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In this paper, we consider a Kullback-Leibler divergence constrained distri-
butionally robust optimization model. This model considers an ambiguity
set that consists of all distributions whose Kullback-Leibler divergence to an
empirical distribution is bounded. Utilizing the fact that this divergence mea-
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of the Kullback-Leibler divergence constrained distributionally robust opti-
mization problem as a dual exponential cone constrained program under mild
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formulation of the original optimization problem can be directly solved by a
commercial conic programming solver. We specialize our generic formulation to
two classical optimization problems, namely, the Newsvendor Problem and the
Uncapacitated Facility Location Problem. Our computational study in an out-
of-sample analysis shows that the solutions obtained via the distributionally
robust optimization approach yield significantly better performance in terms
of the dispersion of the cost realizations while the central tendency deteriorates
only slightly compared to the solutions obtained by stochastic programming.
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1. Introduction

Decision making under uncertainty is one of the
most challenging tasks in operations research.
Two paradigms are predominantly used in the
literature to address uncertainty: stochastic pro-
gramming and robust optimization. In the clas-
sical stochastic programming [1, 2], a predefined
set of scenarios (or samples) are determined, ei-
ther taken directly from observed data or after
fitting an appropriate distribution. Then, the ob-
jective function is replaced with an expectation
taken with respect to the random elements, and
constraints are copied for each scenario. In addi-
tion to the assumption about knowing the under-
lying distribution, this basic stochastic program-
ming approach has some limitations: Firstly, the

size of the resulting deterministic equivalent for-
mulation grows larger with the size of the sce-
narios. Secondly, an expectation may not be an
appropriate performance measure for risk-averse
decision makers. Thirdly, satisfying constraints
for each scenario might be too restrictive. The re-
spective remedies for these shortcomings are pro-
posed such as sample average approximation to
limit the problem size, risk-averse objective func-
tion for a more appropriate performance measure
and chance constraints to allow constraint satis-
faction with high probability. However, the im-
plicit assumption of stochastic programming re-
mains, which is the need to assume a distribution
by analyzing the data or fitting one. Unfortu-
nately, this step may not be performed satisfac-
torily in all cases.
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In robust optimization [3–5], a predefined uncer-
tainty set, which includes all possible values of the
uncertain elements, is used. Then, the optimiza-
tion is performed with the aim of optimizing with
respect to the worst possible realization from the
uncertainty set. There are two main advantages
of using robust optimization. Firstly, the decision
maker does not need to make any assumptions
about the distribution of the uncertain elements
in the problem as opposed to the stochastic pro-
gramming approach. Secondly, the deterministic
equivalent (or so-called the robust counterpart)
formulation of the robust optimization problem
typically has the same computational complex-
ity as the deterministic version of the problem
under reasonable assumptions on the uncertainty
sets. On the other hand, the main disadvantage of
the robust optimization approach is that depend-
ing on the construction of the uncertainty set, it
might lead to overly conservative solutions, which
might have poor performance in central tendency
such as expectation.

Distributionally robust optimization (DRO) is a
relatively new paradigm that aims to combine sto-
chastic programming and robust optimization ap-
proaches. The main modeling assumption of DRO
is that some partial information about the dis-
tribution governing the underlying uncertainty is
available, and the optimization is performed with
respect to the worst distribution from an ambigu-
ity set, which contains all distributions consistent
with this partial information. There are mainly
two streams in the DRO literature based on how
the ambiguity set is defined: moment-based and
distance-based.

In moment-based DRO, ambiguity sets are de-
fined as the set of distributions whose first few mo-
ments are assumed to be known or constrained to
lie in certain subsets. If certain structural proper-
ties hold for the ambiguity sets such as convexity
(or conic representability), then tractable convex
(or conic reformulations) can be obtained [6–8].
In distance-based DRO, ambiguity sets are de-
fined as the set of distributions whose distance
(or divergence) from a reference distribution is
constrained. For Wasserstein distance [9–12] and
φ−divergence [13–17] constrained DRO, tractable
convex reformulations have been proposed. Re-
cently, chance constrained DRO problems have
also drawn attention [18–21].

As summarized above, in many cases, tractable
convex robust counterparts or reformulations can
be obtained for robust and distributionally ro-
bust (DR) optimization problems. However, an
even more special structure such as conic repre-
sentability can be preferred whenever available.

Especially, if the robust counterpart can be ex-
pressed as a conic program for which the under-
lying cone admits a self-concordant barrier, then
efficient polynomial-time interior point methods
can be applied directly [22]. This desired prop-
erty holds for linear programs, second-order cone
programs and semidefinite programs, which ap-
pear extensively in both robust and DR optimiza-
tion literature. We note that the efficiency of
the conic programming solvers specialized in these
three problem classes has improved considerably.

There is some recent interest in conic programs for
which the underlying cone is not self-dual, such as
exponential cone. There are two main reasons: i)
exponential cone has extensive expressive power
that is useful to model optimization problems in-
volving the exponential and logarithm functions
(see e.g. [23]), and ii) a practical implementation
of a primal-dual interior point method is devel-
oped [24] although its polynomial-time complex-
ity has not been proven yet. Our paper will ex-
ploit both the expressive power of the exponen-
tial cone and the practical implementation that
can be used to solve the resulting optimization
problem, as detailed below.

The Kullback-Leibler (KL) divergence [25] is a
popular divergence measure in information the-
ory that can be used to quantify the divergence
of one distribution from another (see Definition 8)
and we prove that it is exponential cone repre-
sentable (see Definitions 3 and 6, and Proposi-
tion 2). Although the robust counterpart of KL
divergence constrained DRO is proven to be a
tractable convex program [26], to the best of our
knowledge, its exponential cone representability
has not been exploited in the literature before.
Also, its practical performance against stochas-
tic programming has not been analyzed in detail
except for a limited number of applications from
power systems [27, 28].

In this paper, we consider KL divergence con-
strained DRO problems and propose their dual
exponential cone constrained reformulation un-
der the mild assumption of conic representabil-
ity. This allows us to solve the corresponding
robust counterpart using a conic programming
solver such as MOSEK [29]. We also present
how the generic formulation can be specialized
for two classical problems: Newsvendor and Un-
capacitated Facility Location. Although the DRO
methodology has been applied to variations of
these problems [30–35], to the best of our knowl-
edge, their KL divergence constrained versions
have not been studied in detail. Our computa-
tional results suggest that solutions obtained via
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a DR approach give slightly higher cost realiza-
tions when central tendencies such as mean and
median are considered compared to solutions ob-
tained via stochastic programming in an out-of-
sample analysis. However, the dispersion (mea-
sured by the standard deviation and range of the
cost realizations) and the risk (measured by the
average of worst cost realizations and the third
quartile) metrics improve significantly with solu-
tions obtained via a DR approach.

Our main contribution in this paper is to exploit
the exponential cone representation of the KL-
divergence to solve DRO problems with ambigu-
ity sets defined using this measure1. Unlike the
previous literature, which treats such problems
as “general convex programs” (see, for instance,
[13]), we utilize the general-purpose conic pro-
gramming solver MOSEK in our computations.
The conic representability property can be quite
useful in practice since one can then include other
(mixed-integer) conic representable sets and func-
tions to the underlying optimization problem and,
hence, model a wide variety of real-life situations.

Although we carry out the computational ex-
periments for two classical problems, we remark
that our approach is rather general and it can be
adapted to various settings. To give a few exam-
ples, one can use our framework in applications
from portfolio optimization [7,10], image process-
ing [9, 16], asset pricing [13], multidimensional
knapsack problem [12,20] and logistics [35, 36].

The rest of the paper is organized as follows: In
Section 2, we review basic concepts from convex
analysis and probability theory which serve as the
basis of our main result about conic reformula-
tion of KL divergence constrained DRO problems
in Section 3. Then, we analyze two applications,
namely, the Newsvendor Problem in Section 4 and
the Uncapacitated Facility Location Problem in
Section 5, and present the results of our compu-
tational study. Finally, we conclude our paper in
Section 6.

2. Preliminaries

Before stating our main result in Section 3, we will
first review some important concepts from convex
analysis in Section 2.1 and probability theory in
Section 2.2.

2.1. Convex analysis

For a set X ⊆ R
m, we denote its interior as

int(X), its relative interior as ri(X) and its clo-
sure as cl(S). We use the shorthand notation [n]
for the set {1, . . . , n}.

We will first review some basic concepts from con-
vex analysis related to cones.

Definition 1 (Regular cone). A cone K ⊆ R
m is

called regular if it is closed, convex, pointed and
full-dimensional.

Examples of regular cones include the nonnega-
tive orthant, Lorentz (or second-order) cone and
the cone of positive semidefinite matrices. We
will refer to these cones as canonical cones in this
paper.

Definition 2 (Dual cone). The dual cone to a
cone K ⊆ R

m is defined as K∗ = {y ∈ R
m :

xT y ≥ 0, ∀x ∈ K}.

It is well-known that the dual cone to a regular
cone is also regular. In addition, the three canon-
ical cones mentioned above are self-dual.

We will now define the exponential cone, which is
the key ingredient of this paper.

Definition 3 (Exponential cone). The exponen-
tial cone, denoted as Kexp, is defined as

Kexp = cl
(

{x ∈ R
3 : x1 ≥ x2e

x3/x2 , x2 > 0}
)

.

As opposed to the three canonical cones men-
tioned above, the exponential cone is not self-dual
although it is a regular cone.

Proposition 1 (See e.g. [23]). The dual cone to
the exponential cone (or simply the dual exponen-
tial cone) is given as

(Kexp )∗ =

cl
(

{s ∈ R
3 : s1 ≥ −s3e

(s2−s3)/s3 , s3 < 0}
)

.

The following definitions are instrumental in the
description of conic programming problems:

Definition 4 (Conic inequality). A conic in-
equality with respect to a regular cone K is de-
fined as x �K y, meaning that x − y ∈ K. We
will denote the relation x ∈ int(K) alternatively
as x ≻K 0.

Definition 5 (Conic representability of a set). A
set X ⊆ R

n is called conic representable if it can
be expressed as

X = {x ∈ R
n : ∃y ∈ R

k : Ax+By �K b},

for some appropriately chosen regular cone K.

1We also note that two other φ−divergence measures called Burg entropy and J−divergence have the same representation
property.
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If any of the variables in this representation is in-
teger, then X is called a mixed-integer conic rep-
resentable set.

Definition 6 (Conic representability of a func-
tion). A function is called conic representable if
its epigraph is a conic representable set.

In this paper, when we say that “a set or function
is conic representable”, we will implicitly assume
that the cone used in its representation is either
one of the three canonical cones or the (dual) ex-
ponential cone.

2.2. Probability theory

Definition 7 (Probability simplex). The proba-
bility simplex in dimension S is denoted as

∆S :=
{

p ∈ R
S
+ :

S
∑

s=1

ps = 1
}

.

The following function can be used to measure the
“divergence” of one distribution from another.

Definition 8 (KL Divergence). For two discrete
probability distributions p ∈ ∆S and q ∈ ri(∆S),
the KL divergence from p to q is defined as

DKL(p||q) :=
S
∑

s=1

ps log(ps/qs).

We note that the KL Divergence does not define
a distance metric between two probability distri-
butions since it is not symmetric. However, it has
the following useful property.

Proposition 2. Let p ∈ ∆S and q ∈ ri(∆S).
Then, the function DKL(p||q) is exponential cone
representable.

Proof. Due to Definition 6, it suffices to show
that the epigraph of the function DKL(p||q) is an
exponential cone representable set. Since the set
{(x, y, t) ∈ R

3 : t ≥ x log(x/y)} has the exponen-
tial cone representation (y, x,−t) ∈ Kexp [37], we
obtain an exponential cone representation for the
function DKL(p||q) as follows:

{(p, q, ǫ) ∈ ∆S × ri(∆S)× R : DKL(p||q) ≤ ǫ}

=
{

(p, q, ǫ) : ∃δ ∈ R
S :

S
∑

s=1

δs ≤ ǫ,

(qs, ps,−δs) ∈ Kexp, s ∈ [S]
}

.

�

The following proposition gives an upper bound
on the KL-divergence of a given distribution from
any other distribution.

Proposition 3. Let q ∈ ri(∆S). Then,

ǫ(q) := sup
p∈∆S

{DKL(p||q)} = log(1/min
s∈[S]

{qs}).

Proof. Notice that the objective function of
the optimization problem supp∈∆S{DKL(p||q)}
is convex and its feasible region is a polytope.
Therefore, there exists an optimal solution which
is an extreme point of ∆S . Observe that the ex-
treme points of ∆S are the unit vectors in R

S ,
denoted by ẽs for s ∈ [S] (note that ẽss′ = 1 for
s = s′, and ẽss′ = 0 otherwise).

Let us now compute DKL(ẽ
s||q) for some s ∈ [S].

In fact, we have

DKL(ẽ
s||q) =

S
∑

s′=1

ẽss′ log(ẽ
s
s′/qs)

= ẽss log(ẽ
s
s/qs) +

S
∑

s′=1
s′ 6=s

ẽss′ log(ẽ
s
s′/qs)

= log(1/qs).

Here, we use the fact that limx→0+ x log(x/y) = 0
for y > 0 in the last equality (recall that q ∈
ri(∆S), which implies that qs > 0, s ∈ [S]).

Finally, we have

ǫ(q) = sup
p∈∆S

{DKL(p||q)}

= max
s∈[S]

{DKL(ẽ
s||q)}

= max
s∈[S]

{log(1/qs)}

= log(1/min
s∈[S]

{qs}).

�

Proposition 3 is useful to quantify the ambiguity
sets in KL divergence constrained DRO problems
as we will see later.

3. Main results

In this section, we present our main result about
the reformulation of a KL divergence constrained
DRO problem as a conic program under mild con-
ditions.

3.1. Generic problem formulation

We first give the generic problem setting consid-
ered in this paper. Suppose that there are m ran-
dom variables ξi ∈ R, i ∈ [m], each with a discrete
distribution qi ∈ ri(∆Si) estimated from the his-
torical data as

Pr(ξi = dis) = qis s ∈ [Si],

where {dis : s ∈ [Si]} is the set of observed real-
izations of ξi, i ∈ [m]. Under this probabilistic
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setting, we define the ambiguity set

P i(qi, ǫi) := {pi ∈ ∆Si : DKL(p
i||qi) ≤ ǫi},

for i ∈ [m], where ǫi ∈ R+ controls the divergence
from the historical data (or robustness level).

Then, we consider the following KL divergence
constrained DRO problem,

min
y∈Y

{

h(y) +
m
∑

i=1

max
pi∈Pi(qi,ǫi)

Eξi [H
i(y, ξi)]

}

, (1)

where each expectation is taken with respect to an
ambiguous distribution pi ∈ P i(qi, ǫi). In prob-
lem (1), h is a real-valued function defined on R

n;
H i is a real-valued function defined on R

n × R;
and Y is a subset of Rn. Observe that given y
decisions, the inner maximization problem is de-
composable over the random elements ξi, i ∈ [m].

Although we are assuming discrete probability
distributions in this paper, our framework can be
used to solve problems involving continuous dis-
tributions via a finite support approximation.

3.2. Robust counterpart and conic

reformulation

We will now obtain the robust counterpart [4] of
problem (1) utilizing Conic Duality under mild
conditions.

Theorem 1. Consider the KL divergence con-
strained DRO problem (1) as described in Sec-
tion 3.1, and assume that ǫi > 0, i ∈ [m]. Then,
the robust counterpart is given as follows:

min h(y) +
m
∑

i=1

[

αi + ǫiβi +

Si
∑

s=1

qisu
i
s

]

(2a)

s.t. αi − vis ≥ H i(y, dis) i ∈ [m]; s ∈ [Si] (2b)

βi + wi
s = 0 i ∈ [m]; s ∈ [Si] (2c)

αi ∈ R, βi ∈ R+ i ∈ [m] (2d)

(uis, v
i
s, w

i
s) ∈ (Kexp )∗ i ∈ [m]; s ∈ [Si] (2e)

y ∈ Y. (2f)

Proof. We will start the proof by analyzing the
inner maximization problems. Given a vector
y ∈ Y, let us write the i-th inner maximization
problem explicitly as the following exponential
cone constrained program:

max

Si
∑

s=1

H i(y, dis)p
i
s (3a)

s.t.

Si
∑

s=1

pis = 1 (3b)

Si
∑

s=1

δis ≤ ǫi (3c)





0 0
−1 0
0 1





[

pis
δis

]

�Kexp





qis
0
0



 s ∈ [Si] (3d)

pis ∈ R+, δis ∈ R s ∈ [Si]. (3e)

Here, constraints (3b)-(3e) model the relation
pi ∈ P i(qi, ǫi), as stated in Proposition 2.

Recall that ǫi > 0 for each i ∈ [m]. Then, each
inner maximization problem (3) satisfies essential
strict feasibility [38] (e.g. consider pis = qis and
δsi = ǫi/|Si| for s ∈ [Si]), and its optimal value
is bounded above (e.g. by maxs∈[Si]H

i(y, dis)).
Therefore, strong duality holds between prob-
lem (3) and its conic dual given as follows:

min αi + ǫiβi +

Si
∑

s=1

qisu
i
s (4a)

s.t. αi − vis ≥ H i(y, dis) s ∈ [Si] (4b)

βi + wi
s = 0 s ∈ [Si] (4c)

αi ∈ R, βi ∈ R+ (4d)

(uis, v
i
s, w

i
s) ∈ (Kexp)∗ s ∈ [Si]. (4e)

Here, αi, βi and (uis, v
i
s, w

i
s) are the dual variables

associated with the primal constraints (3b), (3c)
and (3d), respectively. Notice that problem (4) is
a dual exponential cone constrained program.

As the final step in the proof, we write the dual
of each inner maximization problem and obtain
the robust counterpart of problem (1) as prob-
lem (2). �

We will now discuss the consequences of Theo-
rem 1 under additional structural properties such
as convexity and conic representability.

Corollary 1. Consider the KL divergence con-
strained DRO problem (1) as described in Theo-
rem 1. In addition, let us assume that Y is a con-
vex set, h(y) and H i(y, ξi) are convex functions
in y, i ∈ [m]. Then, the robust counterpart (2) is
a convex program.

Corollary 2. Consider the KL divergence con-
strained DRO problem (1) as described in The-
orem 1. In addition, let us assume that Y is
a (mixed-integer) conic representable set, h(y)
and H i(y, ξi) are conic representable functions,
i ∈ [m]. Then, the robust counterpart (2) is a
dual exponential cone constrained (mixed-integer)
program.

As an application of Corollary 2, we will consider
the Newsvendor Problem in Section 4 and the
Uncapacitated Facility Location Problem in Sec-
tion 5. The common characteristic of these two
problems is that the set Y is a mixed-integer lin-
ear set, the function h is a linear function and the
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functions H i are the maxima of linear functions
(hence, they are polyhedrally representable).

3.3. Extension to joint discrete

probability distributions

We will now extend our analysis to the case of
joint discrete probability distributions with a fi-
nite support. Suppose that we have a vector of
random variables Ξ ∈ R

m with a joint probability
distribution q ∈ ri(∆S) estimated from the his-
torical data as

Pr(Ξ = D̃s) = qs s ∈ [S],

where {D̃s : s ∈ [S]} ⊆ R
m is the set of observed

realizations of Ξ.

Consider the ambiguity set

P(q, ǫ) := {p ∈ ∆S : DKL(p||q) ≤ ǫ},

where ǫ ∈ R+, and the following KL divergence
constrained DRO problem:

min
y∈Y

{

h(y) + max
p∈P(q,ǫ)

EΞ[H(y,Ξ)]
}

. (5)

Here, h is a real-valued function defined on R
n; H

is a real-valued function defined on R
n×R

m; and
Y is a subset of Rn. Then, we have the following
result:

Theorem 2. Consider the KL divergence con-
strained DRO problem (5) as described above, and
assume that ǫ > 0. Then, the robust counterpart
is given as follows:

min h(y) +

[

α+ ǫβ +

S
∑

s=1

qsus

]

s.t. α− vs ≥ H(y, D̃s) s ∈ [S]

β + ws = 0 s ∈ [S]

α ∈ R, β ∈ R+

(us, vs, ws) ∈ (Kexp )∗ s ∈ [S]

y ∈ Y.

We will omit the proof of Theorem 2 due to its
similarity to the proof of Theorem 1. We remark
that results similar to Corollaries 1 and 2 can be
also obtained in this case under the assumptions
of convexity and conic representability, respec-
tively.

4. Application to the Newsvendor

problem

In this section, we analyze a toy example, the KL
divergence constrained DR version of the single-
period, single-product Newsvendor Problem. In
this case, since there is only one random variable

ξ (that is, m = 1), representing the unknown de-
mand, we will omit the superscript i for conve-
nience.

4.1. Problem formulation

Consider the generic formulation (1) with the fol-
lowing specifications: We let y ∈ Y := Z+ be the
order quantity, and consider functions

h(y) := cy,

where c is the variable order cost, and

H(y, ξ) := cbmax{ξ − y, 0}+ chmax{y − ξ, 0},

where cb is the back-order penalty for unsatisfied
demand and ch is the inventory cost. Notice that
H(y, ξ) is a piecewise linear convex function in y
and can be rewritten as

H(y, ξ) = max{−cby + cbξ, chy − chξ}.

This observation will be useful to linearize con-
straint (2c).

By omitting i indices and simplifying the notation
of problem (2) by taking into account the special
structure of the newsvendor problem, we obtain
the following dual exponential cone constrained
MIP as its robust counterpart:

min cy +

[

α+ ǫβ +
S
∑

s=1

qsus

]

(6a)

s.t. α− vs ≥ −cby + cbds s ∈ [S] (6b)

α− vs ≥ chy − chds s ∈ [S] (6c)

β + ws = 0 s ∈ [S] (6d)

y ∈ Z+, α ∈ R, β ∈ R+ (6e)

(us, vs, ws) ∈ (Kexp)∗ s ∈ [S]. (6f)

4.2. Computations

4.2.1. Experimental setup

To compare the effect of robustness level of KL di-
vergence constrained DR version of the Newsven-
dor Problem, we propose Algorithm 1. Note that
setting ǫ = 0 in problem (6) reduces it to the sto-
chastic programming approach while larger values
of ǫ lead to more robustness (and conservative-
ness) in solutions.

Algorithm 1. Input: A probability distribution
D, the number of samples R, the set of ro-
bustness levels T .

1: Sample R random variates from D for train-
ing, and obtain the empirical distribution q
and the maximum KL divergence ǫ(q) as com-
puted in Proposition 3.

2: Solve problem (6) with ǫ := θǫ(q) for each
θ ∈ T to obtain a decision y∗(θ).
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3: Sample R random variates from D for test-
ing, and then compute the cost realizations for
each realization under the decision y∗(θ).

We implement Algorithm 1 in the Python pro-
gramming language and use MOSEK 9.2 [29] to
solve the dual exponential cone constrained MIP
problem (6).

4.2.2. Results

For this illustration, we choose the following cost
coefficients:

c = 1, cb = 2, ch = 1.

We will now specify the parameters of Algo-
rithm 1. Firstly, we experiment with three dif-
ferent discrete distributions:

• Discrete Uniform Distribution with
parameters 0 and 10, denoted as
Uniform(0, 10).

• Binomial Distribution with parameters 10
and 0.5, denoted as Binomial(10, 0.5).

• Poisson Distribution with parameter 5,
denoted as Poisson(5).

We sample R = 100 random variates separately
to obtain “training” and “test” datasets. Then,
we repeat the experiments for the following “ro-
bustness” levels:

T := {0.00, 0.05, 0.10, 0.15, 0.20, 0.25}.

The summary statistics of our experiments are
reported in Tables 1-3 for Uniform, Binomial and
Poisson distributions, respectively. In particular,
we report the average and standard deviation of
the cost realizations, abbreviated as “Avg.” and
“St. Dev.”, respectively. In addition, we compute
the average of the worst 10% of the realizations,
abbreviated as “Worst 10%”, to quantify the risk.

We observe that as the robustness level θ in-
creases, the optimal order quantity y∗ increases
(recall that θ = 0.00 corresponds to the stochas-
tic programming approach). Moreover, with in-
creasing θ, the average cost increases while the
standard deviation and the average of worst re-
alizations decrease for each distribution. This is
an expected behavior when robust optimization
is utilized. We note that Binomial distribution
is the least sensitive with respect to θ as the or-
der quantity (and performance measures) do not
change after θ ≥ 0.05. On the other hand, Uni-
form and Poisson distributions are more sensitive
with respect to this parameter.

We also repeat the experiments with even higher
values of θ and observe that only the results cor-
responding to the Poisson distribution changes,

which we attribute to its right-skewness. How-
ever, the order quantities in those cases are very
high, which result in overly conservative policies
and deteriorated performance measures.

Table 1. Summary results for
the Newsvendor Problem with
Uniform(0, 10) and R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 4 8.08 2.92 13.80
0.05 4 8.08 2.92 13.80
0.10 5 8.67 2.22 12.80
0.15 5 8.67 2.22 12.80
0.20 5 8.67 2.22 12.80
0.25 6 9.53 1.94 12.00

Table 2. Summary results for
the Newsvendor Problem with
Binomial(10, 0.5) and R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 4 6.76 2.38 11.40
0.05 5 7.02 1.67 10.40
0.10 5 7.02 1.67 10.40
0.15 5 7.02 1.67 10.40
0.20 5 7.02 1.67 10.40
0.25 5 7.02 1.67 10.40

Table 3. Summary results for
the Newsvendor Problem with
Poisson(5) and R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 4 7.59 3.04 13.60
0.05 5 7.73 2.40 12.60
0.10 5 7.73 2.40 12.60
0.15 5 7.73 2.40 12.60
0.20 6 8.44 1.86 12.00
0.25 6 8.44 1.86 12.00

In addition to the summary statistics, we also
provide the box plots of the cost realizations in
Figures 1-3 for Uniform, Binomial and Poisson
distributions, respectively. We observe that as
the robustness level θ increases, the median of
the cost realizations increases while the range
shrinks for each distribution. We also note that
the maximum and upper quartile values decrease
for θ ∈ [0.05, 0.15]. This is a desired property
since it implies that the risk of the stochastic pro-
gramming approach (θ = 0.00) can be lowered.
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Figure 1. Box plot of the results
for the Newsvendor Problem with
Uniform(0, 10) and R = 100.

Figure 2. Box plot of the results
for the Newsvendor Problem with
Binomial(10, 0.5) and R = 100.

Figure 3. Box plot of the results
for the Newsvendor Problem with
Poisson(5) and R = 100.

As a final comparison, we formulate the DR ver-
sion of the Newsvendor Problem assuming that
the first and second moments are known (in our
case, estimated from the training data) following
[39]. We observe that the optimal order quantity
y∗ obtained from this approach turns out to be
identical to the optimal order quantity obtained
from the stochastic programming approach in our
experimental setting.

5. Application to the uncapacitated

facility location Problem

In this section, we analyze the KL divergence con-
strained DR version of the Uncapacitated Facility
Location (UFL) Problem.

5.1. Deterministic version

We first remind the reader the deterministic ver-
sion of the well-known UFL Problem. Suppose
that we have m customers, each with demand di,
i ∈ [m]. The demand must be satisfied by open-
ing new facilities. There are n potential facilities,
each with a fixed cost of fj , j ∈ [n]. The unit
transportation cost between each customer i and
facility j is given as tij , i ∈ [m], j ∈ [n]. The
objective is to minimize the total fixed cost and
transportation cost.

The UFL Problem can be modeled as an integer
program by defining two sets of binary decision
variables. The first set of decision variables, de-
noted as yj , represent the status of each facility j,
and the second set of decision variables, denoted
as xij , represents the assignment of a customer i
to a facility j. The complete model is given as
follows:

min

n
∑

j=1

[

fjyj +

m
∑

i=1

ditijxij

]

(7a)

s.t.
n
∑

j=1

xij = 1 i ∈ [m] (7b)

xij ≤ yj i ∈ [m]; j ∈ [n] (7c)

xij ∈ {0, 1} i ∈ [m]; j ∈ [n] (7d)

yj ∈ {0, 1} i ∈ [m]; j ∈ [n]. (7e)

Here, constraint (7b) guarantees that each cus-
tomer is served by exactly one facility while con-
straint (7c) ensures that each customer is served
by an open facility.

We point out two useful observations about the
UFL Problem. Firstly, in any feasible solution to
problem (7), at least one facility must be opened.
Therefore, we must have

n
∑

j=1

yj ≥ 1. (8)

Secondly, given any optimal y∗ vector, the opti-
mal objective function value can be computed as

n
∑

j=1

fjy
∗
j +

m
∑

i=1

di min
j:y∗j=1

{tij}, (9)

since each customer can be served by the closest
open facility.
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5.2. Distributionally robust version

Now, suppose that we replace the deterministic
demand di with a random variable ξi having an
empirical distribution qi ∈ ri(∆Si), with realiza-
tions dis, s ∈ [Si]. Then, the DR version of the
UFL Problem can be modeled as an instance of
the generic model (1) with Y := {y ∈ {0, 1}n :
(8)} as follows: We choose functions

h(y) :=
n
∑

j=1

fjyj

and

H i(y, ξi) := ξi min
j:yj=1

{tij}, i = 1, . . . ,m,

due to (9). In the remainder of this subsection, we
will obtain the robust counterpart of the KL di-
vergence constrained DR UFL Problem as a dual
exponential cone constrained MIP by the help of
Lemma 1.

5.2.1. A lemma

The following lemma will be critical to linearize
constraint (2c).

Lemma 1. Let t ∈ R
n
+ be a given vector and

consider the function g(y) : {0, 1}n → R defined
as g(y) := min{tj : yj = 1}. Then, for any
y ∈ {0, 1}n satisfying (8), we have

g(y) = max
l=1,...,n

{

tl −
n
∑

j=1

yj max{tl − tj , 0}
}

. (10)

Proof. Let y ∈ {0, 1}n satisfying (8) be given.
We define the following nonempty sets T := {j :
yj = 1} and T ∗ := argmin{tj : j ∈ T}. Notice
that g(y) = tl for l ∈ T ∗. Also, let us define the
quantity

zl := tl −
n
∑

j=1

yj max{tl − tj , 0}, l ∈ [n],

for convenience. Notice that we have

yj max{tl−tj , 0} =










0 if j 6∈ T

0 if j ∈ T and til ≤ tij

til − tij if j ∈ T and til > tij

.

This observation helps us to rewrite zl as

zl = tl −
∑

j∈T :tl>tj

(tl − tj), l ∈ [n].

Now, we will look at the following cases to com-
pute or bound zl:

Case 1: Let l∗ ∈ T ∗. Then, we have zl∗ = tl∗ .

Case 2: Let l 6∈ T ∗, and choose any j∗ ∈ T ∗.
Then, we have

zl = tl − (tl − tj∗)−
∑

j∈T\{j∗}:til>tij

(tl − tj)

= tj∗ −
∑

j∈T\{j∗}:til>tij

(tl − tj)

≤ tj∗ .

This analysis indicates that

max
l∈[n]

{

tl −
n
∑

j=1

yj max{tl − tj , 0}
}

= max
l∈[n]

zl = tl∗ ,

where l∗ ∈ T ∗. Hence, we conclude that equa-
tion (10) holds true. �

An alternative proof of Lemma 1 can be obtained
via LP duality: First, one would write the prob-
lem min{tj : yj = 1} as an IP by introducing ad-
ditional binary variables xj . Secondly, this IP can
be relaxed as an LP due to the totally unimodular
structure. Then, the extreme points of the feasi-
ble region of the dual LP can be characterized,
enabling the dual LP to be solved in closed form
(see dual based arguments in [40, 41]).

5.2.2. The final formulation

Taking into account the special structure of the
UFL Problem and utilizing Lemma 1 by setting
g := H i for each i ∈ [m], we obtain the following
dual exponential cone constrained MIP:

min
n
∑

j=1

fjyj +
m
∑

i=1

[

αi + ǫiβi +

Si
∑

s=1

qisu
i
s

]

(11a)

s.t. αi − vis ≥ dis
(

til −
n
∑

j=1

yj max{til − tij , 0}
)

i ∈ [m]; s ∈ [Si]; l ∈ [n] (11b)

(2c)− (2e), (7e), (8).

5.3. Computations

5.3.1. Experimental setup

We utilize Algorithm 2 to compare the effect of ro-
bustness level to KL divergence constrained DR
version of the UFL Problem. This algorithm is
quite similar to Algorithm 1 used for the analysis
of the Newsvendor Problem.

Algorithm 2. Input: A probability distribution
D, the number of samples R, the set of ro-
bustness levels T .

1: Sample R random variates from D for each
customer i ∈ [m] for training, and obtain the
empirical distribution qi and the maximum
KL divergence ǫ(qi) for each i ∈ [m].
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2: Solve problem (11) with ǫi := θǫ(qi) for each
i ∈ [m] and θ ∈ T to obtain a decision vector
y∗(θ).

3: Sample R random variates from D for each
i ∈ [m] for testing, and then compute the cost
realizations for each realization under the de-
cision vector y∗(θ).

5.3.2. Results

For this illustration, we assume that there are 12
customers and three potential facilities located in
the unit interval. Their precise locations are given
as

{

2ω − 1

36
: ω ∈ [6]

}

∪

{

35− 2ω

36
: ω ∈ [6]

}

,

and
{

2Ω− 1

6
: Ω ∈ [3]

}

,

respectively, and are shown in Figure 4.

Figure 4. Locations of the cus-
tomers (circles) and potential facili-
ties (diamonds).

As evident from the figure, potential facilities
are located evenly across the unit interval and
there are two clusters of customers which are
also distributed evenly in their respective regions.
The fixed cost of opening facilities are given as
f1 = f3 = 10 for the two facilities in the middle of
these clusters (marked by a large diamond), and
f2 = 5 for the other facility (marked by a small
diamond). Finally, the unit transportation cost
between a facility-customer pair is assumed to be
equal to the their distance from each other.

We specify the parameters of Algorithm 2 regard-
ing the generation of random variates similar to
that of Algorithm 1 as described in Section 4.2.2.

The summary statistics of our experiments are
reported in Tables 4-6 for Uniform, Binomial and
Poisson distributions, respectively. We first ob-
serve that the optimal solutions and the perfor-
mance measures are similar for every distribution,
therefore, we will summarize our observations to-
gether. Due to the choice of parameters and the
locations of the facilities and customers as can be
seen from Figure 4, there is a fundamental trade-
off in this instance: We can i) either open a single
facility at the middle of the line segment with the
lower fixed cost and serve customers via longer
distances, or ii) open two facilities at the middle
of two customer clusters with higher fixed cost
and serve customers via shorter distances. In the

stochastic programming approach (θ = 0.00), the
first policy becomes optimal whereas in the DR
approach (θ ≥ 0.05), the second policy becomes
optimal. We note that considering the ambiguity
of the demand distributions increases the average
cost only slightly whereas both the standard de-
viation and the average of the worst 10% of the
realizations decrease significantly. We remind the
reader that the total fixed cost of the stochastic
programming approach is only 5 while the fixed
cost of the DR approach is 20. This also shows
that the corresponding transportation cost, which
is affected by the random uncertainty, is signifi-
cantly smaller in the DR approach.

Table 4. Summary results for the
UFL Problem with Uniform(0, 10)

and R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 0,1,0 23.11 3.47 29.19
0.05 1,0,1 24.52 0.92 26.10
0.10 1,0,1 24.52 0.92 26.10
0.15 1,0,1 24.52 0.92 26.10
0.20 1,0,1 24.52 0.92 26.10
0.25 1,0,1 24.52 0.92 26.10

Table 5. Summary results for the
UFL Problem with Binomial(10,

0.5) and R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 0,1,0 24.87 1.88 28.15
0.05 1,0,1 24.97 0.52 25.86
0.10 1,0,1 24.97 0.52 25.86
0.15 1,0,1 24.97 0.52 25.86
0.20 1,0,1 24.97 0.52 25.86
0.25 1,0,1 24.97 0.52 25.86

Table 6. Summary results for the
UFL Problem with Poisson(5) and
R = 100.

θ y∗ Avg. St. Dev. Worst 10%
0.00 0,1,0 24.96 2.67 29.89
0.05 1,0,1 24.99 0.74 26.34
0.10 1,0,1 24.99 0.74 26.34
0.15 1,0,1 24.99 0.74 26.34
0.20 1,0,1 24.99 0.74 26.34
0.25 1,0,1 24.99 0.74 26.34

In addition to the summary statistics, we also pro-
vide the box plots of the cost realizations in Fig-
ures 5-7 for Uniform, Binomial and Poisson dis-
tributions, respectively. We observe that the me-
dian of the cost realizations either stays the same
or increases slightly in the DR approach while
the range shrinks significantly compared to the
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stochastic programming approach for each distri-
bution. We also note that the maximum and up-
per quartile values decrease considerably with the
DR approach (especially for Binomial and Poisson
distributions).

Figure 5. Box plot of the results for
the UFL Problem with Uniform(0,

10) and R = 100.

Figure 6. Box plot of the results for
the UFL Problem with Binomial(10,

0.5) and R = 100.

Figure 7. Box plot of the results for
the UFL Problem with Poisson(5)

and R = 100.

6. Conclusion

In this paper, we analyzed the KL divergence con-
strained DRO problems and proposed their dual

exponential cone constrained reformulations uti-
lizing the exponential cone representability prop-
erty of KL divergence and Conic Duality. The
resulting robust counterpart can be solved by
a commercial conic programming solver directly.
We specialized our results to the Newsvendor
and UFL Problems by providing problem spe-
cific reformulations, and conducted a computa-
tional analysis comparing the performance of the
solutions obtained via DR approach and stochas-
tic programming from different aspects. We ob-
served that although the mean and median of the
cost realizations deteriorate slightly when the DR
approach is preferred; the range, standard devia-
tion and worst case values of the cost realizations
improve significantly compared to stochastic pro-
gramming approach.

Some future research directions seem promising.
Firstly, by utilizing the semidefinite programming
approximations of the matrix logarithm [42], we
can try to formulate and solve KL-divergence con-
strained DRO problems that involve multivariate
normal distributions. Secondly, we would like to
test the success of the proposed method on differ-
ent problems with real datasets. Lastly, we may
adapt our results to the decision-dependent set-
ting, which is a recent active research area in the
DRO literature [35, 36, 43].
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