fixed cost 

reduces. 

All the above observations and comments are also valid 
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for the cases with Uniform processing time whose 

results are presented in Table 8. 

To show the effectiveness of our heuristic approach, we 

compare the average cost calculated using  
∆𝐸𝑂𝑄 with the optimized production trigger and 

produce-up-to levels, which are 𝑠∆𝐸𝑂𝑄
 and 𝑆∆𝐸𝑂𝑄

, 

respectively, with the optimal average cost. In Tables 7 

and 8, the first one is represented as 𝐴𝐶∆𝐸𝑂𝑄
 and the 

second one as 𝐴𝐶∗.  

When 𝐾 = 0, independent from the values of ℎ and 𝑐 

are, the approximation finds the optimal solution. That 

is, for such cases the optimality gap is 0.00%. However, 

as 𝐾 increases, optimality gap increases for small 

values of ℎ and 𝑐. But, optimality gap is still around 

0.00% for moderate and large values of ℎ and 𝑐 even 

for large 𝐾 values. Considering all the cases, average 

optimality gaps are calculated as 0.38% and 0.55% for 

Erlang-𝑟 and Uniform distributions, respectively. In 

conclusion, we believe that our approach performs well 

at different levels of cost parameters under different 

distributions. 

 
Table 7. Impact of system cost parameters for Erlang-2 

𝐾 ℎ 𝑐 

 

∆∗  𝑠∗ 𝑆∗ 𝐴𝐶∗ 

 

∆𝐸𝑂𝑄 𝑠∆𝐸𝑂𝑄
 𝑆∆𝐸𝑂𝑄

 𝐴𝐶∆𝐸𝑂𝑄
 

 
Optimality Gap:  
𝐴𝐶∆𝐸𝑂𝑄

 vs 𝐴𝐶∗ 

0 1 1 
 

1 0 1 1.50 
 

1 0 1 1.50 
 

0.00% 

0 1 10 
 

1 4 5 5.25 
 

1 4 5 5.25 
 

0.00% 

0 1 20 
 

1 6 7 7.52 
 

1 6 7 7.52 
 

0.00% 

0 2 2 
 

1 0 1 3.00 
 

1 0 1 3.00 
 

0.00% 

0 2 20 
 

1 4 5 10.50 
 

1 4 5 10.50 
 

0.00% 

0 2 40 
 

1 6 7 15.04 
 

1 6 7 15.04 
 

0.00% 

0 3 3 
 

1 0 1 4.50 
 

1 0 1 4.50 
 

0.00% 

0 3 30 
 

1 4 5 15.75 
 

1 4 5 15.75 
 

0.00% 

0 3 60 
 

1 6 7 22.56 
 

1 6 7 22.56 
 

0.00% 

10 1 1 
 

5 0 5 3.08 
 

6 0 6 3.12 
 

1.18% 

10 1 10 
 

6 2 8 5.93 
 

6 2 8 5.93 
 

0.00% 

10 1 20 
 

5 5 10 8.01 
 

6 4 10 8.01 
 

0.00% 

10 2 2 
 

4 0 4 5.19 
 

4 0 4 5.19 
 

0.00% 

10 2 20 
 

4 3 7 11.37 
 

4 3 7 11.37 
 

0.00% 

10 2 40   4 5 9 15.66   4 5 9 15.66   0.00% 

10 3 3 
 

4 0 4 7.15 
 

4 0 4 7.15 
 

0.00% 

10 3 30 
 

4 3 7 16.75 
 

4 3 7 16.75 
 

0.00% 

10 3 60 
 

4 5 9 23.25 
 

4 5 9 23.25 
 

0.00% 

20 1 1 
 

7 0 7 3.74 
 

9 0 9 3.98 
 

6.54% 

20 1 10 
 

7 2 9 6.29 
 

9 1 10 6.35 
 

0.88% 

20 1 20 
 

7 4 11 8.28 
 

9 3 12 8.33 
 

0.55% 

20 2 2 
 

5 0 5 6.17 
 

6 0 6 6.24 
 

1.18% 

20 2 20 
 

6 2 8 11.87 
 

6 2 8 11.87 
 

0.00% 

20 2 40   5 5 10 16.03   6 4 10 16.03   0.02% 

20 3 3 
 

5 0 5 8.38 
 

5 0 5 8.38 
 

0.00% 

20 3 30 
 

5 3 8 17.35 
 

5 3 8 17.35 
 

0.00% 

20 3 60 
 

5 5 10 23.68 
 

5 5 10 23.68 
 

0.00% 
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Table 8. Impact of system cost parameters for Uniform (0.1,0.9) 

𝐾 ℎ 𝑐 

 

∆∗  𝑠∗ 𝑆∗ 𝐴𝐶∗ 

 

∆𝐸𝑂𝑄 𝑠∆𝐸𝑂𝑄
 𝑆∆𝐸𝑂𝑄

 𝐴𝐶∆𝐸𝑂𝑄
 

 
Optimality Gap:  
𝐴𝐶∆𝐸𝑂𝑄

 vs 𝐴𝐶∗ 

0 1 1 
 

1 0 1 1.50 
 

1 0 1 1.50 
 

0.00% 

0 1 10 
 

1 4 5 4.86 
 

1 4 5 4.86 
 

0.00% 

0 1 20 
 

1 6 7 6.89 
 

1 6 7 6.89 
 

0.00% 

0 2 2 
 

1 0 1 3.00 
 

1 0 1 3.00 
 

0.00% 

0 2 20 
 

1 4 5 9.72 
 

1 4 5 9.72 
 

0.00% 

0 2 40 
 

1 6 7 13.78 
 

1 6 7 13.78 
 

0.00% 

0 3 3 
 

1 0 1 4.50 
 

1 0 1 4.50 
 

0.00% 

0 3 30 
 

1 4 5 14.58 
 

1 4 5 14.58 
 

0.00% 

0 3 60 
 

1 6 7 20.67 
 

1 6 7 20.67 
 

0.00% 

10 1 1 
 

5 0 5 2.96 
 

6 0 6 3.02 
 

1.88% 

10 1 10 
 

6 2 8 5.52 
 

6 2 8 5.52 
 

0.00% 

10 1 20 
 

6 4 10 7.37 
 

6 4 10 7.37 
 

0.00% 

10 2 2 
 

4 0 4 5.02 
 

4 0 4 5.02 
 

0.00% 

10 2 20 
 

4 3 7 10.55 
 

4 3 7 10.55 
 

0.00% 

10 2 40 
 

4 5 9 14.39 
 

4 5 9 14.39 
 

0.00% 

10 3 3 
 

4 0 4 6.95 
 

4 0 4 6.95 
 

0.00% 

10 3 30 
 

4 3 7 15.56 
 

4 3 7 15.56 
 

0.00% 

10 3 60 
 

4 5 9 21.38 
 

4 5 9 21.38 
 

0.00% 

20 1 1 
 

6 0 6 3.58 
 

9 0 9 3.88 
 

8.34% 

20 1 10 
 

7 2 9 5.86 
 

9 1 10 5.95 
 

1.54% 

20 1 20 
 

7 4 11 7.64 
 

9 3 12 7.71 
 

0.95% 

20 2 2 
 

5 0 5 5.93 
 

6 0 6 6.04 
 

1.88% 

20 2 20 
 

6 2 8 11.03 
 

6 2 8 11.03 
 

0.00% 

20 2 40 
 

6 4 10 14.74 
 

6 4 10 14.74 
 

0.00% 

20 3 3 
 

5 0 5 8.11 
 

5 0 5 8.11 
 

0.00% 

20 3 30 
 

4 3 7 16.10 
 

5 2 7 16.13 
 

0.17% 

20 3 60 
 

4 5 9 21.78 
 

5 4 9 21.78 
 

0.00% 

 
5. Conclusion 

We study a single-product make-to-stock system with 

a single production resource, production start-up cost, 

lost-sales, general production times and Poisson 

demand arrivals. Production and inventory are 

controlled by the two-critical-number policy. 

As the production start-up cost is negligible, we find 

the steady-state distribution of the system with a 

method using the analogy between the considered MTS 

queue and the capacitated M/G/1 queue. In addition, for 

the systems with production start-up cost, we develop a 

method that directly calculates the long-run expected 

average cost. Our method benefits from renewal and 

queueing theories. We calculate the cycle cost with a 

first passage analysis. This analysis provides a system 

of equations, which is solved in a recursive manner. On 

the other hand, cycle length is calculated using busy 

period analysis of capacitated M/G/1 queues: We show 

that the length of a production period can be written as 

the convolution of the lengths of capacitated M/G/1 

busy periods. Furthermore, we propose a well-

performing approximation for the difference between 

the control levels of the two-critical-number policy. 

Finally, with an extensive numerical study, impacts of 

production time distributions, traffic intensity, and 

production start-up, lost-sales and holding costs are 

discussed.  

As a possible extension of the study, multi-product or 

multi-demand class systems can be considered. A more 

compelling extension, on the other hand, would be 

examining multi-server systems. 
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