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The aim of this study is to compare the performance of smooth and nonsmooth
optimization solvers from HANSO (Hybrid Algorithm for Nonsmooth Opti-
mization) software. The smooth optimization solver is the implementation of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the nonsmooth
optimization solver is the Hybrid Algorithm for Nonsmooth Optimization.
More precisely, the nonsmooth optimization algorithm is the combination of
the BFGS and the Gradient Sampling Algorithm (GSA). We use well-known
collection of academic test problems for nonsmooth optimization containing
both convex and nonconvex problems. The motivation for this research is the
importance of the comparative assessment of smooth optimization methods for
solving nonsmooth optimization problems. This assessment will demonstrate
how successful is the BFGS method for solving nonsmooth optimization prob-
lems in comparison with the nonsmooth optimization solver from HANSO.
Performance profiles using the number iterations, the number of function eval-
uations and the number of subgradient evaluations are used to compare solvers.
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1. Introduction

Researchers working in different areas, for in-
stance, in economics, engineering, data mining
and machine learning encounter different types
of optimization problems including those with
smooth, non-smooth, convex or nonconvex objec-
tive and/or constraint functions. While these re-
searchers search for an optimal solution of their
real-life problems, they need suitable software.
Most of existing optimization software and meth-
ods contain some user defined parameters and it
is not always easy to choose these parameters for
a particular problem. The choice of these parame-
ters may strongly depend on the application area.
Researchers, who apply optimization methods in
their research, prefer optimization software that
are robust to the choice of their parameters. For
example, in the book [1], optimization problems
arising in economics are analyzed and some robust

methods for solving them are discussed in [2, 3].
The theory and application of engineering prob-
lems can be found in [4], in particular, some ge-
netic engineering problems are discussed in [5, 6].
In the areas such as data mining, machine learn-
ing and control theory the sources [7–9] are very
useful and important for readers. In addition, you
can find all the mathematical theory and applica-
tion related to the nonsmooth optimization the-
ory in the book [10], which used as a guide book
while preparing this study. On the other hand, it
is possible to increase the examples in the appli-
cation area, but it is useful to talk about HANSO
software as soon as possible without going beyond
our purpose.

In this paper, we provide a comparative as-
sessment of two nonsmooth optimization solvers.
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Both these solvers are available in HANSO soft-
ware [11]. The first solver is the implemen-
tation of the BFGS method (Broyden-Fletcher-
Goldfarb-Shanno method). The second solver
is called HANSO (Hybrid Algorithm for Non-
Smooth Optimization). This solver is the com-
bination of the BFGS and Gradient Sampling Al-
gorithm (GSA). Implementations of both algo-
rithms are available in [11]. There are two main
reasons to carry out this comparison. The BFGS
is the smooth optimization algorithm, however
the GSA is developed specifically for solving non-
convex nonsmooth optimization problems. This
research will, in particular, show how compara-
ble is smooth optimization solver for solving non-
smooth optimization problems. On the other side,
BFGS is a part of HANSO algorithm. Our com-
putational results will demonstrate how much the
BFGS can improve the performance of the GSA.

We use the collection of 36 academic test problems
to test algorithms. This collection contains con-
vex and nonconvex nonsmooth optimization test
problems and they different number of variables.
The detailed description of these problems can be
found in [10].

The rest of the paper is organized as follows. In
the following Section 2, we provide the necessary
information about the algorithms in HANSO soft-
ware. In Section 3, the academic test problems
used in this study are described. Summary of
computational results is presented in Section 4.
Discussion of computational results using perfor-
mance profiles is given in Section 5. Some con-
cluding remarks are provided in the final Section
6.

2. HANSO (Hybrid Algorithm for
Non-Smooth Optimization)

Version 2.2 of HANSO developed by Michael
Overton is used in this study. It has General Pub-
lic License (GNU) as published by the Free Soft-
ware Foundation, so anybody can redistribute it
and/or modify it under the terms of this license.

HANSO is intended to seek a minimum value of
non-smooth, non-convex functions, but also ap-
plicable to functions that are smooth, convex or
both. It is based on the BFGS algorithm and
GSA. You can find some details about BFGS and
GSA in the following subsections.

2.1. BFGS Algorithm

BFGS algorithm suggested independently by
Broyden, Fletcher, Goldfarb, and Shanno, in 1970

uses the Quasi-Newton algorithm which is a gen-
eralization of the secant method. The main dif-
ference between BFGS and Quasi-Newton algo-
rithms is that it uses and maintains different
properties of the matrix when updating formu-
las. In BFGS, the Hessian matrix is not calcu-
lated. Instead of this calculation, BFGS uses in-
verse Hessian matrix approximation using infor-
mation from gradient evaluation. BFGS is nor-
mally used for optimizing smooth, not necessarily
convex, functions, for which the convergence rate
is generically superlinear. However, BFGS has
acceptable performance even for non-smooth op-
timization problems, typically with a linear con-
vergence rate as long as a weak Wolfe line search
is used. This version of BFGS will work well both
for smooth and non-smooth functions and has a
stopping criterion that applies for both cases [12].

The weak Wolfe line search is far less compli-
cated than the standard strong Wolfe line search.
In addition to this fact, there is no disadvan-
tage to using the weak Wolfe line search com-
pared to the strong Wolfe line search when New-
ton or BFGS methods are used for smooth prob-
lems and BFGS or bundle methods are used for
non-smooth problems. Thus, HANSO prefers to
use the weak Wolfe line search with parameter
c1 = 0 for the sufficient decrease condition and pa-
rameter c2 = 0.5 for the weak condition on the di-
rectional derivative. As indicated in the code [11],

”For usual convergence theory for
smooth functions, normally one
requires 0 < c1 < c2 < 1, but c1 =
0 is fine in practice. May want
c1 = c2 = 0 for some non-smooth
optimization algorithms such as
Shor or bundle, but not BFGS.
Setting c2 = 0 may interfere with
superlinear convergence of BFGS
in smooth case.”

In this context, we can say that we can change the
c2 parameter, but it is not appropriate to make
it 0. In our calculations, the code was not in-
tervened and the results were obtained with the
aforementioned parameters.

There are several options for the stopping crite-
rion of BFGS algorithm in HANSO. First of all,
it is possible to adjust the tolerance of a decent
direction. If its norm is less than the given toler-
ance, the code is terminated. In this study, the
default tolerance 10−6 is used. Another stopping
criterion is that the distance of the gradient vector
calculated in each step from the current iteration
point is greater than the given tolerance value.
The default tolerance value 10−4 is used in this
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study again. Other stopping criteria are related
to change of function values, the magnitude of
the current iteration point and CPU time, but in
this study numerical results have been obtained
without any restrictions on them.

2.2. Gradient Sampling Algorithm (GSA)

Gradient sampling idea was used in [13,14] for the
first time. Later, the gradient sampling method
was used to approximate the Clarke subdifferen-
tial for locally Lipschitz functions in [15] and it
was improved for non-smooth non-convex prob-
lems in [16], which is used in HANSO Software.
Later, other versions of gradient sampling meth-
ods for some special optimization problems was
developed such as [17–19].

GSA is intended for non-convex and locally Lip-
schitz functions that are differentiable almost ev-
erywhere, in other words, they are not differen-
tiable on a set of the measure zero, so the sub-
gradient at a randomly selected point is uniquely
determined as the gradient at that point. There-
fore, in GSA, gradients are computed on a set
of randomly generated nearby points at current
iteration. Consequently, by using gradient sam-
pling, a local information of the function is ob-
tained and the quadratic subproblem is formed.
The ε-steepest descent direction is constructed by
solving this quadratic subproblem, where ε is the
sample radii.

The stopping criterion of GSA in HANSO is on
descent directions. If the norm of the descent di-
rection at current iteration is less then given tol-
erance, the algorithm is terminated. HANSO’s
default values 10−6 is used as a tolerance in this
study.

3. Test Problem

The efficiency of HANSO was tested on the well-
known non-smooth optimization academic test
problems taken in [10]. Hanso’s performance was
discussed on this academic test problem according
to the type of the non-smooth problems namely
convex and non-convex. In Table 1, some infor-
mation can be found for convex problems. nvar
denotes the number of variables ,and fopt denotes
the optimal value of indicated problem.

Table 1. List of Convex Problems

Problem nvar fopt
CB2 2 1,9522245
CB3 2 2
DEM 2 -3
QL 2 7,2
LQ 2 -1,4142136

Mifflin 1 2 -1
Wolfe 2 -8

Rosen Suzuki 4 -44
Polak6 4 -44

Davidon 2 4 115,70644
Shor 5 22,600162

Wong 1 7 680,63006
Wong 2 10 24,306209
Polak 2 10 54,598150

Maxquad 10 -0,8414083
Polak 3 11 3,70348
Wong 3 20 93,90525
Watson 20 0, 14743027× 10−7

Maxq 20 0
Maxl 20 0

Gofflin 50 0
MXHILB 50 0
L1HILB 50 0

Similarly, some information can be found for non-
convex problems In Table 2.

Table 2. List of Non-Convex Problems

Problem nvar fopt
WF 2 0

SPIRAL 2 0
Rosenbrock 2 0

Crescent 2 0
Mifflin 2 2 -1
EVD52 3 3,5997193
OET5 4 0, 26359735× 10−2

OET6 4 0, 20160753× 10−2

El-Attar 6 0,5598131
Gill 10 9,7857721

Osborne 2 11 0, 48027401× 10−1

Steiner 2 12 16,703838
Shell Dual 15 32,348679

HANSO allows us to use the specified starting
point or randomly generated starting point. How-
ever, in this study, 20 randomly generated start-
ing points were used. Since the HANSO code was
not suitable for running 20 different points, this
code was modified to use these randomly gener-
ated 20 points by reading our starting point files.
These numerical results are presented in the next
section.
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4. Numerical Results

Since it is not possible to give all of the 20 results
obtained for each of the 36 test problems men-
tioned in the previous section, we first give the
table below, which presents HANSO and BFGS
solves how many problems related to the starting
points successfully.

We can observe that there is no difference in the
number of solving problems between HANSO and
BFGS from Tables 3 and 4. On the other hand,
looking at the values of the problems CB3, DEM,
Polak 3, Wong 3, WF, SPIRAL, El-Attar, and
Gill from Tables 3 and 4., one can observe that
both HANSO and BFGS were able to solve them
for some starting points. This means that the
success of both software depends on the start-
ing point. This is quite normal for non-smooth
solvers. In addition, when there were 20 starting
points for 36 test problems, in other words, these
algorithms worked 720 times, they were successful
in only %50 of these works.

Table 3. Number of convex prob-
lems solved successfully

Problem HANSO BFGS
CB2 20 20
CB3 14 14
DEM 1 1
QL 20 20
LQ 20 20

Mifflin 1 0 0
Wolfe 20 20

Rosen Suzuki 0 0
Polak6 0 0

Davidon 2 20 20
Shor 20 20

Wong 1 0 0
Wong 2 20 20
Polak 2 0 0

Maxquad 20 20
Polak 3 5 5
Wong 3 10 10
Watson 0 0
Maxq 20 20
Maxl 20 20

Gofflin 20 20
MXHILB 20 20
L1HILB 20 20
TOTAL 290 290

Table 4. Number of non-convex
problems solved successfully

Problem HANSO BFGS
WF 2 2

SPIRAL 18 18
Rosenbrock 20 20

Crescent 0 0
Mifflin 2 0 0
EVD52 20 20
OET5 0 0
OET6 0 0

El-Attar 8 8
Gill 3 3

Osborne 2 0 0
Steiner 2 0 0

Shell Dual 0 0
TOTAL 71 71

In particular, the rate of successfully solved at-
tempts approximately is %63 and %27 for convex
problems and non-convex problems respectively.
This means that the number of iterations, func-
tion evaluations and gradient evaluations for these
softwares should be compared for a more effective
comparison. The reason that there is no compar-
ison on CPU time in this study is HANSO soft-
ware does not provide CPU time information. Of
course, CPU time could be calculated by mod-
ifying the code, but it has not been done since
the program ended in less than 2 seconds for both
HANSO and BFGS. The reason that the program
terminated such a short time is that HANSO’s de-
fault maximum number of iterations is 1000, and
this default number was used in the calculation.

5. Discussion by using Performance
Profile

In order to compare the HANSO and BFGS ef-
fectively, as stated in the previous section, it
is necessary to compare the numbers of itera-
tions, function evaluations, and gradient evalu-
ations obtained from numerical experiments. Be-
cause there is too much data in the numerical
results, it is impossible to compare these data
for each starting point of each problem. There-
fore, the concept of performance profile presented
to benchmark optimization software (see [20] ) is
used to compare HANSO and BFGS.

5.1. Performance Profile

The results are shown in Figures 1 and 2 by us-
ing the performance profiles introduced in [20].
In this section, the efficiency of the softwares
are discussed in terms of performance measures,
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which are iteration, function evaluation and gra-
dient evaluation. The performance profile de-
noted by ρs(τ) ,where s is either software HANSO
or BFGS, is a following

ρs(τ) =
no. of the problems where rp,s ≤ τ

total no. of the problems
×100

(1)

where rp,s denotes the performance ratio. If soft-
ware s fails to solve problem p, the performance
ratio is sufficiently large number (or infinity), oth-
erwise

rp,s =
np,s

min{np,s|s is either HANSO or BFGS}
(2)

where np,s is the number of the performance mea-
sure for the software s for the problem p. In other
word, np,s is the number of the iteration (or func-
tion evaluation, gradient evaluation) for the soft-
ware s for the problem p according to performance
measure. One can easily observe from Equation
2 that the performance ratio is 1 for at least one
of these two softwares and rp,s ≥ 1. If the value
of np,s in both softwares are equal, rp,s become 1
for both.

For both software HANSO and BFGS in terms of
each of three aforementioned performance mea-
sures, graphs of the performance profiles ρs(τ) are
given in Figures 1 and 2.

In the performance profiles, the value of ρs(1)
gives the percentage of test problems for which
software s is the best. In other words, it uses the
least performance measures, for example, least it-
eration number, function evaluations or gradient
evaluations. If both software have the same val-
ues, both are considered the best.

The value of ρs(τ) at the rightmost abscissa gives
the percentage of test problems that the corre-
sponding solver can solve successfully, that is, the
reliability of the solver. Moreover, the relative ef-
ficiency of each software can be directly seen from
the performance profiles. The corresponding soft-
ware of the higher curve is the better.

5.2. Discussion on Convex Problems

Performance profile graphs of the numerical re-
sults obtained by using 20 different starting points
with 23 Convex problems given in Table 1 are
given in Figure 1. Using 20 different starting
points on 23 convex problems, 460 results were
obtained, which means that the total number of
problems in the denominator of the performance
profile function which is Equation 1 is 460.

When looking at the performance profile graphs
according to 3 different performance measures in
Figure 1, we can say that HANSO is more reliable
than BFGS in terms of these three measures, since
the performance profile graph of HANSO (shortly
the graph of HANSO) is above from the perfor-
mance profile graph of BFGS (shortly the graph
of BFGS).

(a) Number of Iterations

(b) Number of Function Evaluations

(c) Number of Gradient Evaluations

Figure 1. Performance Profiles for
Convex Problems

On the other hand, it is possible to observe that
both softwares have successfully solved an equal
number of problems, which is %63. When we look
at the rhos(1) value for both softwares, we can
see that HANSO has the least number of itera-
tions, functions, and gradients evaluations in all
successfully solved problems. Similarly, when we
look at the value of rhos(1) for BFGS, it can
be said that BFGS has the least numbers in %30
of the successfully solved problems. This means
that HANSO and BFGS have the same values for



44 A. H. Tor / IJOCTA, Vol.12, No.1, pp.39-46 (2022)

all of these %30 problems. So there is no dif-
ference between HANSO and BFGS for this %30
problem solved successfully. One can observe that
the graph of HANSO in these three graphs is
a straight line. This means that for all convex
problems, HANSO either has the same evaluation
numbers as the BFGS or better.

5.3. Discussion on Non-convex Problems

It can be said that the total number of problems
in the performance profile function is 260 with 13
different problems for the non-convex case.

(a) Number of Iterations

(b) Number of Function Evaluations

(c) Number of Gradient Evaluations

Figure 2. Performance Profiles for
Non-convex Problems

When making a similar discussion for non-convex
problems as It has done for convex problems, we
will need to look at the graphs given in Figure
2. We can again say that HANSO is more reli-
able than BFGS for non-convex problems. How-
ever, this time the percentage %27 of successfully

solving problems for both softwares is very low.
Apart from this remarkable percentage of solving
success, we see that the graph of HANSO is not
a straight line. The reason for this is that some
problems are solved by the BFGS by making less
iteration, function and gradient evaluation.

On the other hand, the meaning of the abscissa
value 2 in Figures 2a and 2b is that the itera-
tion and function evaluation numbers for these
two softwares are at most 2 times higher com-
pared to the other. This shows that there is not a
huge improvement between HANSO and BFGS in
terms of either performance measure. Similarly,
this value is 3 in Figure 2c and the number of gra-
dient evaluations has decreased by the factor 3 at
most.

6. Conclusion

In this study, some information about HANSO
software developed by Michael Overton and coded
in MATLAB is presented. The parameters that
HANSO uses in the line search algorithm are
given and the stopping criteria of the algorithm
to find the minimum value are specified. After-
wards, numerical results were obtained to com-
pare HANSO and BFGS softwares by using some
academic test problems. According to all these
numerical results, it can be said that HANSO,
which is a hybrid method, does not give very dif-
ferent results from BFGS in terms of accuracy,
but it reduces the number of iterations and calcu-
lations efforts to some extent. On the other hand,
when we look at the results obtained with differ-
ent starting points, it can be said that for many
problems, both HANSO and BFGS are sensitive
to the starting point, that is, neither of them is
robust. Nevertheless, this free software can be
used for academic studies. Of course, when using
this software, it would be more appropriate to use
more than one starting point instead of one start-
ing point for academic study. Finally, there is no
need to use HANSO and BFGS separately to get
results. The results obtained with only HANSO
are sufficient.

It will be very useful to compare HANSO with
other non-smooth solvers in the literature to shed
light on academic studies. Another point not in-
cluded in this study is how HANSO will give re-
sults when it comes to large-scale problems. How-
ever, this study demonstrated how HANSO soft-
ware differs from BFGS by numerical calculations
and discussion.
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